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Using a combination of short- and long-read DNA sequencing, we have investigated
the location of antibiotic resistance genes and characterized mobile genetic elements
(MGEs) in three clinical multi-drug resistant Acinetobacter baumannii. The isolates,
collected in Bolivia, clustered separately with three different international clonal lineages.
We found a diverse array of transposons, plasmids and resistance islands related to
different insertion sequence (IS) elements, which were located in both the chromosome
and in plasmids, which conferred resistance to multiple antimicrobials, including
carbapenems. Carbapenem resistance might be caused by a Tn2008 carrying the
blaOXA−23 gene. Some plasmids were shared between the isolates. Larger plasmids
were less conserved than smaller ones and they shared some homologous regions,
while others were more diverse, suggesting that these big plasmids are more plastic
than the smaller ones. The genetic basis of antimicrobial resistance in Bolivia has
not been deeply studied until now, and the mobilome of these A. baumannii isolates,
combined with their multi-drug resistant phenotype, mirror the transfer and prevalence
of MGEs contributing to the spread of antibiotic resistance worldwide and require special
attention. These findings could be useful to understand the antimicrobial resistance
genetics of A. baumannii in Bolivia and the difficulty in tackling these infections.

Keywords: A. baumannii, plasmids, mobile genetic elements, antimicrobial resistance, carbapenemase

INTRODUCTION

Acinetobacter baumannii is a non-fermenting Gram-negative bacilli and it is the second
most common species after Pseudomonas aeruginosa in this group causing bacterial infections
(Gonzalez-Villoria and Valverde-Garduno, 2016). While A. baumannii has been isolated from
the wider environment such as water, soil, and animals, most studied isolates come from clinical
samples, where A. baumannii has become a serious health problem, particularly in the intensive
care unit, where it can cause serious and prolonged outbreaks (Gonzalez-Villoria and Valverde-
Garduno, 2016). A. baumannii is often multidrug resistant (Peleg et al., 2008; Gonzalez-Villoria
and Valverde-Garduno, 2016) making antimicrobial therapy of A. baumannii infections difficult.

Frontiers in Microbiology | www.frontiersin.org 1 May 2020 | Volume 11 | Article 919

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.00919
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.00919
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.00919&domain=pdf&date_stamp=2020-05-13
https://www.frontiersin.org/articles/10.3389/fmicb.2020.00919/full
http://loop.frontiersin.org/people/466826/overview
http://loop.frontiersin.org/people/965381/overview
http://loop.frontiersin.org/people/908085/overview
http://loop.frontiersin.org/people/342335/overview
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00919 May 11, 2020 Time: 19:25 # 2

Cerezales et al. MGEs in Acinetobacter baumannii

In some cases, with the advent of resistance to last line
antibiotics such as colistin, there are few therapeutic options left
(Higgins et al., 2010; Manchanda et al., 2010; Göttig et al., 2014;
Cayô et al., 2016).

Acinetobacter baumannii is known to have a great genome
plasticity, which is the capacity to acquire and disseminate
genes, especially those related to antimicrobial resistance which
are commonly associated with insertion sequence (IS) elements
in transposons and plasmids; this dynamism in the genome
of A. baumannii contributed to the rapid evolution of drug
resistance (Adams et al., 2010) as has been demonstrated for
ISAba1 mobilizing antimicrobial resistance genes (Mugnier et al.,
2009). These processes are achieved thanks to mobile genetic
elements (MGEs) harboring resistance genes. The simplest MGEs
are ISs, that can also form transposons (Tn), and there are more
complex structures such as integrons, resistance islands (RI),
and plasmids. Antimicrobial resistance genes are often integrated
into resistance cassettes related to translocation elements, causing
cumulative resistance to multiple drugs (Roca et al., 2012).

A diverse range of MGEs have been described in
A. baumannii, for example transposons such as Tn2008,
Tn2008B, Tn2006, Tn2009, or Tn2007, which represent different
transposon configurations carrying the blaOXA−23 gene together
with ISAba1 or ISAba4, and additional genes (Nigro and Hall,
2016). Great variability in antimicrobial resistance platforms,
including MGEs, have been recorded even within the same
international clone (IC), illustrating their contribution to the
evolution of drug resistance (Adams et al., 2010). Plasmids
in Acinetobacter spp. are unique and unrelated to those from
other genera, although they often share the same resistance
determinants, such as strA, strB, tet(B) or sul2. In A. baumannii,
a diverse array of plasmids have been found, ranging in size from
2 Kb to more than 150 Kb. The larger plasmids normally encode
for more than one resistance gene, but up to now little is known
about these plasmids (Carattoli, 2013; Hamidian et al., 2016).

