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Short-chain fatty acids (SCFA) are the main bacterial products of the catabolism of
carbohydrates and proteins in the gut, and their role is essential in host–microbiota
interactions. Acetic, propionic, and butyric acids are the major SCFA produced in the
gut, and they have been extensively studied. In contrast, branched short-chain fatty
acids (BCFA), mainly isovaleric and isobutyric acids, are produced in less amounts and
their fecal levels in different human groups, intestinal microbial producing populations,
and influence on health are insufficiently known. They have been proposed as markers of
protein fermentation, which leads to the concomitant production of other fermentation
products that can be harmful for the colon epithelium. In this context, the aim of this
study was to shed light into the production of BCFA by the human intestinal microbiota,
as related to age, body mass index (BMI), and diet. Fecal levels of the different SCFA
were analyzed by gas chromatography in 232 healthy individuals with ages between
3 months and 95 years, and BMI in adults ranging from 19 to 54. Dietary assessments
in adults were obtained through a food frequency questionnaire (FFQ). Molar proportions
of BCFA in feces were strongly and positively related with aging. However, not a
significant relationship was obtained between BCFA and BMI. A negative correlation
was found between the consumption of dietary insoluble fiber and fecal levels of BCFA.
More studies are needed for improving our understanding on the relationship of BCFA
production profile with the intestinal microbiota composition and human health.

Keywords: short-chain fatty acids, branched short-chain fatty acids, isovaleric acid, isobutyric acid, BMI, age,
diet

INTRODUCTION

The human gut is inhabited by billions of microorganisms that accomplish several essential
functions for host health (Lozupone et al., 2012). Among them, the fermentation of undigested
dietary components is of paramount importance for the physiology and metabolism of the
host. The subsequent microbial released metabolites have a key role in the interplay between
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bacterial producers and other gut inhabitants as well as with the
host cells (Macfarlane and Macfarlane, 2012). Acetic, propionic,
and butyric acids are the major catabolic end-products from the
fermentation by the intestinal microbiota of dietary undigested
carbohydrates and proteins, and they are commonly known as
short-chain fatty acids (SCFA). Until present, caproic and valeric
acids in the gut have been associated with diet and have not
been considered as SCFA strictly produced by the microbiota.
However, recent researches have described the ability of some
species from the gut microbiota to produce caproic acid from
lactate by cross-feeding (Zhu et al., 2017) whereas the production
of valeric acid by the intestinal microbiota has also been suggested
(McDonald et al., 2018). During recent years, acetic, propionic,
and butyric acids have received a considerable deal of attention,
their production pathways have been described, and fecal levels
have been determined in individuals from different geographical
locations, along life, and in various disease states, as related with
their effects on host health (Ríos-Covián et al., 2016). Apart
from these major SCFA, the intestinal microbiota also produces
considerably lower amounts of isobutyric, isovaleric, and 2-
methylbutyric acids, commonly known as branched short-chain
fatty acids (BCFA).

It is known that BCFA are mainly produced during
fermentation of branched chain amino acids (valine, leucine,
and isoleucine) by the intestinal microbiota. In the human
intestine, the fermentation of branched chain amino acids is
carried out mainly by genera Bacteroides and Clostridium (Smith
and Macfarlane, 1998; Aguirre et al., 2016) and the levels of BCFA
increase from the proximal colon to the distal colon and feces
(Macfarlane et al., 1992).

