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Carbapenem-resistant Enterobacterales (CRE) is an increasing problem worldwide.
Here, we examined the clonal relatedness of 71 non-repetitive CRE isolates collected in
a university hospital in Tehran, Iran, between February 2015 and March 2016. Pulsed-
field gel electrophoresis (PFGE) and MLST were used for epidemiological analysis.
Screening for antibiotic resistance genes, PCR-based replicon typing, conjugation
experiments, and optical DNA mapping were also performed. Among all 71 isolates,
47 isolates of Klebsiella pneumoniae (66.2%), eight Escherichia coli (11.2%), five
Serratia marcescens (7%), and two Enterobacter cloacae (2.8%) harbored blaNDM−1

and blaOXA−48 genes together or alone. PFGE analysis revealed that most of the OXA-
48- and NDM-1-producing K. pneumoniae and all of OXA-48-producing S. marcescens
were clonally related, while all eight E. coli and two E. cloacae isolates were clonally
unrelated. The predominant clones of carbapenemase-producing K. pneumoniae
associated with outbreaks within the hospital were ST147 (n = 13) and ST893 (n = 10).
Plasmids carrying blaNDM−1 and blaOXA−48 were successfully transferred to an E. coli
K12-recipient strain. The blaOXA−48 gene was located on an IncL/M conjugative
plasmid, while the blaNDM−1 gene was located on both IncFII ∼86-kb to ∼140-kb
and IncA/C conjugative plasmids. Our findings provide novel epidemiologic data on
carbapenemase-producing Enterobacterales (CPE) in Iran and highlight the importance
of horizontal gene transfer in the dissemination of blaNDM−1 and blaOXA−48 genes. The
occurrence and transmission of distinct K. pneumoniae clones call for improved infection
control to prevent further spread of these pathogens in Iran.
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INTRODUCTION

Carbapenems are broad-spectrum beta-lactam agents
that are frequently used as a last resort to treat serious
infections caused by multidrug-resistant Enterobacterales.
Resistance to carbapenems mainly depends on the production
of carbapenemase enzymes. Carbapenemase-producing
Enterobacterales (CPE) are increasingly reported and represent a
major public health threat (Tängdén and Giske, 2015). The most
clinically significant carbapenemases in Enterobacterales include
the class A (KPC type), class B (metallo-β-lactamases [MBLs]
[i.e., VIM, IMP, and NDM types]), and class D carbapenem-
hydrolyzing β-lactamases (OXA-48-like enzymes) (Nordmann
et al., 2011; Tängdén and Giske, 2015). NDM-1 and OXA-48
β-lactamases were initially identified in India and Turkey,
respectively, and then spread to various countries worldwide
including India, the Middle East, and Mediterranean countries
(Yong et al., 2009; Johnson and Woodford, 2013; Sartor et al.,
2014; Jamal et al., 2016; Solgi et al., 2017b). There is a lot
of pilgrimage tourism and business travel between Iran and
neighboring countries such as Iraq, Afghanistan, Pakistan,
Turkey, and the Persian Gulf, so travelers with CPE colonization
may be the vectors for spread of resistant strains. In the scope
of outbreaks in Iran, diverse sequence types (STs) of dominant
OXA-48- and NDM-producing Klebsiella pneumoniae have
been identified in outbreaks or solitary case reports (STs 11,
893, 147, and 915) (Solgi et al., 2017a, 2018). VIM-2-producing
K. pneumoniae ST23 has been reported in Iran more recently
(Mohammad Ali Tabrizi et al., 2018).

The dissemination of OXA-48 and NDM-1 among
Enterobacterales is mediated by the rapid spread of broad
host-range conjugative plasmids. The blaNDM−1 gene has been
detected on plasmids of various incompatibility groups: IncF,
IncA/C, IncL/M, IncH, IncN, and IncX3 or untypeable (Voulgari
et al., 2014). The blaOXA−48 gene has also been carried by various
plasmids types including IncL/M, IncN, and IncA/C (Guo et al.,
2016). Up until today, only one study has reported the finding of
the prevalence and distribution of carbapenem resistance among
Enterobacterales isolates in Iran (Shahcheraghi et al., 2017).
However, limited data about the sequence type of CRE isolates
that has spread in Iran were available.

Here, we investigated the prevalence of ESBL and
carbapenemase genes, to explore the distribution of plasmid
replicons, and molecular epidemiology of CPE isolated in an
Iranian hospital.

MATERIALS AND METHODS

Bacterial Strains
In this cross-sectional study, a total of 71 non-repetitive
carbapenem-resistant Enterobacterales (CRE) clinical isolates
resistant to at least one of the carbapenems (imipenem,
meropenem, or ertapenem) were collected at the Loghman
Hakim Educational Hospital, a 496-bed university hospital in

Tehran (Iran) between February 2015 and March 2016. All
isolates were identified by standard biochemical tests and API
20E (bioMérieux, Marcy-l’Etoile, France).

Antimicrobial Susceptibility Testing and
Phenotypic Assay
Antimicrobial susceptibility testing of 10 antibiotics (imipenem,
meropenem, ertapenem, cefepime, cefotaxime, ceftazidime,
aztreonam, amikacin, gentamicin, and ciprofloxacin) was done
by a standard disk diffusion method according to the Clinical
and Laboratory Standards Institute [CLSI] (2017) guidelines.
The minimal inhibitory concentration (MIC) determinations
for carbapenems (imipenem, meropenem, and ertapenem)
were performed by gradient test strips (Liofilchem, Italy)
based on Clinical and Laboratory Standards Institute [CLSI]
(2017) guidelines. MICs of colistin were determined by
broth macrodilution method using colistin sulfate (Sigma-
Aldrich), and EUCAST breakpoints were used for interpretation
(EUCAST, 2017). Escherichia coli ATCC 25922 was used
as quality control. Initial screening for the presence of
carbapenemases was done by the modified Hodge test (MHT)
test by following the Clinical and Laboratory Standards Institute
[CLSI] (2017) guideline.