The aim of this study was to characterize the MGEs such as
plasmids and RI of three different A. baumannii clinical isolates,
representing different clonal lineages.

MATERIALS AND METHODS

Bacterial Isolates
Three A. baumannii isolates recovered from two hospitals in
Cochabamba, Bolivia, in September 2015, January 2016, and
October 2016 (Table 1) representing three different ICs (IC4,
IC5. and IC7) were selected for this study. We previously
reported their carbapenem resistance mechanisms and molecular
epidemiology (Cerezales et al., 2019).

Antimicrobial Susceptibility Testing
In addition to previously reported carbapenem susceptibility
testing results, in the present study we investigated the following
antimicrobials by agar dilution: amikacin, azithromycin,
chloramphenicol, trimethoprim-sulfamethoxazole, erythro-
mycin, levofloxacin, minocycline, kanamycin, and tetracycline. TA
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TABLE 2 | Plasmid content, size, location resistance genes as determined by WGS, and accession numbers.

Location of resistance genes

Isolate Plasmids Accession
number

Size Plasmid Chromosome

MC1 pMC1.1 MK531536 184 Kb strA
strB

aac(3)-IIa
aac(6′)-Ian

tet(B)
sul2

blaOXA−23

pMC1.2 MK531537 8.7 Kb

MC23 pMC23.1
pMC23.2
pMC23.3

MK531538
MK531537
MK531539

67 Kb
8.7 Kb

6 Kb aadB

strA
strB
sul2
floR
aadA1
sat2
dfrA1

MC75 pMC75.1 MK531540 149 Kb strA
strB
sul2

blaOXA−23

aphA6

pMC75.2 MK531541 13.9 Kb blaTEM−1

aac(3)-IIa

FIGURE 1 | Resistance island RI1.MC23 in isolate MC23. Arrows represent predicted ORFs and the direction of the arrow represents the direction of transcription.
Resistance genes are shown by orange arrows and transposon-related genes, recombinases, and insertion sequences are indicated by green arrows. Genes
involved in plasmid mobility are shown in pink. Other genes are indicated by gray arrows. Hypothetical proteins are not shown.

FIGURE 2 | Resistance island RI2.MC23 in isolate MC23. Arrows represent predicted ORFs and the direction of the arrow represents the direction of transcription.
Resistance genes are shown by orange arrows and transposon-related genes, recombinases, and insertion sequences are indicated by green arrows. Other genes
are indicated by gray arrows. Hypothetical proteins are not shown.

MICs were interpreted using the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) breakpoints1.

MinION Long-Read Sequencing and
Assembly
The Oxford Nanopore Technologies (Oxford, United Kingdom)
MinION sequencer was used to obtain long reads to span
repetitive elements and close genomes and plasmids. DNA
extraction was performed using the Genomic-tip 100/G kit

1http://www.eucast.org/clinical_breakpoints/

(Qiagen, Hilden, Germany). Library preparation was carried out
according to manufacturer’s indications using a combination of
Native Barcoding Kit 1D and Ligation Sequencing Kit 1D; EXP-
NBD103 and SQK-LSK108 (Oxford Nanopore Technologies,
Oxford, United Kingdom), respectively.

The tool Albacore (Oxford Nanopore Technologies, Oxford,
United Kingdom) was used for demultiplexing the reads which
were later used to perform the Canu assembly (Koren et al.,
2017). A hybrid assembly combining previous MiSeq short
reads with MinION-generated long reads was performed using
a hybridSpades (Antipov et al., 2016).
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FIGURE 3 | Plasmid pMC1.1 in isolate MC1. Arrows represent predicted ORFs and the direction of the arrow represents the direction of transcription. Resistance
genes are shown by orange arrows and transposon-related genes, recombinases and insertion sequences are indicated by green arrows. Transfer protein encoding
genes, conjugal transfer protein encoding genes, and genes involved in plasmid partition and replication are shown in pink. The mercury resistance operon genes are
indicated by yellow arrows and the BREX type 1 system is shown in purple. Other genes are indicated by gray arrows. Hypothetical proteins are not shown.

Plasmid Annotation and Visualization
ORFfinder (NCBI)2 was used to predict the open reading
frames (ORF) of the plasmids. A second functional annotation
of the genomes was performed using the online tool Rapid
Annotation Subsystem Technology (RAST)3 (Genomics et al.,
2008). Subsequently, the tool SnapGene Viewer (GSL Biotech)4

2https://www.ncbi.nlm.nih.gov/orffinder/
3https://rast.nmpdr.org/
4https://www.snapgene.com

was used to obtain a circular diagram of the plasmids. Graphic
comparisons between similar plasmids, pMC1.1 and pA297-3,
as well as pMC23.1 and pAC30c, were carried out with the tool
Kablammo (Wintersinger and Wasmuth, 2015).