In vitro studies using protein-fermenting bacteria have
demonstrated BCFA production when the microorganisms were
grown with peptides as the main carbon source at low pH
6.8; however, the presence of starch at pH (5.5) reduced the
formation of BCFA in these cultures (Smith and Macfarlane,
1998). Evidences also indicate that high-protein and low-
complex carbohydrate diets, like western diet, result in higher
concentrations of BCFA in a validated in vitro gut model (Aguirre
et al., 2016), which has been further corroborated in some dietary
interventions carried out in animals and humans (Pieper et al.,
2012; Hald et al., 2016). In general, dietary supplementation
with complex carbohydrates, able to reach the colon, results
in a decrease in fecal levels of BCFA (François et al., 2014)
whereas protein supplementation drifts into higher production
of these compounds by the intestinal microbiota (Geypens et al.,
1997; Russell et al., 2011). To date, all the literature regarding
the relationship between protein intake and BCFA production
has been based on dietary interventions with supplements,
with no observational studies currently available comparing the
BCFA production in different population groups with different
intakes of protein at baseline. In addition, BCFA have attracted
considerably less attention than major SCFA (acetate, propionate,
and butyrate), in spite that they might be playing important roles
in the gut environment and may constitute potential markers of
the microbial metabolism taking place in the gut. BCFA have been
proposed as markers of colonic protein fermentation (Macfarlane
et al., 1992), a process that leads to the concomitant production

of other protein fermentation products such as ammonia, phenol,
p-cresol, or biogenic amines, molecules that can cause cell
damage on the intestinal environment (Aguirre et al., 2016).
Some authors have reported that isobutyrate stimulates colonic
Na+ absorption (Blachier et al., 2007), high levels of isovalerate
in feces have been related with human depression and cortisol
levels (Szczesniak et al., 2016), and, more recently, a role of
BCFA on the regulation of glucose and lipid metabolism has
been also suggested (Heimann et al., 2016). However, to date
and despite the knowledge on their biosynthetic pathways, no
integrated information exists on fecal levels of BCFA along life
and in different health status.

In this study, we aimed at assessing the variations in fecal
levels of BCFA according to age, from lactating infants to the
elderly, and on the basis of body mass index (BMI). Moreover,
the possible association with general dietary habits of the adult
population was also evaluated. To the best of our knowledge, this
is the first report providing information on BCFA in human feces
throughout life.

MATERIALS AND METHODS

Participants
The study sample included 232 subjects, 81 males and 151
females, from 3 months to 95 years of age, and with BMI values
for adults ranging from 19.02 to 54.50 (Tables 1, 2). All volunteers
were recruited in Asturias region (Northern Spain) in the frame
of different studies carried out by our research group (Arboleya
et al., 2012, 2016; Salazar et al., 2013; Fernandez-Navarro et al.,
2017). In addition to the previously available subjects, 12 males
and 26 females with ages between 34 and 59 years and BMI
between 20 and 54 were specifically recruited and added to the
study database. All newborns were recruited at 3 months of age.
For descriptive purposes, the adult sample was categorized in age
quartiles on the basis of sample distribution and in BMI following
the BMI chart diving in normal-weight (18.5–24.9), overweight
(25–29.9), obese (30–39.9), and extremely obese (≥40) subjects.
Ethical approval was obtained from the Bioethical Committee
of CSIC and from the Regional Ethics Committee for Clinical
Research of the Principality of Asturias in compliance with the
Declaration of Helsinki of 1964, last revised in 2013. All the
volunteers, or their legal representatives, gave written informed
consent. The exclusion criteria considered for this study were
not being diagnosed of autoimmune diseases and not having
consumed any antibiotics or probiotics during the previous
month of recruitment. All measurements were carried out in
accordance with approved guidelines and regulations.

Nutrition Assessment and
Anthropometric Evaluation
Dietary information was registered by means of an individual
interview, of approximately 1 h, through an annual food
frequency questionnaire (FFQ) of semi-quantitative type,
composed of 160 different foods items. Interviewers were
previously trained to standardized dietary assessment.
Methodological issues concerning interview process and portion
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TABLE 1 | Fecal short-chain fatty acid (SCFA), branched short-chain fatty acids (BCFA), and total SCFA/BCFA ratio, as well as general characteristics and daily dietary
intakes of the studied population according to age groups.

