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Non-Aspergillus molds including Mucorales, Fusarium, and Scedosporium, etc. are
emerging pathogens leading to higher mortality in immunocompromised patients. Fifty-
two isolates of genetically confirmed non-Aspergillus molds representing 16 species
from 8 genera were collected to evaluate the performance of the Bruker matrix-
assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF MS)
in identification of non-Aspergillus molds. Antifungal susceptibilities were determined
through the Clinical & Laboratory Standards Institute (CLSI) M38-A2 broth microdilution
method and the Sensititre YeastOne colorimetric method. Bruker MALDI-TOF MS
identified 57.7% (30/52) of isolates cultured in broth and 15.4% (8/52) of isolates
cultured on solid agar media to the species level, respectively, according to standard
interpretation criteria. Lowering the species level cut-off value (COV) from >2.0 to >1.7
could improve the MALDI-TOF MS species-level identification rate to 67.3% (38/52)
for isolates cultured on solid media, with a slight increase of false identification rate of
2.6% (1/38). Amphotericin B was the most in vitro fungistatic-active agent for 98.1%
(561/52) of the tested non-Aspergillus molds, with minimum inhibitory concentrations
(MICs) of <2 pg/mL. The susceptibilities to triazoles varied, with MICs of 0.12 to
>16 ng/mL among different species of non-Aspergillus molds. The correlation between
the CLSI method and Sensititre YeastOne on antifungal susceptibility testing of non-
Aspergillus molds was good, with essential agreement (EA) rates of >90% for triazoles
and echinocandins except amphotericin B, which had a lower EA rate of 84.6%. In
conclusion, a favorable performance of the Bruker MALDI-TOF MS in identification
of clinical non-Aspergillus isolates directly inoculated on solid agar media could be
achieved with the adoption of alternative interpretation criteria. Antifungal susceptibility
testing is important for non-Aspergillus molds, especially when information on triazole
susceptibility is required, and the Sensititre YeastOne is a practical and reliable method
to determine antifungal susceptibilities of non-Aspergillus molds.

Keywords: antifungal susceptibility testing, identification, MALDI-TOF MS, non-Aspergillus molds, Sensititre
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Identification and Antifungal Susceptibility Testing of Non-Aspergillus Molds

INTRODUCTION

In recent years, opportunistic filamentous fungi have come
to pose a serious threat to immunocompromised patients
with AIDS, leukemia, organ transplantation, etc. Even though
Aspergillus remains the leading pathogen in invasive mold
infections, infections due to non-Aspergillus molds are
increasingly reported in the clinical setting, with higher
mortality rates. Mucorales and Fusarium are considered
the most frequently clinically encountered non-Aspergillus
mold pathogens, while other less common species such
as Scedosporium, Paecilomyces, and the deeply thought
contaminating pathogen from environment, Penicillium,
are raising serious attention as a growing number of clinical
infections due to those rare species have been reported (Slavin
et al,, 2015; Douglas et al., 2016; Lass-Florl and Cuenca-Estrella,
2017). Morphological identification of non-Aspergillus molds is
usually less effective, especially when species-level information
is desired. Molecular sequencing analysis based on informative
DNA targets such as the internal transcribed spacer (ITS)
region could be competent in identification of non-Aspergillus
molds, but the time-consuming aspect and need for specialized
molecular biological equipment limited its wide use in clinical
microbiology laboratories. Matrix-assisted laser desorption
ionization—time of flight mass spectrometry (MALDI-TOF MS)
has shown excellent performance in identification of bacteria
and yeasts (Singhal et al., 2015; Cassagne et al., 2016), and could
also achieve accurate identification of Aspergillus with in-house
databases and adjusted interpretation criteria (Li et al., 2017;
Normand et al., 2017b). However, the practicability of MALDI-
TOF MS in identification of non-Aspergillus molds is somehow
restricted and relevant studies are much fewer compared with
those on Aspergillus.