Conjugation Experiments
Broth mate conjugation experiments were performed to
determine the location of antimicrobial resistance genes
using the sodium azide-resistant Escherichia coli J53 and
the rifampicin-resistant A. baumannii BM4547 as recipient
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FIGURE 4 | Comparison of plasmids pMC1.1 and pA297-3. The top axis represents the pMC1.1, the bottom axis represents pA297-3. Gray shaded regions show
the homologous regions between the two plasmids.

strains. Selection of E. coli J53 transconjugants was performed
using sodium azide (200 mg/L) combined either with
amikacin (30 mg/L), streptomycin (30 mg/L), kanamycin
(30 mg/L), gentamicin (30 mg/L), or ticarcillin (100 mg/L),
and selection for A. baumannii BM4547 was performed using
rifampicin (60 mg/L) combined with gentamicin (30 mg/L)
or ticarcillin (100 mg/L. Transconjugants were selected with
the antimicrobials to select for the plasmids encoding their
respective resistance genes. Strain MC1 was resistant to
rifampicin, therefore conjugation with A. baumannii BM4547
could not be performed. The transconjugants were tested by PCR
for the blaTEM gene.

RESULTS AND DISCUSSION

MC1 and MC75 were previously tested as carbapenem-resistant
and carried the carbapenemase encoding blaOXA−23−like gene
(Cerezales et al., 2019). Further testing revealed that MC1
and MC75 were also resistant to amikacin, chloramphenicol,
ciprofloxacin, gentamicin, and levofloxacin. MC23 was resistant
to amikacin, chloramphenicol, ciprofloxacin, gentamicin, and
levofloxacin but was susceptible to carbapenems. All three
isolates were susceptible to colistin (Table 1).

The blaOXA−23 encoding gene was located on the chromosome
in a Tn2008 vehicle in the isolates MC1 and MC75 (Table 2).
In A. baumannii, the blaOXA−23−like gene is associated with
ISAba1, which contributes to its overexpression as well as its
mobilization (Nigro and Hall, 2016). Tn2008 has previously
been described in Bolivian A. baumannii isolates and this
mirrors the spread of this structure among different ICs leading
to a carbapenem-resistant phenotype (Nigro and Hall, 2016;
Sennati et al., 2016; Chen et al., 2017; Ewers et al., 2017;
Cerezales et al., 2018).

Resistance Islands
In the isolate MC23, the gene strA was located on a resistance
island in the chromosome (RI1.MC23) (accession number
MK531542), together with other antimicrobial resistance genes
such as sul2, floR, and strB. Diverse IS elements were found, with
the resistance island bracketed by two copies of a transposase
from the IS4 family in reverse orientation (Figure 1). Two
genes involved in conjugation were also present in this structure,
suggesting a plasmid origin.

In addition, a second chromosomal resistance island was also
found in this isolate (RI2.MC23) (accession number MK531543),
that carried a typical structure from class 2 integrons,

Frontiers in Microbiology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 919

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00919 May 11, 2020 Time: 19:25 # 6

Cerezales et al. MGEs in Acinetobacter baumannii

FIGURE 5 | Plasmids pMC1.2 and pMC23.2 in isolates MC1 and MC23, respectively. Arrows represent predicted ORFs and the direction of the arrow represents
the direction of transcription. Red arrow is used for the replicon. The toxin-antitoxin system is indicated by violet arrows and blue arrows represent virulence genes.
Other genes are shown in gray.

dfrA-sat2-aadA1-ybeA-ybfAybfB-ybgA, located between the Tn7
transposition module tnsABCDE and a non-functional Intl2
integrase. Additionally, a Tn3 transposon was found inserted
in the Tn7 transposon, carrying three genes, tnpA, encoding
for a Tn3 transposase; tnpR encoding a Tn3 resolvase; and the
antimicrobial resistance gene blaTEM−1A (Figure 2).

The gene encoding Apha6 was found on the chromosome of
MC75 bracketed by two ISAba125 that is a composite transposon
known as TnaphA6 (Matos et al., 2019).