Babies 18–50 years 51–65 years 66–95 years

N individuals 65 61 69 37

Mean age (years) 0.25 38.95 (33.5–44) 57.93 (55–61) 80.32 (77–85.5)

Isobutyrate (mM) 0.48a (0.00–1.01) 1.68b (1.11–2.12) 1.80b (1.08–2.32) 1.96b (1.09–2.21)

Isovalerate (mM) 0.64a (0–0.52) 2.43b (1.48–3.02) 2.65b (1.50–3.53) 2.57b (1.39–3.17)

BCFA (mM) 1.12a (0.00–1.52) 4.12b (2.57–5.05) 4.45b (2.57–6.01) 4.53b (2.49–5.28)

Total SCFA (mM) 108.51c (60.96–131.77) 87.40c (63.72–105.30) 71.59b (46.53–87.32) 47.71a (22.76–59.97)

Total SCFA/BCFA (mM) 158.01d (38.28–224.86) 28.07c (12.56–37.94) 20.65b (11.07–23.73) 12.19a (6.39–15.70)

BMI (kg/m2) – 32.05 (24.99–40.82) 28.97 (23.68–30.06) 28.36 (26.03–30.96)

Energy (kcal/day) – 1934.50b (1577.03–2160.61) 1967.27b (1601.67–2207.05) 1715.07a (1399.65–1983.15)

% carbohydrate – 42.68 (38.08–29.82) 41.34 (36.01–47.38) 40.73 (36.40–44.92)

% protein – 19.03 (15.88–21.11) 19.27 (16.13–21.76) 19.46 (17.82–21.52)

% fat – 36.69 (29.82–40.93) 36.74 (32.23–40.56) 38.82 (35.44–41.73)

Fiber (g/day) – 18.49ab (13.09–22.01) 22.73b (17.80–27.70) 16.65a (12.47–20.34)

Insoluble fiber (g/day) – 12.43b (13.09–22.02) 14.09c (10.43–19.20) 10.12a (1.61–2.74)

Soluble fiber (g/day) – 2.33b (1.60–2.56) 3.03c (2.20–3.74) 2.15a (1.61–2.74)

Results are presented as mean values; between parentheses, first and third quartile values for each variable within each group are indicated. BCFA:
isobutyrate + isovalerate. Total SCFA: acetate + propionate + butyrate + caproate + valerate + isobutyrate + isovalerate. Different lowercase letters indicate significant
differences among groups of age for the variable considered (p < 0.05).

TABLE 2 | Fecal short-chain fatty acid (SCFA) levels, branched short-chain fatty acids (BCFA), and total SCFA/BCFA ratio, as well as general characteristics and daily
dietary intakes of the studied population along the different BMI groups.

BMI < 25 BMI 25–29.9 BMI 30–39.9 BMI ≥ 40

N individuals 40 63 27 25

BMI (kg/m2) 22.24 (20.91–23.48) 27.34 (16.17–28.40) 33.61 (31.14–35.78) 44.89 (41.55–46.10)

Isobutyrate (mM) 1.56a (0.98–1.81) 1.79a (1.04–2.13) 1.74a (1.02–2.19) 2.11b (1.55–2.69)

Isovalerate (mM) 2.10a (1.21–2.36) 2.51a (1.39–3.20) 2.54a (1.34–3.54) 3.15b (2.43–4.03)

BCFA (mM) 3.67a (2.31–4.03) 4.30a (2.33–5.33) 4.28a (2.42–5.53) 5.26b (4.15–6.65)

Total SCFA (mM) 65.86a (46.47–85.38) 64.93a (33.37–90.49) 75.16ab (47.55–98.26) 95.80b (53.83–130.49)

Total SCFA/BCFA 22.04 (12.46–28.42) 20.60 (9.75–21.63) 23.89 (9.70–32.98) 22.11 (10.47–29.73)

Energy (kcal/day) 1883.32ab (1557.79–2133.54) 1813.90a (1.497–2.051) 2152.32b (1897.44–2380.26) 1832.71ab (1478.64–2142.19)

% carbohydrate 41.05 (35.00–46.03) 41.90 (37.57–48.13) 42.76 (36.84–48.32) 39.54 (31.90–46.64)