Molecular Detection of Genes Encoding
Carbapenemases and ESBLs
Plasmid DNA was extracted using the Gene JET Plasmid
Maxi-Prep Kit (Thermo Scientific). The presence of genes
encoding carbapenemases (blaKPC, blaGES, blaVIM, blaIMP,
blaNDM, and blaOXA−48) and extended-spectrum β-lactamases
(ESBL) (blaCTX−M) and further beta-lactamases (blaTEM, blaSHV)
were detected by PCR amplification using specific primers
as described previously (Poirel et al., 2011; Shahcheraghi
et al., 2013), followed by sequencing (Macrogen Research,
Seoul, South Korea).

Molecular Typing
The genetic relatedness of CPE isolates was investigated by
pulsed-field gel electrophoresis (PFGE). The genomic DNA of
the CPE isolates and reference marker Salmonella serotype
Braenderup strain H9812 were digested by XbaI endonuclease,
which was performed with a CHEF-DRIII system (Bio-Rad
Laboratories) as previously described (Tenover et al., 1995).
A similarity coefficient was obtained using Dice coefficients.
Cluster analysis was done with the unweighted pair group
method with arithmetic averages (UPGMA). Isolates that
exhibited similarity cut-off ≥80% of their banding patterns were
considered to belong to the same clonal lineage (pulsotypes).
Multilocus sequence typing (MLST) was performed according to
the protocol described on the Pasteur Institute MLST website1 for
K. pneumoniae, MLST website for E. coli2, and MLST website for
Enterobacter cloacae3.

1https://bigsdb.pasteur.fr/klebsiella/klebsiella.html
2https://enterobase.warwick.ac.uk/species/ecoli/allele_st_search
3https://pubmlst.org/ecloacae/
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Conjugation Experiments and
PCR-Based Replicon Typing
Conjugation experiments were done using the blaNDM−1 and
blaOXA−48 producers as the donors and E. coli K12 [F− lac +
Nal (r)] as the recipient strain (Filter mating). Isolates LO35,
LO89, LO112, LO179, LO271, and LO273 which harbored only
the blaNDM−1 or blaOXA−48 gene, and isolates LO149, LO155,
and LO204, which harbored the blaOXA−48 and blaNDM−1
genes, were selected and used. Transconjugants were selected
on a MacConkey agar plate containing 32 mg/L nalidixic
acid (Sigma-Aldrich) and 1 mg/L MEM (MAST, Merseyside,
United Kingdom) (Lyimo et al., 2016) and were confirmed to
have blaNDM−1 and blaOXA−48 by PCR analysis. PCR-based
replicon typing analysis (PBRT) was performed to determine the
plasmid incompatibility (Inc) groups for all CPE strains and the
obtained transconjugants (Carattoli et al., 2005).

Plasmid Extraction
Plasmid DNA was prepared from an overnight culture with
NucleoBond R© Xtra Midi kit for isolates according to the
manufacturer’s description for high-copy plasmid purification
(Müller et al., 2016a). Eluted plasmid DNA is then precipitated
with isopropanol and washed with 70%; the dried pellet was
reconstituted TE buffer, pH 8.0. The DNA concentration and
purity were determined using the Qubit 3.0 Fluorometer.

Optical DNA Mapping in Nanochannels
for Plasmid Analysis
The presence of the blaNDM−1 gene on plasmids from isolates
LO94, LO204, LO271, LO247, LO64, LO63, LO89, and LO149
was investigated using optical DNA mapping (Müller and
Westerlund, 2017). For this, Cas9 enzyme (PNA Bio Inc.,
Newbury Park, CA, United States) was used to make a site-
specific cut at the blaNDM−1 gene (target gene sequence was
5′-CGGTATGGACGCGCTGCATG-3′, RNA was synthesized by
Dharmacon Inc., Lafayette, CO, United States) on the plasmids
(Müller et al., 2016b). Cas9 will cut all the blaNDM−1 gene-
carrying plasmids in each isolate at the same location which
would show as a consensus cut site in the ODM data. For the
plasmids not carrying the blaNDM−1 gene, we expected randomly
distributed cuts.

After the Cas9 reaction, the plasmids were stained using
YOYO-1 and Netropsin which created an emission intensity
pattern along the DNA, with dark AT-rich regions and bright
GC-rich regions (Nyberg et al., 2012; Nilsson et al., 2014).
Netropsin prevents the binding of the fluorescent YOYO-1 to
AT-rich regions which results in the formation of a variation
in intensity, a DNA barcode. Plasmids were stretched to their
full contour lengths by confining them in 100 × 150-nm2

nanofluidic channels and imaged using an EMCCD camera. For
each of the eight isolates, hundreds of plasmids were imaged
and analyzed. The barcodes were aligned, clustered based on
similarity, and compared among the isolates using custom-built
MATLAB routines (Müller et al., 2016a). Lambda phage DNA
was used as an internal control to correlate the length in pixels

with the length in base pairs, and this correlation factor was then
used to estimate plasmid sizes.