Plasmids
pMC1.1
Annotation of pMC1.1 (accession number MK531536), 39%
GC content, revealed many different IS elements such as
IS1006, IS1007, IS1008, ISAcsp1, IS91 family, ISAha2, ISAba11,
ISAba12, and IS17. This plasmid carried a mercuric resistance
operon, similar to an already described mercuric Tn in a
200 Kb plasmid (pA297-3) from an IC1 A. baumannii isolate,

but it lacks the merP open reading frame (Hamidian et al.,
2016). Different antimicrobial resistance determinants such as
strA, strB, aac(3)-IIa, and aac(6′)-Ian, conferring resistance to
aminoglycosides, sul2 conferring resistance to sulphonamides,
and tet(B) conferring resistance to tetracycline were also present.
The region of the plasmid carrying strA, strB, and sul2 shared
high homology with Tn6172, located in pA297-3 as well
(Figure 3), however, in pMC1.1 arsR, tetR, and tet(B) genes were
also located within Tn6172 with an ISCR2 transposable element
(IS91 family). This ISCR element has been described associated
with different antimicrobial resistance genes in A. baumannii,
especially with sul2, contributing to their mobilization thanks to
a rolling circle transposition mechanism (Toleman et al., 2006),
and was similar to other plasmids from Argentina (Vilacoba
et al., 2013) and to plasmids found in an ST25 isolate from
Australia (Hamidian and Hall, 2016). However, the location of
tetR-tetB genes was different; they were located between glmM
and arsR, suggesting a possible later insertion of these genes in
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FIGURE 6 | Plasmid pMC23.1 in isolate MC23. Arrows represent predicted ORFs and the direction of the arrow represents the direction of transcription. Red arrow
is used for the replicon. The toxins are indicated by violet arrows represent virulence genes. Transfer protein encoding genes, conjugal transfer protein encoding
genes, and genes involved in plasmid partition and replication are shown in pink. Other genes are shown in gray. Hypothetical proteins are not shown.

different positions within the transposon (Vilacoba et al., 2013).
In addition, the same inverted repeats (IR) generated by the
insertion of the transposon were also found in pMC1.1 which
together with the similar backbone with pA297-3 (Figure 4)
suggest they share a common origin. The genes aac(3)-IIa and
aac(6′)-Ian were associated with IS6 family IS and bracketed by
two ISCR1 in inverted orientation. ISCR1 belongs to the IS91
family and has been described related to class 1 integrons and
antimicrobial resistance genes in diverse Gram-negative species
such as Klebsiella pneumoniae, P. aeruginosa, and Citrobacter
freundii (Toleman et al., 2006). Different transfer genes (tra)
were also found in this plasmid, as well as genes involved in
plasmid partition and replication (parB/repB and xerC) that are
related to segregational stability of plasmids. This plasmid also
encoded a system called BREX type 1 (bacteriophage exclusion)
which has been described to be involved in phage resistance
(Goldfarb et al., 2015).

pMC1.2/pMC23.2
The 8.7 Kb plasmids found in MC1 and MC23 (pMC1.2 and
pMC23.2) were identical (accession number MK531537), with a
GC content of 34.3% (Figure 5). This small plasmid has often

been found in IC1 A. baumannii isolates (Lean and Yeo, 2017).
Annotation of this plasmid revealed ORFs encoding for a RepB
replicon (Rep-3 superfamily, GR2) (Bertini et al., 2010; Lean
and Yeo, 2017) a toxin-antitoxin system (BrnT-BrnA), that is
involved in vertical stability; TonB-dependent receptor, related
to the transmission of signals from the outside of the cell leading
to transcriptional activation of target genes; a septicolysin gene
encoding a cytolytic enzyme toward eukaryotic cells and is
involved in pathogenesis; as well as sel1 gene that encodes for a
protein that has been described in diverse prokaryotic genera and
has an important role in virulence.

pMC23.1
The largest plasmid in MC23 was the 67.5 Kb pMC23.1 (accession
number MK531538) (Figure 6). It belonged to GR6 according to
its replicase, repAci6. Its GC content was 33.7% and almost all of
its putative protein encoding genes were related to conjugative
plasmid transfer in a tra locus, some of them are part of a
type IV (T4SS) secretion system. This T4SS is able to secrete
or take up both proteins and DNA, and possibly is involved
in natural competence, a feature of A. baumannii (Salto et al.,
2018). Two toxin encoding genes were present in the plasmid,
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FIGURE 7 | Comparison of plasmids pMC23.1 and pAC30c. The top axis represents the pMC23.1, the bottom axis represents pAC30c. Gray shaded regions show
the homologous regions between the two plasmids.