% protein 18.49a (15.96–21.50) 19.21a (16.47–21.44) 18.32a (15.72–20.35) 22.32b (18.46–26.25)

% fat 37.70 (32.89–42.41) 37.34 (33.83–40.77) 36.99 (30.41–40.89) 36.81 (28.83–43.09)

Fiber (g/day) 20.27 (12.83–23.58) 19.04 (14.40–23.11) 21.05 (14.38–26.71) 20.05 (13.32–25.31)

Insoluble fiber (g/day) 13.09 (8.17–17.66) 11.95 (8.61–14.41) 14.37 (8.96–18.85) 14.13 (10.05–18.52)

Results are presented as mean values; between parentheses, first and third quartile values for each variable within each group are indicated. BCFA:
isobutyrate + isovalerate. Total SCFA: acetate + propionate + butyrate + caproate + valerate + isobutyrate + isovalerate. Different lowercase letters indicate significant
differences among BMI groups for the variable considered (p < 0.05).

size quantification have been previously published elsewhere
(Fernandez-Navarro et al., 2017). Conversion to nutrients was
developed by using information available from the Center
for Higher Education in Nutrition and Dietetics (CESNID),
in energy, macronutrients, vitamins, and minerals [Centro
de Enseñanza Superior de Nutrición Humana Y Dietética
(CESNID), 2008]. To detail the type of protein consumed
(animal or vegetal origin), the food composition tables published
by the United States Department of Agriculture (USDA) were
used (Fernández-Navarro et al., 2018).

Size and weight were determined in adults, in order to
calculate BMI, by dividing the weight (kg) by the square of
height (m2). A dietary caloric profile was obtained individually,

by calculating the contribution of each of the macronutrients to
the total daily energy intake.

Fecal Collection and Metabolite Analysis
Fecal sample collection was performed as indicated in previous
studies (Arboleya et al., 2012, 2016; Salazar et al., 2013;
Fernandez-Navarro et al., 2017). In brief, fecal material was
collected in sterile containers, immediately frozen at−20◦C, and
transported to the laboratory. In the laboratory, 1 g of fecal
samples was diluted 1/10 in phosphate-buffered saline solution
(PBS) and homogenized in a LabBlender 400 stomacher (Seward
Medical, London, United Kingdom). Supernatants were obtained
by centrifugation (10,000 rpm 10 min, 4◦C), filtered through
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0.2-µm filters, added with 1/10 2-ethyl butyric acid (1 mg/mL)
as an internal standard and stored at −80◦C until analysis.
SCFA were identified and quantified in a gas chromatograph
6890N (Agilent Technologies Inc., Palo Alto, CA, United States)
connected to a mass spectrometry 5973N detector (Agilent) and
to a flame ionization detector (FID), and data were collected
through an Enhanced ChemStation G1701DA software (Agilent)
as described previously (Fernández-Navarro et al., 2018). SCFA
(acetic, propionic, butyric, isobutyric, isovaleric, caproic, and
valeric acids) were identified by comparison of their mass spectra
with those held in the HP-Wiley 138 library (Agilent) and by
comparing their retention times with those of the corresponding
standards (Sigma-Aldrich, St. Louis, MO, United States). The
peaks were quantified as relative abundances with respect to
the internal standard. The absolute concentration (mM) of each
compound was calculated through linear regression equations
(R2
≥ 0.99) from the corresponding standard curves obtained

with different concentrations. Molar proportions (MP) were also
determined by referring the concentration of each of the SCFA
to the sum of concentrations of all SCFA considered this as
100%. In the same way, MP of BCFA (isobutyric + isovaleric
acids) was determined by referring them to the sum of
concentrations of all SCFA.