Non-Aspergillus molds demonstrated diverse susceptibilities
against the clinically available antifungal agents, and the
susceptibility profiles of those molds cannot always be inferred
directly from their species information, even a large number
of Mucorales and Fusarium isolates are notoriously resistant
to multiple antifungals including triazoles and echinocandins
(Wiederhold, 2017). Although the Clinical & Laboratory
Standards Institute (CLSI) and the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) have both put
forward reference methods, namely CLSI M38-A2 and E.DEF
9.3.1 documents, against conidia-forming molds, those methods
have not usually been employed in clinical laboratories because
of the shortcomings of complicated operation and difficult
endpoint reading. The Sensititre YeastOne YOI0 system is a
commercial kit of antifungal susceptibility testing based on
the broth microdilution method for yeasts and Aspergillus,
and good performances have been achieved, especially for
yeasts (Posteraro et al, 2015; Mello et al, 2017). Although
non-Aspergillus molds are not listed as detectable species in
the Sensititre YeastOne manual, several studies have applied
Sensititre YeastOne to determine the antifungal susceptibilities
of non-Aspergillus molds because it shares the same methodology
as the CLSI M38-A2 method expect for its colorimetric endpoint
reading feature (Carrillo-Muifioz et al., 2006; Patel et al., 2007;

Halliday et al., 2016). Owing to the limited isolates and antifungal
drugs involved in previous studies, there is no widely accepted
conclusion about the practicability of Sensititre YeastOne on
antifugal susceptibility testing of non-Aspergillus molds.

In this study, we evaluated the performance of the Bruker
MALDI-TOF MS in identification of the clinically important
non-Aspergillus molds grown under different culture conditions.
Further antifungal susceptibility profiles of these isolates were
determined through the reference broth microdilution method
and the Sensititre YeastOne system, and the capability of the use
of Sensititre YeastOne for non-Aspergillus molds was assessed.

MATERIALS AND METHODS

Isolates

A total of 52 isolates of non-Aspergillus molds isolated from
various clinical specimens including respiratory tract (n = 34,
65.4%), pus (n = 5, 9.6%), wound swabs (n = 4, 7.7%),
conjunctival congestion secretions (n = 2, 3.8%), ascitic fluid
(n = 2, 3.8%), urine (n = 2, 3.8%), blood culture (n = 1, 1.9%),
biopsy specimens (n = 1, 1.9%), and pancreatic drainage fluid
(n =1, 1.9%) were collected at Peking Union Medical College
Hospital from January 2016 to December 2017. All isolates were
initially identified with morphological method and stored as
spore suspensions in sterile 20% glycerol at —80°C.

Molecular Sequencing Identification

Isolates were inoculated on Sabouraud dextrose agar (SDA) plates
(Oxoid, United Kingdom) at 28°C for 2-7 days and mycelia were
collected for genomic DNA extraction. The internal transcribed
spacer (ITS) region was employed as the primary sequencing
gene for all isolates. As to Fusarium, the eukaryotic translation
elongation factor 1o (EF-Ia) gene was used additionally for
species level identification (Wang et al., 2011). Sequence data
were analyzed against the National Center for Biotechnology
Information (NCBI)' or Mycobank® database, and sequence-
based species identification was defined by 99% sequence
similarity with 95% query coverage.

MALDI-TOF MS Identification

Isolates were inoculated on SDA plates at 28°C for 2-5 days
until the colonies reached a size of about 2 cm diameter. The
front mycelia were collected with a sterile inoculating loop
and then transferred to 1.5-mL Eppendorf tubes containing
300 pL of distilled water and 900 L of ethanol. The suspension
was centrifuged at 16,000 x g for 3 min, and the pellet
was dried at room temperature for 10 min. The pellet was
then resuspended in 50 pL of 70% formic acid (FA) for
5 min and an equal volume of acetonitrile was then added.
Samples were subsequently centrifuged at 16,000 x g for 2 min.
One microliter of supernatant was transferred to the polished
steel MTP 384 target plate (Bruker Daltonik, GmbH) and
allowed to dry at room temperature before being overlaid with