relE and zeta toxin, but no antitoxins were found, although
they were present in a very similar plasmid (pAC30c) in an
A. baumannii isolate belonging to ST195 (IC2) (Figure 7; Lean
et al., 2016). In addition, the partition genes parA/parB were also
encoded on pMC23.1. The backbone of pMC23.1 and pAC30c
were very similar, with only a few differences. pMC23.1 lacked
some hypothetical proteins present in pAC30c, and the region
encoding for tellurite resistance (telA gene and IS66); while traD,
a cupin-like protein (that is a superfamily of enzymes including
dioxygenases, decarboxylases, hydrolases, or isomerases); HlyD
protein, that exports proteins from the cytosol to the outside
of the cell, and an ABC transporter were not present in
pAC30.

pMC23.3
A 6 Kb small plasmid was present in the isolate MC23, pMC23.3
(accession number MK531539), 39.2% GC content, and was
found to have 100% similarity with an already described plasmid,
pRAY from an isolate in South Africa, encoding resistance to
gentamicin, kanamycin and tobramycin (aadB gene) together
with mobA and mobC genes, which are thought to encode
mobilization proteins (Lean and Yeo, 2017). Many similar
plasmids have been found in diverse A. baumannii isolates from
different ICs and countries, suggesting a common origin and
subsequent diversification in their evolution. Concurrent with
other studies, no rep gene was found in the plasmid sequence,

supporting the idea of the presence of a mechanism of replication
relying in the host RNA polymerase (Lean and Yeo, 2017).

pMC75.1
Analysis of pMC75.1 (accession number MK531540) a large
plasmid of 150 Kb revealed that it was very similar to pMC1.1
(sharing 80% of their sequences), it also carried a Tn6172, in
which antimicrobial resistance genes such as sul2, strB, and strA
are encoded, but lacking tet(B) and arsR that were present in
pMC1.1 (Figure 8). The mer operon was also found in this
plasmid, and many genes encoding conjugative transfer proteins.
The BREX type 1 system was also present. A stbA gene was found,
the protein encoded by this gene plays a role in plasmid stability
as well as parA/parB. Several IS elements were also present,
i.e., ISAba1, ISAba125, ISAba14, ISAba42, IS1007, and ISAha2.
However, this plasmid lacked the transposon carrying aac(3)-IIa
and aac(6′)-Ian.

pMC75.2
The 13.9 Kb plasmid, pMC75.2 (accession number MK531541)
(Figure 9) with a GC content of 40.3%, carried the broad-
spectrum β-lactamase blaTEM−1B and the aminoglycoside
resistance gene aac(3)-IIa flanked on both sides by IS15DIV; a
toxin-antitoxin system, brnT/brnA; a TonB-dependant receptor,
a septicolysin gene and mobA/mobS, which are involved in
plasmid mobility. Conjugation experiments revealed that
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FIGURE 8 | Plasmid pMC75.1 in isolate MC75. Arrows represent predicted ORFs and the direction of the arrow represents the direction of transcription. Resistance
genes are shown by orange arrows and transposon-related genes, recombinases and insertion sequences are indicated by green arrows. Transfer protein encoding
genes, conjugal transfer protein encoding genes, and genes involved in plasmid partition and replication are shown in pink. The mercury resistance operon genes are
indicated by yellow arrows and the BREX type 1 system is shown in purple. Other genes are indicated by gray arrows. Hypothetical proteins are not shown.

pMC75.2 was transferable into A. baumannii BM4547 but it
was unstable and was lost after several passages. The replicon
of this plasmid belonged to the RepB (Rep_3) superfamily
with 100% homology. This plasmid shares a great homology
with pMC1.2/pMC23.2, same RepB, toxin-antitoxin system,
TonB-dependant receptor and septicolysin; it seems that one of
them has lost or alternatively acquired the integron carrying the
antimicrobial resistance genes and the mobility genes.

Recently, two similar plasmids to pMC75.1 and pMC75.2 were
described in a Brazilian A. baumannii isolate representing the
same ST (ST15). This illustrates that these plasmids can be very
plastic by acquiring or losing genes, but can also be conserved
within a ST (Matos et al., 2019).