Statistical Analysis
Statistical analyses of results were carried out using IBM SPSS
version 22.0 (IBM SPSS, Inc., Chicago, IL, United States). Data
for the different variables analyzed were compared among the
different groups of age as well as among adults with different
BMI. The Kolmogorov–Smirnov test (K–S) with Lilliefors
significance correction indicated that most variables did not
show a normal distribution. When the distribution of variables
was skewed, the natural logarithm of each value was used in
the statistical test. Mean values are presented as untransformed
variables. The absence of collinearity between age, BMI, and
sex was corroborated for each BCFA. With this collinearity
being negative, analyses for age were performed in all samples
whereas BMI statistics were only performed in adults because
this parameter is not applicable in babies. The Kruskal–Wallis
test for pairwise comparisons with Bonferroni correction was
then used to assess all statistical comparisons between groups.
SCFA molarities were used to perform a principal component
analysis (PCA) of SCFA production through life and across
different BMIs in adults with SPSS, whereas graphical plots
were constructed with plot.ly package for RStudio version
1.1.463. A Spearman correlation analysis was also conducted to
investigate the associations between BCFA and anthropometric
and dietary factors in the study population.

RESULTS

Fecal Branched Short-Chain Fatty Acids
Along Life
The general characteristics of the studied population, according
to the age groups analyzed, are presented in Table 1. The fecal

levels of total SCFA were significantly lower in adults than in pre-
weaned infants whereas in contrast BCFA concentrations were
significantly (p < 0.05) lower in babies than in adults. Total SCFA
in adults decreased with age (p < 0.05) while BCFA fecal levels
were stable among the adult age groups. As a consequence, the
total SCFA/BCFA ratio showed a decline with age (p < 0.05),
mainly due to a significant decrease in SCFA fecal levels, specially
acetate and propionate (Supplementary Table S1). In order to
minimize the bias that variations in water content of the different
fecal samples could introduce on statistical comparisons of fecal
concentrations of BCFA, MP of each of the different SCFA
were also calculated and compared (Figure 1A). This way, MP
of isobutyric and isovaleric acids and total BCFA evidenced a
significant increase throughout aging (p < 0.05) (Figure 1A).
Regarding major SCFA, the MP of acetate showed clearly higher
fecal levels in infants than in adults, with fecal concentrations
of this compound showing a significant decrease through age
until the 51–65 year-old group. In contrast, infants displayed
significantly lower fecal MP of propionic, butyric, and valeric
acids than did adults (Figure 1A). A PCA was then performed
with the concentrations (mM) of the different SCFA for the whole
population under study. The three components resulting from
the PCA explained 85.64% of the variance (PC1 18.18%, PC2
21.49%, and PC3 15.96%). BCFA and butyrate were the main
components in PC1 (Figure 2A), acetate in PC2, and caproate
in PC3. Fecal samples of babies had a clear different distribution
than those of adults, and among adults, a gradient along PC2
can be appreciated.

Anthropometric and dietary analyses were carried out in
adults (Table 1). Differences in BMI among age groups were not
significant (p > 0.05). However, a significant (p < 0.05) reduction
in energy intake was evidenced in the group of 66–95 years
(Table 1), which resulted in lower intakes of carbohydrates and
protein (data not shown); in spite of this, the contribution
percentage of these macronutrients to the total caloric intake
remained without variations (Table 1). Fiber consumption,
soluble and insoluble, was significantly lower in elderly people
than in the other two adult groups (p < 0.05) whereas the group
of 55–65 years presented the highest consumption.

Fecal Branched Short-Chain Fatty Acids
as Related With BMI
The general characteristics of the studied population according
to BMI are presented in Table 2. Babies were not considered
in analyses related to BMI, because this parameter is accurate
only in adults. Subjects with morbid obesity (BMI ≥ 40)
displayed significantly higher concentrations (p < 0.05) of
total SCFA and BCFA in feces than the other weight groups:
normal-weight (BMI 18.5–24.9), overweight (BMI 25–29.9), and
obese (BMI 30–39.9) volunteers. MP of acetate, propionate,
butyrate, valerate, and isobutyrate and the sum of BCFA
(isobutyric + isovaleric acids) remained without significant
variations along BMI groups (Figure 1B). In contrast, MP of
caproate increased significantly in morbid subjects whereas lower
proportions of isovalerate were found in normal-weight people
than in overweight individuals.
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FIGURE 1 | Changes in SCFA production throughout life and BMI increases. (A) Molar proportions of SCFA during aging. (B) Molar proportions of SCFA throughout
BMI increases. *p < 0.05.