RESULTS

Bacterial Isolates
During the study period, 71 clinical CRE isolates were collected
from 44 male and 27 female patients. These isolates mainly
belonged to the species K. pneumoniae (56/71, 78.8%), E. coli
(8/71, 11.2%), Serratia marcescens (5/71, 7%), and E. cloacae
(2/71, 2.8%). Twenty-two isolates (31%) were isolated from
an ICU poisoning ward, whereas the remaining of isolates
were recovered from other ward. The majority of the isolates
were from urine (30/71, 42.2%) and tracheal (24/71, 33.8%)
specimens. Other sample types included blood (6/71; 8.4%),
wound secretions (5/71; 7%), sputum (3/71; 4.2%), catheter (2/71;
2.8%), and cerebrospinal fluid (1/71; 1.4%).

Antimicrobial Susceptibility
Susceptibility profiles against ten antimicrobials agents are listed
in Table 1. As expected, the majority of the CRE isolates exhibited
resistance to most β-lactams. Most of the isolates were also
resistant to ciprofloxacin (70/71 98.6%) and gentamicin (42/71
59.1%). On the other hand, most of them were susceptible to
amikacin (46/71 64.8%), and all isolates were susceptible to
colistin, with MICs ≤ 1 mg/L. Based on phenotypic detection,
40 out of the 62 isolates (64.5%) were positive for MHT.

Carbapenemase and ESBL Genes
The genotyping results of carbapenemase and ESBL genes among
CRE isolates are shown in Table 1. Of the 71 CRE isolates, 62
were carbapenemase producers. Among the 62 carbapenemase-
producing isolates, 29 were found positive for the blaNDM−1 gene,
23 were positive for the blaOXA−48 gene, and ten of the blaNDM−1-
positive isolates co-harbored blaOXA−48 genes. Among the
blaNDM−1-positive Enterobacterales species, 26 K. pneumoniae
isolates, two E. cloacae isolates, and a single E. coli isolate
were identified. The twenty-three blaOXA−48 producers were
K. pneumoniae (n = 11), E. coli (n = 7), and S. marcescens (n = 5).
All the ten isolates co-producing blaNDM−1 and blaOXA−48 were
K. pneumoniae. Other carbapenemase genes (blaGES, blaKPC
blaVIM, and blaIMP) were not detected. Among the 71 CRE
isolates, 91.5% (65/71) ESBL producers were observed. Out
of 65 ESBL producers, 64 (98.4%) harbored blaCTX−M−15 and
eight (12.3%) harbored blaSHV−12; furthermore, a lot of isolates
harbored additional blaTEM/SHV genes.

Clonal Relationship of CRE Isolates
Based on a cutoff of 80% genetic similarity, PFGE revealed
that 44 carbapenemase-positive K. pneumoniae isolates could be
categorized in seven clusters A (4 isolates), B (10 isolates), C (3
isolates), D (4 isolates), E (5 isolates), F (2 isolates), and G (5
isolates), while 11 isolates appeared to be singletons (Figure 1).
Clusters E, F, and G belonged to ST147, while clusters A, B,
C, and D were categorized as ST16, ST893, ST377, and ST15,
respectively. The eight NDM-1- and OXA-48-producing E. coli
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TABLE 1 | Clinical information and molecular characteristics of 71 carbapenem-resistant Enterobacterales isolated from a university hospital in Tehran, Iran.

Patient/Strain Species Carbapenemase genes Associated β-lactamases Inc groupa ST Specimen Hospitalization unit Resistance phenotype MIC (µ g/ml)

ERT MEM IPM

LO-1 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-106 IncFII, IncL/M ST15 Tracheal Emergency ICU CAZ, CTX, FEP, CIP 8 8 8

LO-7 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-199 IncFII ST893 Tracheal Poisoning ICU CAZ, CTX, FEP, GEN, CIP 8 8 8

LO-8 K. pneumoniae – CTX-M-15, TEM-1 ND ND Wound Poisoning ICU CAZ, CTX, FEP, CIP 4 1 >4

LO-17 K. pneumoniae NDM-1 CTX-M-15, SHV-1 IncFII ND Urine Nerves of men CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 64

LO-20 K. pneumoniae – CTX-M-15, TEM-1, SHV-1 ND ND Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 4 0/5 >4

LO-21 K. pneumoniae – CTX-M-15, TEM-1, SHV-1 ND ND Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 2 1 >4

LO-30 K. pneumoniae – CTX-M-15, TEM-1, SHV-1 ND ND Urine Poisoning ICU CAZ, CTX, FEP, CIP 4 0/5 >4

LO-36 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-1 IncFII ND Urine Poisoning ICU CAZ, CTX, FEP, GEN, CIP 8 4 >4

LO-56 K. pneumoniae – CTX-M-15, TEM-1 ND ND Wound Surgery CAZ, CTX, FEP, CIP 2 1 >4

LO-63 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-11 UT ST147 Wound Surgery CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

LO-64 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-199 IncL/M ST893 Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 8 32 64

LO-68 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-11 IncFII ST147 Sputum Infectious CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 256

LO-70 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-1 IncFII ND Tracheal General ICU CAZ, CTX, FEP, CIP 8 8 8

LO-77 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-11 IncFII ST147 Tracheal General ICU CAZ, CTX, FEP, AMK,
GEN, CIP

8 8 32

LO-78 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-12 UT ST147 Tracheal Emergency ICU CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

LO-80 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-11 IncFII ST147 Urine Infectious CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 64

LO-82 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-199 IncL/M ST893 Urine Internal emergency CAZ, CTX, FEP, AM,
GEN, CIP

8 32 256

LO-88 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV-1 IncL/M ND Urine Internal emergency CAZ, CTX, FEP, GEN, CIP 8 4 4