The two carbapenem-resistant isolates carried the
blaOXA−23 gene in Tn2008, which has been previously

described in diverse ICs (Nigro and Hall, 2016; Ewers
et al., 2017) including IC7 isolates recovered from a
hospital in the same city, Cochabamba (Sennati et al.,
2016). The Tn2008 contributes to the overexpression of the
carbapenemase encoding gene and to its mobilization. In
addition, all three isolates harbored three aminoglycoside
resistance genes such as aac(3)-IIa, strA, and strB; and
sul2 conferring resistance to sulphonamides; MC1 carried
tetB conferring resistance to tetracycline as well. All the
genes were found to be associated with IS elements,
constituting transposons that lead to their mobilization
and make genetic rearrangements more likely to happen.
These genes were found both in the chromosome and in
plasmids, demonstrating the plasticity of the A. baumannii
genome and the mobility of these antimicrobial resistance
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FIGURE 9 | Plasmid pMC75.2 in isolate MC75. Arrows represent predicted ORFs and the direction of the arrow represents the direction of transcription. Resistance
genes are shown by orange arrows and insertion sequences are indicated by green arrows. Genes involved in plasmid mobility are shown in pink. The toxin-antitoxin
system is shown in violet. Blue represents virulence genes. Other genes are indicated by gray arrows. Hypothetical proteins are not shown. Red arrow is used for
the replicon.

determinants within MGEs such as transposons or
plasmids.

CONCLUSION

In summary, these data further confirm that A. baumannii has a
great ability to acquire antimicrobial resistance determinants and
become a threat in hospitals. These are associated with different
plasmids and many different IS elements, of which some are
found in multiple genera. For these reasons it is important to
study the dynamics and resistomes of the bacterial populations
in order to understand the situation in each hospital or unit.
The fact that some of these plasmids have been found in diverse
A. baumannii clonal lineages mirrors the transfer and prevalence
of these MGEs contributing to the spread of antimicrobial
resistance worldwide.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in
the GenBank, MK531536, MK531538, MK531537, MK531539,
MK531540, and MK531541.

AUTHOR CONTRIBUTIONS

MC, KX, JW, and PH contributed to the design of the
experiments. MC, KX, and JW performed the experiments.
MC, KX, JW, OK, HS, LG, and PH analyzed and interpreted
the data. MC, KX, and PH wrote the manuscript. All authors
contributed to critical manuscript revision, read, and approved
the submitted version.

FUNDING

This work was supported by the Basque Government 1129
and University of the Basque Country [Grupo Consolidado
del Sistema Universitario Vasco (IT1097-16)/UPV/EHU
GIC15/143]. PH was supported by the German Research Council
(DFG) – FOR2251 (www.acinetobacter.de). This work was
supported by the German Center for Infection Research (DZIF).

ACKNOWLEDGMENTS

We would like to thank Yvonne Pfeifer for providing the
conjugation protocol and also Rémy A. Bonnin for providing the
A. baumannii BM4547 strain.

Frontiers in Microbiology | www.frontiersin.org 10 May 2020 | Volume 11 | Article 919

http://www.acinetobacter.de
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00919 May 11, 2020 Time: 19:25 # 11

Cerezales et al. MGEs in Acinetobacter baumannii

REFERENCES
Adams, M. D., Chan, E. R., Molyneaux, N. D., and Bonomo, R. A. (2010).

Genomewide analysis of divergence of antibiotic resistance determinants
in closely related isolates of Acinetobacter baumannii. Antimicrob. Agents
Chemother. 54, 3569–3577. doi: 10.1128/AAC.00057-10

Antipov, D., Korobeynikov, A., Mclean, J. S., and Pevzner, P. A. (2016). Genome
analysis HYBRIDSPADES: an algorithm for hybrid assembly of short and long
reads. Bioinformatics 32, 1009–1015. doi: 10.1093/bioinformatics/btv688

Bertini, A., Poirel, L., Mugnier, P. D., Villa, L., Nordmann, P., and Carattoli, A.
(2010). Characterization and PCR-based replicon typing of resistance plasmids
in Acinetobacter baumannii. Antimicrob. Agents Chemother. 54, 4168–4177.
doi: 10.1128/AAC.00542-10

Carattoli, A. (2013). Plasmids and the spread of resistance. Int. J. Med. Microbiol.
303, 298–304. doi: 10.1016/j.ijmm.2013.02.001

Cayô, R., Rodrigues-Costa, F., Pereira Matos, A., Godoy Carvalhaes, C.,
Dijkshoorn, L., and Gales, A. C. (2016). Old clinical isolates of Acinetobacter
seifertii in Brazil producing OXA-58. Antimicrob. Agents Chemother. 60, 2589–
2591. doi: 10.1128/AAC.01957-15

Cerezales, M., Ocampo-Sosa, A. A., Álvarez Montes, L., Díaz Ríos, C., Bustamante,
Z., Santos, J., et al. (2018). High prevalence of extensively drug-resistant
Acinetobacter baumannii at a children hospital in Bolivia. Pediatr. Infect. Dis.
J. 37, 1118–1123. doi: 10.1097/INF.0000000000001962