Thttp://blast.ncbi.nlm.nih.gov/Blast.cgi
Zhttp://www.mycobank.org/
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1 pL of a saturated a-cyano-4-hydroxycinnamic acid (HCCA)
matrix solution (Bruker Daltonik, GmbH). Meanwhile, spore
suspensions with an approximate size of 1 x 10° colony-
forming units (CFUs) from the colonies on SDA plates were
reinoculated with 10 mL of Sabouraud dextrose broth (SDB)
at 28°C for approximately 1 day in a rotator as the Bruker
standard operating procedure suggested. Then 1 mL of fungus-
containing medium was transferred to a 1.5-mL Eppendorf tube
and centrifuged at 16,000 x g for 3 min, and the pellet was
washed twice with 1 mL of deionized water. The remaining
operation was identical to the aforementioned standard FA-
acetonitrile extraction method applied in this study. The
acquisition and analysis of mass spectra were performed by a
Bruker Autoflex™ LT mass spectrometer using the MALDI
Biotyper software package (version 3.1, Bruker Daltonik, GmbH),
and the Filamentous Fungi Library 1.0 (Bruker Daltonik, GmbH)
was used as the analysis database. Identification scores of
>2.0 indicated species-level identification, scores of 1.7-1.999
indicated genus-level identification, and scores of <1.7 were
considered unreliable according to the Bruker manual. We
also evaluated the performance of the Bruker MALDI-TOF
MS in non-Aspergillus identification by lowering the species-
level identification cut-off value (COV) from >2.0 to >1.7 and
the genus-level identification COV from 1.7-1.999 to 1.4-1.699
followed by reinterpretation of the identification records.

Antifungal Susceptibility Testing

Susceptibility testing was carried out using the broth
microdilution method according to the CLSI M38-A2 document.
The drugs tested were amphotericin B [AMB; National Institute
for Food and Drug Control (NIFDC), China], itraconazole
(ITR; NIFDC, China), voriconazole (VOR; NIFDC, China),
posaconazole (POS; Merck, United States), caspofungin (CAS;
Merck, United States), and micafungin (MF; Astellas, Japan).
Drug concentration ranges for AMB, ITR, VOR, and POS
were 0.015-16 pg/mL; and 0.008-8 pg/mL for CAS and
MF. Candida parapsilosis (ATCC 22019) and Candida krusei
(ATCC 6258) were included as the quality control strains
for each run as positive controls of the antifungals’ potency.
Minimum effective concentrations (MECs) of echinocandins
and minimum inhibitory concentrations (MICs) of the other
tested agents were taken visually after 24 h for Zygomycetes;
for Fusarium and the remaining species, 48-h or 72-h reading
were needed as the CLSI protocol recommended. The ranges
of MICs or MECs were calculated for each species—antifungal
agent combination. We also evaluated the practicability of the
Sensititre YeastOne YOI10 panel in antifungal susceptibility
testing of non-Aspergillus molds, and the agreement between
these two methods in susceptibility determination of non-
Aspergillus molds was analyzed. Sensititre YeastOne testing was
carried out according to the manual instructions. For AMB
and triazoles, the colorimetric MICs were taken as the lowest
concentration well when the antifungal solution changed from
red (growth) to blue (100% growth inhibition) at 24 h or 48 h
depending on the respective species. MECs of echinocandins
were defined as the lowest drug concentration that allowed the

growth of small, rounded, and degenerated hyphae at 24 h or
48 h regardless of the solution color change in the wells.

Essential agreement (EA) between the Sensititre YeastOne
and CLSI M38-A2 on susceptibility determination of non-
Aspergillus molds was considered when the MICs/MECs obtained
with the two methods fell within 2 dilutions of the twofold
dilution scheme. EA values of >90% were considered acceptable
(Lamoth and Alexander, 2015).

Statistical Analysis

Statistical calculations were done using IBM SPSS statistics
software, version 19 (SPSS Inc., Chicago, IL, United States).
Differences between the tested COVs for MALDI-TOF MS
identification were evaluated using the Wilcoxon signed-rank
test, and P < 0.05 was considered statistically significant
(Schulthess et al., 2014).