LO-89 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-11 IncFII ST147 Urine Outpatient CAZ, CTX, FEP, AMK,
GEN, CIP

8 16 32

LO-91 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV-1 IncL/M ST377 Tracheal Emergency ICU CAZ, CTX, FEP, AM,
GEN, CIP

8 8 8

LO-94 K. pneumoniae NDM-1 CTX-M-15, SHV-199 UT ST16 Tracheal Infectious CAZ, CTX, FEP, GEN, CIP 8 4 4

LO-95 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV-199 IncL/M ST893 Tracheal Internal emergency CAZ, CTX, FEP, GEN, CIP 8 2 >4

LO-97 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV IncL/M ST16 Urine Emergency ICU CAZ, CTX, FEP, AMK,
GEN, CIP

8 2 >4

LO-106 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-1 IncFII ND Blood Poisoning ICU CAZ, CTX, FEP, AMK,
GEN, CIP

4 4 2

LO-110 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV-199 IncL/M ST893 Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 4 2 >4

(Continued)
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TABLE 1 | Continued

Patient/Strain Species Carbapenemase genes Associated β-lactamases Inc groupa ST Specimen Hospitalization unit Resistance phenotype MIC (µ g/ml)

ERT MEM IPM

LO-114 K. pneumoniae NDM-1 CTX-M-15, SHV-1 IncFII ST657 Tracheal Internal emergency CAZ, CTX, FEP, CIP 8 8 8

LO-119 K. pneumoniae – CTX-M-15, TEM-1, SHV-1 ND ND Urine Emergency ICU CAZ, CTX, FEP, GEN, CIP 2 1 >4

LO-121 K. pneumoniae OXA-48 TEM-1, SHV-199 IncL/M ST893 Sputum Internal emergency CAZ, CTX, FEP, CIP 8 8 8

LO-123 K. pneumoniae NDM-1 CTX-M-15, SHV-1 IncFII ST35 Tracheal Poisoning ICU CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

LO-125 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV-182 IncL/M ST11 Urine Internal emergency CAZ, CTX, FEP, CIP 4 2 >4

LO-126 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV-199 IncL/M ST893 Urine Poisoning ICU CAZ, CTX, FEP, CIP 4 1 >4

LO-147 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-106 IncFII, IncL/M ST15 Tracheal General ICU CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

LO-149 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-106 IncFII, IncL/M ST15 Tracheal Poisoning ICU CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

LO-154 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-199 UT ST16 Urine Internal emergency CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

LO-155 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-199 IncL/M ST893 Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 8 32 32

LO-179 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-199 IncFII ST16 Urine Infectious CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

LO-181 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-1 IncFII ST147 Urine Surgery CAZ, CTX, FEP, AMK,
GEN, CIP

8 16 8

LO-191 K. pneumoniae NDM-1 – IncFII ST1308 Wound Surgery CAZ, CTX, FEP 8 4 4

LO-204 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-106 IncFII, IncL/M ST15 Catheter Surgery CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 256

LO-216 K. pneumoniae – CTX-M-15, SHV-199 ND ND Urine Internal emergency CAZ, CTX, FEP, CIP 2 0/5 >4

LO-217 K. pneumoniae NDM-1 CTX-M-15, SHV-199 IncFII ST16 Urine General ICU CAZ, CTX, FEP, GEN, CIP 8 16 24

LO-246 K. pneumoniae – CTX-M-15, TEM-1, SHV-1 ND ND Tracheal Poisoning ICU CAZ, CTX, FEP, AMK,
GEN, CIP

4 2 >4

LO-247 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-199 IncFII ND Catheter Neurosurgery CAZ, CTX, FEP, CIP 8 8 4

LO-251 K. pneumoniae NDM-1, OXA-48 CTX-M-15, TEM-1, SHV-199 IncL/M ST893 Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 8 4 2

LO-261 K. pneumoniae OXA-48 TEM-1, SHV-199 IncL/M ST893 Tracheal Infectious CAZ, CTX, FEP, CIP 8 4 4

LO-262 K. pneumoniae NDM-1 TEM-1, SHV-172 IncFII ST147 Urine Neurosurgery CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 256

(Continued)
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TABLE 1 | Continued

Patient/Strain Species Carbapenemase genes Associated β-lactamases Inc groupa ST Specimen Hospitalization unit Resistance phenotype MIC (µ g/ml)

ERT MEM IPM

LO-263 K. pneumoniae NDM-1, OXA-48 TEM-1, SHV-12 IncL/M ST147 Urine Neurosurgery CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 128

LO-264 K. pneumoniae – CTX-M-15, TEM-1, SHV-1 ND ND Tracheal Poisoning ICU CAZ, CTX, FEP, GEN, CIP 4 ND ND

LO-268 K. pneumoniae OXA-48 TEM-1 IncL/M ST23 Sputum Neurosurgery CAZ, CTX, FEP, GEN, CIP 8 4 4

LO-269 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-11 IncFII ST147 Urine Internal emergency CAZ, CTX, FEP, AMK,
GEN, CIP

8 16 4

LO-270 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-11 IncFII ST147 Urine Infectious CAZ, CTX, FEP, AMK,
GEN, CIP

8 16 4

LO-271 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-12 IncFII ST147 Blood Infectious CAZ, CTX, FEP, AMK,
GEN, CIP

8 16 32

LO-272 K. pneumoniae NDM-1 CTX-M-15, TEM-1, SHV-1 IncFII ST377 Urine Infectious CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 128

LO-277 K. pneumoniae NDM-1 CTX-M-15, TEM-1 UT ST2012 Cerebrospinal fluid Infectious CAZ, CTX, FEP, CIP 8 8 8