Cerezales, M., Xanthopoulou, K., Wille, J., Bustamante, Z., Seifert, H., Gallego, L.,
et al. (2019). Acinetobacter baumannii analysis by core genome MLST in two
hospitals in Bolivia: endemicity of international clone 7 isolates (CC25). Int. J.
Antimicrob. Agents 53, 844–849. doi: 10.1016/j.ijantimicag.2019.03.019

Chen, Y., Gao, J., Zhang, H., and Ying, C. (2017). Spread of the blaOXA-23-
containing Tn2008 in carbapenem-resistant Acinetobacter baumannii isolates
grouped in CC92 from China. Front. Microbiol. 8:163. doi: 10.3389/fmicb.2017.
00163

Ewers, C., Klotz, P., Leidner, U., Stamm, I., Prenger-Berninghoff, E., Göttig, S., et al.
(2017). OXA-23 and ISAba1 –OXA-66 class D β-lactamases in Acinetobacter
baumannii isolates from companion animals. Int. J. Antimicrob. Agents 49,
37–44. doi: 10.1016/j.ijantimicag.2016.09.033

Genomics, B., Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., et al.
(2008). The RAST server: rapid annotations using subsystems technology. BMC
Genomics 9:75 doi: 10.1186/1471-2164-9-75

Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak-Amikam,
Y., et al. (2015). BREX is a novel phage resistance system widespread in
microbial genomes. EMBO J. 34, 169–183. doi: 10.15252/embj.201489455

Gonzalez-Villoria, A. M., and Valverde-Garduno, V. (2016). Antibiotic-resistant
Acinetobacter baumannii increasing success remains a challenge as a
nosocomial pathogen. J. Pathog. 2016:7318075. doi: 10.1155/2016/7318075

Göttig, S., Gruber, T. M., Higgins, P. G., Wachsmuth, M., Seifert, H., and Kempf,
V. A. J. (2014). Detection of pan drug-resistant Acinetobacter baumannii in
Germany. J. Antimicrob. Chemother. 69, 2578–2579. doi: 10.1093/jac/dku170

Hamidian, M., Ambrose, S. J., and Hall, R. M. (2016). A large conjugative
Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB
streptomycin resistance genes. Plasmid 87–88, 43–50. doi: 10.1016/j.plasmid.
2016.09.001

Hamidian, M., and Hall, R. M. (2016). The resistance gene complement of D4, a
multiply antibiotic-resistant ST25 Acinetobacter baumannii isolate, resides in
two genomic islands and a plasmid. J. Antimicrob. Chemother. 71, 1730–1741.
doi: 10.1093/jac/dkw041

Higgins, P. G., Dammhayn, C., Hackel, M., and Seifert, H. (2010). Global spread of
carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 65,
233–238. doi: 10.1093/jac/dkp428

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy,
A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k -
mer weighting and repeat separation. Genome Res. 27, 722–736. doi: 10.1101/
gr.215087.116

Lean, S. S., and Yeo, C. C. (2017). Small, enigmatic plasmids of the nosocomial
pathogen, Acinetobacter baumannii: good, bad, who knows? Front. Microbiol.
8:1547. doi: 10.3389/fmicb.2017.01547

Lean, S.-S., Yeo, C. C., Suhaili, Z., and Thong, K.-L. (2016). Comparative genomics
of two ST 195 carbapenem-resistant Acinetobacter baumannii with different
susceptibility to polymyxin revealed underlying resistance mechanism. Front.
Microbiol. 6:1445. doi: 10.3389/fmicb.2015.01445

Manchanda, V., Sanchaita, S., and Singh, N. (2010). Multidrug resistant
Acinetobacter. J. Glob. Infect. Dis. 2, 291–304. doi: 10.4103/0974-777X.68538

Matos, A. P., Cayô, R., Almeida, L. G. P., Streling, A. P., Nodari, C. S., Martins,
W. M. B. S., et al. (2019). Genetic characterization of plasmid-borne bla OXA-58
in distinct Acinetobacter Species. mSphere 4:e00376-19. doi: 10.1128/mSphere.
00376-19

Mugnier, P. D., Poirel, L., and Nordmann, P. (2009). Functional analysis of
insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter
baumannii. J. Bacteriol. 191, 2414–2418. doi: 10.1128/JB.01258-08

Nigro, S. J., and Hall, R. M. (2016). Structure and context of Acinetobacter
transposons carrying the oxa23 carbapenemase gene. J. Antimicrob. Chemother.
71, 1135–1147. doi: 10.1093/jac/dkv440