RESULTS

Species Information for Isolates

Fifty-two isolates of non-Aspergillus molds including
Mucorales (n = 23, 10 species), Fusarium spp. (n = 21,
3 species), Paecilomyces spp. (n = 4, 2 species), and
Scedosporium apiospermum (n = 4) were revealed by molecular
sequencing analysis. The ITS sequences of isolates of interest
obtained included in the study were deposited on GenBank
(accession numbers MT254752, MT254823, MT254824,
MT259026-MT259029, and MT279277-MT279300).

MALDI-TOF MS Identification

Applying the standard interpretation criteria recommended by
the manufacturer, the Bruker MALDI-TOF MS identified 57.7%
(30/52) of isolates cultured in SDB to the species level with
scores of >2.0 and 34.6% (18/52) to the genus level with scores
of 1.7-1.999, whereas for isolates cultured on SDA plates, only
15.4% (8/52) of isolates could achieve species-level identification
and 57.7% (30/52) to genus level. Correct identification rates at
the species level could be reached to 88.5% (46/52) for SDB-
cultured isolates and 76.9% (40/52) for SDA-cultured isolates
by the Bruker MALDI-TOF MS regardless of the score values
obtained after comparison with the sequencing identification
results. There were 11.5% (6/52) of SDB-cultured isolates and
21.1% (11/52) of SDA-cultured isolates identified correctly at
the genus level by Bruker MALDI-TOF MS, and most of them
had lower scores of <1.7. Only one isolate of Mucor hiemalis
cultured on SDA was totally misidentified at the genus level,
with a score of 1.316. After lowering the interpretation criteria,
i.e., the species-level COV from scores of >2.0 to >1.7, the
species-level identification rates increased significantly to 92.3%
(48/52) (Z = —3.169, P = 0.002) and 73.1% (38/52) (Z = —3.224,
P =0.001) for SDB- and SDA-cultured isolates, respectively. For
isolates directly grown on SDA plates, the reanalyzed species
level identification rate with the lowered COV was comparable
to the rate of isolates cultured in broth with the original criteria,
namely the Bruker recommended procedure (73.1% vs. 57.7%).
Unfortunately, the adjusted COV also brought species-level false
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TABLE 1 | Identification of 52 isolates of non-Aspergillus molds by the Bruker MALDI-TOF MS system based on different culture conditions and interpretation

criteria for results.

Species Isolates Broth culture condition Solid agar culture condition
Bruker criteria? Adjusted criteria® Bruker criteria? Adjusted criteria®
Species Genus Species Genus Species Genus Species Genus
level level level level level level level level
Mucorales 23 8(34.8) 12 (52.2) 20 (87.0) 3(13.0) 2 (9.0 11 (47.8) 13 (66.5) 8 (34.8)
Rhizopus microsporus 6 3 2 5 1 0 3 3 2
Rhizopus oryzea 2 1 1 2 0 0 1 1 1
Rhizopus azygosporus 1 0 1 1 0 0 0 0 1
Mucor circinelloides 3 0 2 2 1 0 1 1 2
Mucor hiemalis 1 0 0 0 1 0 0 0 0
Mucor indicus 1 0 1 1 0 0 0 0 1
Rhizomucor pusillus 2 1 1 2 0 1 1 2 0
Rhizomucor variabilis 1 0 1 1 0 0 1 1 0
Syncephastrum racemosum 4 3 1 4 0 1 3 4 0
Lichtheimia ramosa 2 0 2 2 0 0 1 1 1
Fusarium 21 15 (71.4) 5(23.8) 20 (95.2) 1(4.8) 5(23.8) 13 (61.9) 18 (85.7) 3(14.3)
Fusarium solani 9 4 4 8 1 2 5 7 2
Fusarium moniliforme 8 8 0 8 0 3 5 7
Fusarium proliferatum 4 3 1 4 0 0 3 3 1
Others 8 7 (87.5) 1(12.5) 8 (100) 0 1(12.5) 6 (75.0) 7 (87.5) 1(12.5)
Scedosporium apiospermum 4 4 0 4 0 1 3 4 0
Paecilomyces lilacinus 3 2 1 3 0 0 2 2 1
Paecilomyces variotii 1 1 0 1 0 1 1 0
Total 52 30 (57.7) 18 (34.6) 48 (92.3) 4(7.7) 8(15.4) 30 (57.7) 38 (73.1) 12 (23.1)