LO-278 K. pneumoniae OXA-48 CTX-M-15, TEM-1, SHV-1 IncL/M ST377 Blood Infectious CAZ, CTX, FEP, GEN, CIP 8 16 8

LO-279 K. pneumoniae NDM-1 CTX-M-15, SHV-11 IncFII ST147 Blood Infectious CAZ, CTX, FEP, GEN, CIP 8 32 32

LO-4 E. coli OXA-48 CTX-M-15 IncL/M ND Urine Internal of women CAZ, CTX, FEP, CIP 1 0/125 >4

LO-35 E. coli OXA-48 CTX-M-15 IncL/M ST410 Urine Poisoning ICU CAZ, CTX, FEP, GEN, CIP 0/5 0/125 >4

LO-96 E. coli OXA-48 CTX-M-15, TEM-1 IncL/M ND Wound Infectious CAZ, CTX, FEP, GEN, CIP 1 0/5 >4

LO-175 E. coli OXA-48 CTX-M-15, TEM-1 IncL/M ST1431 Urine Emergency ICU CAZ, CTX, FEP, CIP 2 0/5 >4

LO-180 E. coli OXA-48 CTX-M-15, TEM-1 IncL/M ST3134 Urine Outpatient CAZ, CTX, FEP, AMK,
GEN, CIP

1 0/125 >4

LO-183 E. coli OXA-48 – IncL/M ST5114 Urine Outpatient CAZ, CTX, FEP, CIP 2 0/125 >4

LO-231 E. coli NDM-1 CTX-M-15, TEM-1 IncA/C ST131 Urine Internal emergency CAZ, CTX, FEP, GEN, CIP 2 1 >4

LO-233 E. coli OXA-48 CTX-M-15 IncL/M ST5114 Urine Emergency ICU CAZ, CTX, FEP, CIP 1 0/125 >4

LO-112 S. marcescens OXA-48 CTX-M-15, TEM-1, SHV-12 IncL/M – Blood Poisoning ICU CAZ, CTX, FEP, CIP 8 16 4

LO-113 S. marcescens OXA-48 CTX-M-15, TEM-1, SHV-12 IncL/M – Blood Poisoning ICU CAZ, CTX, FEP, CIP 8 32 32

LO-133 S. marcescens OXA-48 CTX-M-15, TEM-1, SHV-12 IncL/M – Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 8 16 8

LO-166 S. marcescens OXA-48 CTX-M-15, TEM-1, SHV-12 IncL/M – Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 8 16 16

LO-207 S. marcescens OXA-48 CTX-M-15, TEM-1, SHV-12 IncL/M – Tracheal Poisoning ICU CAZ, CTX, FEP, CIP 8 16 16

LO-273 E. cloacae NDM-1 CTX-M-15, TEM-1 IncFII ST78 Urine Outpatient CAZ, CTX, FEP, AMK,
GEN, CIP

8 32 32

N-20-LO E. cloacae NDM-1 CTX-M-15, TEM-1 IncFII ST175 Urine General ICU CAZ, CTX, FEP, GEN, CIP 8 4 4

a Incompatibility (Inc) group. ND, not determined; UT, untypeable.; F, female; M, male; MIC, minimal inhibitory concentrations; S, susceptible; IPM, imipenem; MEM, meropenem; ETP, ertapenem; CAZ, ceftazidime; CTX,
cefotaxime; FEP, cefepime; ATM, aztreonam; AMK, amikacin; GEN, gentamicin; CIP, ciprofloxacin; CST, colistin. Only carbapenemase producing isolates were MLST analyzed.
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FIGURE 1 | Dendrogram based on PFGE of 44 isolates of CPKP and their ST determined via MLST. ND, not determined.

isolates were clonally unrelated by PFGE (Figure 2), including
two belonging to the same sequence type (ST5114). The PFGE
patterns of five OXA-48-positive S. marcescens isolates showed
100% similarity, but the two NDM-1-positive E. cloacae had
distinct PFGE patterns (Figure 3).

Plasmid Replicon Typing and
Conjugation Assay
The blaNDM−1 gene was identified on an IncFII-type plasmid
for twenty-six K. pneumoniae and two E. cloacae isolates and
on an IncA/C-type plasmid for a single E. coli isolate, while the
blaOXA−48 gene was identified on an IncL/M-type plasmid for
nineteen K. pneumoniae, seven E. coli, and five S. marcescens
isolates. In the six K. pneumoniae isolates, we could not identify
the incompatibility group.

Conjugation experiments revealed that all of the NDM-1
and OXA-48 plasmids were successfully transferred to E. coli
K12, conferring resistance to carbapenems and cephalosporins
in transconjugants. In addition, co-transfer of blaNDM−1,
blaOXA−48, and other resistance determinants (blaCTX−M,
blaTEM, and blaSHV) was observed in several isolates (Table 2).
Plasmid gel extraction followed by PCR amplification of the
transconjugants revealed that the blaOXA−48 gene was harbored
on transferable plasmids belonging to the IncL/M incompatibility
group, while the blaNDM−1 gene was located on conjugative
plasmids. Transconjugant Tc-Lo204 had two different plasmids,
and the size of one plasmid was ∼140 kb with blaNDM−1 and the
other one was ∼135 kb with blaOXA−48. Notably, all blaOXA−48-
positive conjugative plasmids co-harbored beta-lactamase gene
blaCTX−M−15.
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FIGURE 2 | Dendrogram based on PFGE of 8 isolates of carbapenemase-producing Escherichia coli and their ST determined via MLST. ND, not determined.