Peleg, A. Y., Seifert, H., and Paterson, D. L. (2008). Acinetobacter baumannii:
emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582. doi:
10.1128/CMR.00058-07

Roca, I., Espinal, P., Vila-Farrés, X., and Vila, J. (2012). The Acinetobacter
baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant
menace. Front. Microbiol. 3:148. doi: 10.3389/fmicb.2012.00148

Salto, I. P., Torres Tejerizo, G., Wibberg, D., Pühler, A., Schlüter, A., and Pistorio,
M. (2018). Comparative genomic analysis of Acinetobacter spp. plasmids
originating from clinical settings and environmental habitats. Science 8:7783.
doi: 10.1038/s41598-018-26180-3

Sennati, S., Villagran, A. L., Bartoloni, A., Rossolini, G. M., and Pallecchi, L. (2016).
OXA-23-producing ST25 Acinetobacter baumannii?: first report in Bolivia.
J. Glob. Antimicrob. Resist. 4, 70–71. doi: 10.1016/j.jgar.2015.10.007

Toleman, M. A., Bennett, P. M., and Walsh, T. R. (2006). ISCR elements: novel
gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70,
296–316. doi: 10.1128/MMBR.00048-05

Vilacoba, E., Almuzara, M., Gulone, L., Traglia, G. M., Figueroa, S. A., Sly, G., et al.
(2013). Emergence and spread of plasmid-borne tet(B)::ISCR2 in minocycline-
resistant Acinetobacter baumannii isolates. Antimicrob. Agents Chemother. 57,
651–654. doi: 10.1128/AAC.01751-12

Wintersinger, J. A., and Wasmuth, J. D. (2015). Kablammo: an interactive, web-
based BLAST results visualizer. Bioinformatics 31, 1305–1306. doi: 10.1093/
bioinformatics/btu808

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Cerezales, Xanthopoulou, Wille, Krut, Seifert, Gallego and Higgins.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 11 May 2020 | Volume 11 | Article 919

https://doi.org/10.1128/AAC.00057-10
https://doi.org/10.1093/bioinformatics/btv688
https://doi.org/10.1128/AAC.00542-10
https://doi.org/10.1016/j.ijmm.2013.02.001
https://doi.org/10.1128/AAC.01957-15
https://doi.org/10.1097/INF.0000000000001962
https://doi.org/10.1016/j.ijantimicag.2019.03.019
https://doi.org/10.3389/fmicb.2017.00163
https://doi.org/10.3389/fmicb.2017.00163
https://doi.org/10.1016/j.ijantimicag.2016.09.033
https://doi.org/10.1186/1471-2164-9-75
https://doi.org/10.15252/embj.201489455
https://doi.org/10.1155/2016/7318075
https://doi.org/10.1093/jac/dku170
https://doi.org/10.1016/j.plasmid.2016.09.001
https://doi.org/10.1016/j.plasmid.2016.09.001
https://doi.org/10.1093/jac/dkw041
https://doi.org/10.1093/jac/dkp428
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.3389/fmicb.2017.01547
https://doi.org/10.3389/fmicb.2015.01445
https://doi.org/10.4103/0974-777X.68538
https://doi.org/10.1128/mSphere.00376-19
https://doi.org/10.1128/mSphere.00376-19
https://doi.org/10.1128/JB.01258-08
https://doi.org/10.1093/jac/dkv440
https://doi.org/10.1128/CMR.00058-07
https://doi.org/10.1128/CMR.00058-07
https://doi.org/10.3389/fmicb.2012.00148
https://doi.org/10.1038/s41598-018-26180-3
https://doi.org/10.1016/j.jgar.2015.10.007
https://doi.org/10.1128/MMBR.00048-05
https://doi.org/10.1128/AAC.01751-12
https://doi.org/10.1093/bioinformatics/btu808
https://doi.org/10.1093/bioinformatics/btu808
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Mobile Genetic Elements Harboring Antibiotic Resistance Determinants in Acinetobacter baumannii Isolates From Bolivia
	Introduction
	Materials and Methods
	Bacterial Isolates
	Antimicrobial Susceptibility Testing
	MinION Long-Read Sequencing and Assembly
	Plasmid Annotation and Visualization
	Conjugation Experiments

	Results and Discussion
	Resistance Islands
	Plasmids
	pMC1.1
	pMC1.2/pMC23.2
	pMC23.1
	pMC23.3
	pMC75.1
	pMC75.2


	Conclusion
	Data Availability Statement
	AUTHOR CONTRIBUTIONS
	Funding
	Acknowledgments
	References