Mucor hiemalis (n = 1), M. indicus (n = 1), Rhizomucor variabilis (n = 1), and Rhizopus azygosporus (n = 1) lack reference spectra in the Bruker library. Numbers in italic
and underlined refer to isolates misidentified at the species level. @Bruker criteria for the species level is a score >2.0; genus-level score is 1.7-1.999. bAdjusted criteria

for the species level is a score >1.7; genus-level score is 1.4—1.699.

identification cases; 6.3% (3/48) of isolates cultured in SDB and
2.6% (1/38) of isolates on SDA with scores of >1.7 turned
out to be falsely identified at the species level but with the
correct genus information, and most of those misidentified
cases were from species without reference spectra in the Bruker
database (Table 1).

AFST

The distributions of MICs and MECs of 52 isolates of non-
Aspergillus molds against six antifungals by the CLSI method
are shown in Table 2. For AMB, almost all the tested isolates
(51/52, 98.1%) from different species had MICs of < 2 pg/mL
except one isolate of Fusarium solani that had a higher AMB
MIC of 4 pg/mL. In particular, Mucorales had lower MICs of
<1 pg/mL to AMB in this study. The MICs distribution of
triazoles among the tested molds was wide, with range of 0.12 to
>16 wg/mL. In Mucorales, 95.7% (22/23) of isolates had MICs
of >2 pg/mL to VOR and most of them even were observed
with extreme values of >16 pg/mL. As to ITR and POS, 47.8%
(11/23) and 34.8% (8/23) of Mucorales isolates had MICs of
>2 pg/mL, respectively. In Fusarium, 42.9% (9/21) of isolates
had MICs of >2 pg/mL to VOR and only 19.0% (4/21) to
POS, while there were 42.9% (9/21) of isolates with MICs of
>16 pg/mL to ITR. Scedosporium apiospermum and Paecilomyces
isolates hold comparatively diverse susceptibility profiles against

triazoles, even with the small number of isolates involved in
this study. For echinocandins, as Mucorales and Fusarium are
widely known to be innately resistant to this class of agents, and
Scedosporium is somehow less susceptible to echinocandins, high
MECs of >8 pg/mL against CAS and MF were observed among
these isolates in this study.

Agreement Between the CLSI Method

and Sensititre YeastOne

The essential agreement (EA) data between the CLSI method
and the Sensititre YeastOne on antifungal susceptibility
determination of non-Aspergillus molds are presented for each
genus—drug combination in Table 3. EA values were >90% for
the majority of genus-drug combinations; however, the total EA
between the CLSI and Sensititre YeastOne to AMB was 84.6%,
because the MIC values obtained by the Sensititre YeastOne were
generally higher than the CLSI ones especially in Mucorales. For
triazoles, acceptable EA values of >90% were reached between
those two methods for all the three tested drugs. EA values for
echinocandins were excellent in this study, at 100%.

DISCUSSION

Identification and antifungal susceptibility testing of non-
Aspergillus molds are rarely performed as routine tests in
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TABLE 2 | Distribution of the median minimum inhibitory concentrations (mMICs)/median minimum effective concentrations (MMECs) and ranges of 6 antifungal agents
against 52 isolates of non-Aspergillus molds as determined by the CLSI M38-A2 method (unit: wg/mL).