FIGURE 3 | Serratia marcescens and E nterobacter cloacae are grouped together in the same dendrogram for comparison. Dendrogram based on PFGE of 5
isolates of OXA-48-producing S. marcescens and 2 NDM-1-producing E. cloacae.

Optical DNA Mapping
The presence of the blaNDM−1 gene on plasmids of isolates
LO94, LO204, LO271, LO247, LO64, LO63, LO89, and LO149
was characterized using optical DNA mapping (ODM). Table 3
presents a summary of the ODM data for the blaNDM−1-carrying
plasmids in these eight K. pneumoniae strains. DNA barcodes for
each isolate were clustered based on similarity, and clusters with
consensus cut sites (with at least nine barcodes) were used to
infer the Cas9 cutting, suggesting the presence of the blaNDM−1
gene on the plasmids (Müller and Westerlund, 2017). For isolate
LO271, two plasmids (∼86 kb and ∼107 kb) carrying the
blaNDM−1 gene were identified. For isolate LO204, two plasmids
of length ∼140 kb and ∼135 kb were found; however, only the
∼140-kb plasmid carried the blaNDM−1 gene. The remaining six
isolates carried only one plasmid in the size range ∼110 kb to
∼130 kb carrying the blaNDM−1 gene.

After plasmid size estimation and blaNDM−1 gene detection,
we compared the consensus barcodes among the eight isolates
(Figure 4). The ODM assay showed that identical plasmids with
the same size (∼125 kb) and the same location of the blaNDM−1
were found in LO63 and LO64 (Figure 4A). These isolates belong
to sequence types ST147 and ST893, respectively (Figure 1),
suggesting a possible transmission of plasmid from one strain
to the other. Similarly structured plasmids were found in LO89
and LO271 (∼107 kb) (Figure 4A); they both belong to the

same sequence type, ST147. By visual inspection, it appears that
large regions of the plasmids of isolates LO63, LO64, LO89, and
LO271 (Figure 4A) are similar, further accentuated by the fact
that the blaNDM−1 gene is located at the same position. There
are however, other regions that are not the same, and the size
differs (plasmids from LO63, LO64, and LO89 were ∼125 kb
while the plasmid from LO271 was∼107 kb). The plasmids from
the other isolates do not match among each other (Figure 4B) or
with the plasmids in Figure 4A. In total, we therefore found seven
different plasmids carrying the blaNDM−1 gene.

DISCUSSION

Herein, we found 71 CRE in a period of 1 year with a lot of
CPE species from patients in the same hospital in Tehran, Iran,
and major dissemination of the blaNDM−1 and blaOXA−48 genes,
which might be considered endemic in the geographical area,
through the spread of conjugative plasmids.

The co-occurrence of NDM-1- and OXA-48-producing
Enterobacterales species is also considerable since the
identification of NDM-1 and OXA-48 producers in Iran
(Solgi et al., 2017b), Lebanon (Dandachi et al., 2016), and
Kuwait (Jamal et al., 2015) shows that these carbapenemases,
known to be widespread in the Indian subcontinent, may also
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TABLE 2 | Microbiological characteristics of nine clinical CPE isolates and their transconjugants.

Isolate Species ST MIC (mg/L) Antimicrobial
resistance phenotype

β-lactamase(s) Size of plasmids Inc
group

ERT MEM IPM

LO-35 E. coli 410 0.5 0/125 >4 CAZ, CTX, FEP, CIP OXA-48, CTX-M-15 ∼39 kb IncL/M

Tc-LO-35a – 0/125 0/125 >4 CAZ, CTX, FEP OXA-48, CTX-M-15 ∼39 kb IncL/M

LO-89 K. pneumoniae ST147 8 16 32 CAZ, CTX, FEP, AMK,
GEN, CIP

NDM-1, CTX-M-15, TEM,
SHV

104.8 ± 3.6 IncFII

Tc-LO-89a – 4 8 ND CAZ, CTX, FEP NDM-1, CTX-M-15, TEM – IncFII

LO-112 S. marcescens – 8 16 4 CAZ, CTX, FEP, CIP OXA-48, CTX-M-15, TEM,
SHV

∼39 kb IncL/M

Tc-LO-112a – 4 4 2 CAZ, CTX, FEP OXA-48, CTX-M-15, TEM ∼39 kb IncL/M

LO-149 K. pneumoniae ST15 8 32 32 CAZ, CTX, FEP, AMK,
GEN, CIP

NDM-1, OXA-48,
CTX-M-15, TEM, SHV

130.6 ± 3.2 IncFII,
IncL/M

Tc-LO-149a – 8 16 8 CAZ, CTX, FEP, AMK,
GEN

NDM-1, SHV 130.6 ± 3.2 IncFII

LO-155 K. pneumoniae ST893 8 32 32 CAZ, CTX, FEP, CIP NDM-1, OXA-48,
CTX-M-15, TEM, SHV