Species n CLSI M38-A2
AMB ITR VOR POS CAS MF
Mucorales 23 0.5 (0.03-1) 4(0.25t0 >16) >16 (2 to >16) 0.5(0.12to >16) >8 >8
Rhizopus microspores 6 0.5 8 8 0.5 >8 >8
Rhizopus oryzea 2 0.5 >16 >16 0.25 >8 >8
Rhizopus azygosporus 1 0.5 2 8 0.5 >8 >8
Mucor circinelloides 3 0.12 >16 >16 >16 >8 >8
Mucor hiemalis 1 0.25 >16 >16 8 >8 >8
Mucor indicus 1 0.25 >16 >16 >16 >8 >8
Rhizomucor pusillus 2 0.12 0.25 >16 0.25 >8 >8
Rhizomucor variabilis 1 0.12 >16 >16 4 >8 >8
Syncephastrum racemosum 4 0.25 0.5 8 0.25 >8 >8
Lichtheimia ramose 2 1 0.5 >16 0.5 >8 >8
Fusarium 21 2(0.5-4) 4(0.5t0 > 16) 2 (1to >16) 1(0.12to >16) >8 ~8
Fusarium solani 9 2 >16 8 1 >8 >8
Fusarium moniliforme 8 2 2 2 0.5 >8 >8
Fusarium proliferatum 4 1 >16 4 1 >8 >8
Others 8 1(0.25-1) 1(0.25t0 >16) 1(0.5t0 >16) 0.5 (0.5-1) 4 (<0.008 to >8) 0.5 (<0.008 to >8)
Scedosporium apiospermum 4 1 1 0.5 0.5 4 1
Paecilomyces lilacinus 3 0.25 0.25 1 0.5 <0.008 <0.008
Paecilomyces variotii 1 0.5 0.06 >8 0.03 4 <0.008
Total 52 1(0.03-4) 1(0.25t0 >16) 4(0.5t0 >16) 0.5(0.12to >16) >8 (<0.008 to >8) >8(<0.008 to >8)

most microbiology laboratories. In this study, we identified 52
isolates of non-Aspergillus molds from clinical samples through
molecular sequencing analysis and MALDI-TOF MS. According
to the Bruker MALDI-TOF MS recommended procedure, 57.7%
(30/52) of isolates cultured in broth could be identified to
the species level with scores of >2.0. In contrast, for isolates
directly grown on solid agar media (e.g., SDA), a widely used
culture method in microbiological laboratories, only 15.4%
(8/52) of isolates could achieve species-level identification.
This discrepancy of the identification capacities of the Bruker
MALDI-TOF MS might be attributed to the different elements
grown under those two culture methods, as short-term broth
culture mainly yielded mycelia while solid agar culture generated
abundant conidia and hyphea within a medium-sized colony.
A previous study indicated that young colonies and mature
colonies of the identical mold isolate could present some obvious
differences in MS spectra (Alanio et al., 2010). It is supposed
here that MS spectra of non-Aspergillus molds from colonies
on solid agar might not be well matched with the reference
spectra in the Bruker Filamentous Fungi Library created with
the mycelia from liquid broth culture. A short incubation time
of about 2 days and sampling of the front hyphea from the
young colonies will be favorable for the identification of non-
Aspergillus molds grown on solid agar media by the Bruker
MALDI-TOF MS system.

After lowering the species-level identification COV from
>2.0 to >1.7, the species-level identification rate was increased
significantly to 73.1% (38/52) for solid agar—cultured isolates and
only one isolate (2.6%, 1/38) was misidentified at the species

level, which is comparable with the rate (57.7%) of the Bruker
MALDI-TOF MS recommended parameters, namely the broth
culture of isolates and the standard COV of >2.0. Most of
the remaining isolates that failed to be identified at the species
level under the adjusted COV, due to the lack of the species-
specific reference spectra in the Bruker database, were correctly
identified at the genus level. Many studies have established in-
house databases expanded with the rare species lacking reference
spectra in the Bruker commercial database and improved the
identification performance of MALDI-TOF MS remarkably.
The mass spectrometry identification (MSI) platform is an
outstanding public database featured with the online MALDI-
TOF MS identification application and an extensive in-house
reference database comprising 938 fungal species (Normand
et al., 2017a; Stein et al., 2018; Dupont et al., 2019; Imbert et al.,
2019). Notice should be paid that the sample preparation should
be in accordance with the recommended method when using
these public databases.