– IncL/M

Tc-LO-155a – 8 8 >4 CAZ, CTX, FEP OXA-48, CTX-M-15, TEM – IncL/M

LO-179 K. pneumoniae ST16 8 32 24 CAZ, CTX, FEP, AMK,
GEN, CIP

NDM-1, CTX-M-15, TEM,
SHV

– IncFII

Tc-LO-179a – 4 4 ND CAZ, CTX, FEP, AMK,
GEN

NDM-1, TEM – IncFII

LO-204 K. pneumoniae ST15 8 32 256 CAZ, CTX, FEP, AMK,
GEN, CIP

NDM-1, OXA-48,
CTX-M-15, TEM, SHV

140.2 ± 3.2 135.1 ± 3.0 IncFII,
IncL/M

Tc-LO-204a – 8 ND ND CAZ, CTX, FEP, AMK,
GEN

NDM-1, OXA-48, TEM,
SHV

140.2 ± 3.2 135.1 ± 3.0 IncFII,
IncL/M

LO-271 K. pneumoniae ST147 8 16 32 CAZ, CTX, FEP, AMK,
GEN, CIP

NDM-1, CTX-M-15, TEM,
SHV

107.4 ± 4.6 86.3 ± 4.8 IncFII

Tc-LO-271a – 4 8 ND CAZ, CTX, FEP NDM-1, CTX-M-15, TEM – IncFII

LO-273 E. cloacae ST78 8 32 24 CAZ, CTX, FEP, AMK,
GEN, CIP

NDM-1, CTX-M-15 – IncFII

Tc-LO-273a – 8 ND ND CAZ, CTX, FEP, AMK,
GEN

NDM-1 ∼50 kb IncFII

MIC, minimal inhibitory concentrations; ERT, ertapenem, MEM, meropenem; IPM, imipenem; CAZ, ceftazidime; CTX, cefotaxime; FEP, cefepime; AMK, amikacin; GEN,
gentamicin, CIP, ciprofloxacin, CST, colistin. aTc, E. coli K12 transconjugants selected in media containing 1 µg/ml MEM. Plasmid size for LO-89, LO-149, LO-204, and
LO-271 isolates was estimated by ODM; that for other isolates was estimated by plasmid preparation.

TABLE 3 | Clinical and ODM information about blaNDM−1-carrying plasmids in eight K. pneumoniae strains isolated from Loghman hospital in Tehran.

Strain no. MIC (µ g/ml) Species ST blaNDM−1 carrying plasmids (kbp)

ERT MEM IPM

LO-94 8 4 4 K. pneumoniae 16 126.3 + 5.1

LO-204 8 32 256 K. pneumoniae 15 140.2 ± 3.2 135.1 ± 3.0*

LO-271 8 16 32 K. pneumoniae 147 86.3 ± 4.8 107.4 ± 4.6

LO-247* 8 8 4 K. pneumoniae ND* 110.7 ± 2.5

LO-64 8 32 48 K. pneumoniae 893 125.4 ± 3.0

LO-63 8 32 32 K. pneumoniae 147 122.7 ± 2.9

LO-89 8 16 32 K. pneumoniae 147 104.8 ± 3.6

LO-149 8 32 32 K. pneumoniae 15 130.6 ± 3.2

*Did not carry blaNDM−1. ND, not determined.

be widespread in the Middle East. In our study, the majority of
the NDM-1- and OXA-48-producing Enterobacterales isolates
co-harbored at least one ESBL gene which is concordant with
previous reports (Torres-González et al., 2015; Solgi et al.,

2017a). In this study, nine carbapenem-resistant K. pneumoniae
were identified; this may be due to other resistance mechanisms
(e.g., more rare carbapenemases, porin loss, AmpC enzymes)
that were not investigated in detail in this study.
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FIGURE 4 | Plasmid barcodes of blaNDM−1-carrying plasmids in eight Klebsiella pneumoniae strains. Since the plasmids are linearized by Cas9-targeting blaNDM−1,
all barcode ends are where we locate the blaNDM−1 gene. For the samples containing two blaNDM−1 plasmids, sizes are written in brackets to differentiate the
plasmids. (A) Identical plasmids with the same sizes (∼125 kb) and the same location of blaNDM−1. (B) Plasmids encoding blaNDM−1 that do not match among each
other. LO-271 (107.4) and LO-64 were plotted here for reference.

The plasmid incompatibility types IncFII and IncA/C were
identified among the NDM-1-producing isolates, while only
IncL/M was detected among OXA-48 producers (Table 1).
These replicon types have been reported in Enterobacterales
species in many regions of the world (Brañas et al., 2015;
Guo et al., 2016; Kieffer et al., 2016; Solgi et al., 2017b). Also,
Weber et al. (2019) demonstrated that the potential transmission
of mobilized Tn125-like transposons with blaNDM−1 into
different plasmids among Enterobacterales species (Weber
et al., 2019). Conjugation assays were successful for all CPE
isolates and allowed the identification of blaOXA−48-carrying
plasmids belonging to the IncL/M incompatibility group in all
transconjugants, with the exception of Tc-LO-149 (Table 2). Also,
analysis of transconjugants showed that the blaNDM−1 carried
on transferable plasmids belonging to the IncFII and IncA/C
incompatibility group, respectively.

The identification of conjugative plasmids harboring
blaNDM−1 and blaOXA−48 genes in CRE isolates shows that these
plasmids contribute to the dissemination of carbapenemase
genes among Enterobacterales species. Therefore, resistance
to carbapenems in CRE isolates is likely to be associated with
the spread of these genes in this hospital, which is consistent
with previous studies (Jamal et al., 2016; Kieffer et al., 2016;
Solgi et al., 2017a).

Pulsed-field gel electrophoresis revealed that different
clones of carbapenemase-producing K. pneumoniae (CPKP)
were present, and there were two predominated clones that
were identified as ST147 and ST893, comprising 13 and 10
isolates, respectively. ST147 and ST893 have been circulating
in this hospital setting during the period of investigation,
indicating two separate outbreaks, with the ICU poisoning
acting as the epicenter. Indeed, hospital outbreaks of ST147
NDM-1-producing K. pneumoniae are common in Europe

(Bogaerts et al., 2011; Giske et al., 2012), whereas the outbreak
of OXA-48-producing ST893 K. pneumoniae was only reported
from Isfahan, Iran (Solgi et al., 2018).

The dominant endemic sequence type K. pneumoniae in our
study was ST147 which co-harbored NDM-1 and blaCTX−M−15,
blaTEM−1, and blaSHV−11,12,172 genes. As an internationally
successful sequence type, ST147 has previously been linked to
the spread of ESBLs (especially CTX-M-15), OXA-48, VIM, and
KPC and recently also to NDM-1 in various countries (Bogaerts
et al., 2011; Messaoudi et al., 2017). In addition, ST893, the second
most common sequence type in this study that co-harbored
blaCTX−M−15, blaTEM−1, and blaSHV−199, has also only been
reported in Iran among CPKP isolates which has been associated
with ESBL and carbapenemase genes (Solgi et al., 2018). Several
other STs were found among CPKP isolates, including ST16
(cluster A), ST377 (cluster C), ST15 (cluster D), ST11, ST23,
ST35, ST2012, ST657, and ST1308.

The four isolates of ST15 (cluster D) were isolated from
patients in four ward. All isolates carried blaNDM−1 in
combination of blaOXA−48 and blaCTX−M−15, blaTEM−1, and
blaSHV−106 genes. K. pneumoniae ST15 represents a single locus
variant of ST14 and is currently widely disseminated among
CTX-M-15- and OXA-48- or NDM-1-producing K. pneumoniae
isolates in different geographical regions (Poirel et al., 2014;
Kieffer et al., 2016; Ben et al., 2017; Jelić et al., 2017).

The four NDM-1- and one OXA-48-producingK. pneumoniae
in our study belonged to ST16 and were positive for blaCTX−M−15
and blaSHV−199 genes. It is noteworthy that OXA-48-producing
ST16 have also been described in K. pneumoniae that caused
outbreaks in two hospitals in different regions of Spain (Oteo
et al., 2013). Furthermore, two OXA-48- and one NDM-1-
producing K. pneumoniae were isolated from three patients
in two different ward. They belonged to ST377, which has
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previously not been reported as a carbapenemase producer.
Finally, one OXA-48-producing K. pneumoniae isolate that co-
carried blaCTX−M−15, blaTEM−1, and blaSHV−182 was identified
as ST11. The blaOXA−48-harboring IncL/M plasmids have been
mainly described in K. pneumoniae ST11 in different countries
including, Spain (Brañas et al., 2015), Taiwan (Ma et al., 2015),
and Greece (Voulgari et al., 2013).

Considering this study and our previous study in Isfahan
province (Solgi et al., 2018), the main K. pneumoniae STs that
were identified in Iran were ST893, ST11, and ST147. This
scenario suggests that these STs have likely been circulating
in Iran in recent years. Our results show that, in general, the
population structure of CP E. coli is more diverse than that
of CPKP, which is essentially similar to the findings of other
studies (Sartor et al., 2014; Kieffer et al., 2016; Solgi et al.,
2017b). We detected E. coli ST410, ST1431, ST3134, and ST5114
which have been reported as harboring blaOXA−48 and ESBL
genes. Moreover, we identified only one ST131 of E. coli which
harbored blaNDM−1, blaCTX−M−15, and blaTEM−1 genes. The
association of NDM-1 and ESBL genes with the pandemic
clone ST131 has been previously reported from several countries
(Peirano et al., 2011, 2014).

The two NDM-1-positive E. cloacae isolates were genetically
not related and belonged to two STs, ST78 and ST175, both
also carried blaCTX−M−15 and blaTEM−1 genes, while the five S.
marcescens isolates were considered identical (>99% similarity).
Interestingly, looking at the hospitalization ward from which the
patients originated, several infections were detected at the ICU
poisoning, with a total of five patients harboring this OXA-48-
producing S. marcescens strain which co-carried further beta-
lactamase genes (blaCTX−M−15, blaSHV−12, and blaTEM−1). Our
results showed that this OXA-48-producing S. marcescens strain
was isolated among inpatients who shared a room. Therefore, it
is possible that the spread of this strain from patient to patient
occurred. To the best of our knowledge, this is the first report
of an outbreak of OXA-48-producing S. marcescens that co-
harbored ESBL genes in Iran. A small hospital outbreak linked to
OXA-48-producing S. marcescens has been previously reported
in Lebanon (Hammoudi et al., 2014). The exact mechanism of
CPE spread in Iran is not well understood. Our previous study in
July to November 2015 in two university hospitals in Iran showed
that the rate of fecal carriage of CRE among inpatients is high
(37.9%) and predominant species were K. pneumoniae, E. coli,
E. cloacae, and Proteus mirabilis, which harbored the blaNDM−1
and blaOXA−48 genes (Solgi et al., 2017a). The circulation of
blaNDM−1 and blaOXA−48 carbapenemase genes in the general
population may result in a further spread by traveling and
continuous introduction into the hospitals.

In conclusion, findings of extensive analysis of plasmids in
the present study showed the enormous potential of spread of

carbapenemase genes by horizontal gene transfer via plasmids
and we identified the conjugative plasmids carrying the blaNDM−1
and blaOXA−48 genes in different Enterobacterales species that
co-produce ESBLs. Here, in one Tehran hospital, we report two
separate outbreaks of NDM-1-producing ST147 and OXA-48-
producing ST893 K. pneumoniae STs. Furthermore, an outbreak
with OXA-48-producing S. marcescens was observed. It is
necessary to continue epidemiological and active surveillance to
improve the control and prevention of infections associated with
CPE isolates in healthcare facilities.
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