Besides the optimization of the comprehensive databases and
the interpreting COVs, there were other studies concerning the
simplification of the conventional protein extraction method in
MALDI-TOF MS identification of filamentous fungi. Most of
them have applied the bead grinding procedure plus a short
incubation time, with the extraction solution containing formic
acid and acetonitrile in one step, which provided labor- and
time-saving advantages without increasing the misidentification
rates (Luethy and Zelazny, 2018). Attention does need to be
paid to biosecurity, especially when performing the bead-based
grinding of molds.
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4 (100)
4 (100)
52 (100)

4(100)
4(100)
52 (100)

4 (100)
4 (100)
52 (100)

3(75.0)

100)

4
4

49

4(100)
2 (50.0)
41(78.8)

4(100)
3(75.0)

2 (50.0)
3(75.0)
40 (76.9)

4 (100)
3(75.0)
48 (92.3)

4 (100)
2 (50.0)
39 (75.0)

4(100)
3(75.0)
44 (84.6)

3(75.0)

Paecilomyces spp.

4 (100)
51 (98.1)

100)
94.2)

2 (50.0)
34 (65.4)

Scedosporium apiospermum 4
52

Total

47 (90.4)

+1 dil. indicates that MIC/MEC values obtained with the two methods fell within 1 dilution. 42 dil. indicates that MIC/MEC values obtained with the two methods fell within 2 dilutions.

In spite of the absence of authorized clinical breakpoints
or epidemiological COV for antifungal susceptibility testing of
non-Aspergillus molds, the antifungal susceptibility results could
provide a certain guide for clinical treatment. In this study, the
antifungal susceptibilities of 52 isolates of non-Aspergillus molds
were analyzed by the reference CLSI broth microdilution method,
and some underlying profiles were detected even with the limited
isolates of each species available for testing. For Mucorales, all
isolates presented lower MICs of <1 pg/mL to AMB, which
suggests good treatment effects according to the suggestion that
a cut-off of 0.5 pg/mL for AMB among Mucorales is associated
with better outcomes (Lamoth et al., 2016). The tested triazole
agents have various susceptibilities, with MICs range from 0.12 to
>16 pg/mL for the non-Aspergillus molds isolates in this study,
and these diverse susceptibility profiles could be observed in
isolates from the same species, which supports the importance
of testing each individual isolate to guide clinical therapy. Almost
all the Mucorales isolates had MICs of >16 pg/mL to VOR and
relatively higher MICs of >2 pg/mL to ITR and POS, indicating
the difficulty in treatment of mucormycosis. The newly developed
extended-spectrum triazole isavuconazole (ISA) is recommended
as a salvage therapy of invasive mucormycosis, even the extreme
MICs of >16 pg/mL were also detected in some isolates
according to the previous research (Miceli and Kauftman, 2015).

A rapid test of the intended antifungal susceptibility of a
pathogenic fungus will be very helpful in patient treatment.
Some MALDI-TOF MS-based assays offered new perspectives in
defining the susceptibility pattern of Candida in a fast way, while
controversy remains when it comes to molds such as Aspergillus
(Gitman et al, 2017; Delavy et al, 2019). Since the labor-
saving and commercially available Sensititre YeastOne panel
holds the same operating principle as the CLSI M38-A2 method
in antifungal susceptibility testing except for the endpoint reading
patterns, the possibility of determining susceptibility of non-
Aspergillus molds by Sensititre YeastOne has been discussed. In
our study, the essential agreements within 2 dilutions between
the CLSI M38-A2 and Sensititre YeastOne results on triazoles
and echinocandins against non-Aspergillus molds were favorable,
with rates of >90%, which met the given criterion. For AMB,
the EA rate was lower, 84.6%, between the two methods because
Sensititre YeastOne gave higher AMB MICs than the CLSI
method, and this phenomenon has been discovered in another
study on Aspergillus (Wang et al, 2018). In the matter of
providing suggestive clues for the clinical treatment of infection
with non-Aspergillus molds, the Sensititre YeastOne system
could be competent, especially when information on the triazole
susceptibility is required.

CONCLUSION

The Bruker MALDI-TOF MS has favorable performance in
identification of non-Aspergillus molds directly from young
colonies on solid agar media with the adoption of proper
adjusted interpretation criteria and the additionally expanded
MS database. The Sensititre YeastOne YO10 panel is a simple
and reliable alternative to the reference broth microdilution
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method to determine the antifungal susceptibilities of non-
Aspergillus molds.
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