As with regard to the dietary information, a higher intake
of calories (Table 2), carbohydrates, and fat (g/day) was
evidenced in the obese group than in normal-weight or morbid
obese subjects (Supplementary Table S2). Underreporting
of energy and protein intake has been shown with the
increase in BMI with different diet assessment methods,
including FFQ (Stice et al., 2015; Trijsburg et al., 2017).
However, when comparing the caloric dietary contribution
percentage of each macronutrient, the only difference observed
was in the proportion of calories resulting from dietary
protein, which was significantly higher (p < 0.05) in the
morbid obese group.

Principal component analysis (Figure 2B) was
performed based on the adult cohort data, and the three
resulting components explained 87% of the variance
(PC1 53.59%, PC2 22.57%, and PC3 11.26%). The main
contributors to PC1 were acetic, propionic, and butyric
acids (Figure 2B), to PC2 BCFA, and caproic acid to PC3.

A clear discrimination among groups was not obtained in
the case of BMI.

Correlation of BCFA Levels With
Anthropometric and Dietary Parameters
Excluding babies, correlation analyses between molar
proportions of fecal isovalerate and isobutyrate and the
sum of both BCFA were performed with all the anthropometric
and dietary parameters studied. Significant correlations are
shown in Figure 3. Isovalerate and isobutyrate levels correlated
positively between them (data not shown) as described by
previous authors (Cardona et al., 2005) and both of them with
age (p < 0.01). BCFA production was not significantly correlated
with fat, protein, either animal or vegetal, or carbohydrate intake
(Figure 3). A less strong but negative association (p < 0.05) was
found between these two compounds and fiber consumption,
particularly insoluble fiber. In addition, MP of isovalerate and
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FIGURE 2 | Population distribution regarding changes in SCFA production throughout life and BMI increases. (A) Principal component analysis (PCA) of SCFA
production throughout life. (B) PCA of SCFA production according with the increase of BMI. The main components of each axis are indicated below them in
parentheses.

isobutyrate were not correlated with energy, vitamin, minerals,
or amino acid intake (data not shown).

DISCUSSION

Short-chain fatty acids production and their relationship with
host health status have been receiving a deal of attention during
the last decade (Koh et al., 2016; Ríos-Covián et al., 2016), but
studies about the production of BCFA and their effects in host
health are still very scarce. To the best of our knowledge, this
is the first report describing the evolution of BCFA production
profile in a healthy human population along life, from newborns
to elderly, and by comparing different BMI groups of adults.

MP of BCFA in the group of babies were lower than in
adults, but in accordance with that indicated by other authors

FIGURE 3 | Correlations between molar proportions of BCFA (total BCFA,
isobutyrate, isovalerate) with age, BMI, and daily dietary intake of
macronutrients and fiber. ∗p < 0.05; ∗∗p < 0.01. Green, positive correlations;
orange-red, negative correlations.

(Bridgman et al., 2017), infants displayed higher MP of acetate.
Regarding adults, we found age as the variable that most clearly
correlated positively with the MP of BCFA. Also, the SCFA/BCFA
ratio decreased significantly from the age group of babies to the
66–95-year-old group, most likely due to a decrease in the levels
of SCFA, mainly acetate and propionate. In contrast, previous
studies did not report differences in the MP of BCFA between
elderly subjects and middle-age adults (Salazar et al., 2013). This
may be due to the inclusion in the previously cited study of only
mature adults (>57 years) and not younger adults as is the case
of the present work.

In the adult population, BCFA levels showed a negative
correlation with fiber consumption, mainly insoluble fiber. In
this regard, an intervention study has previously shown a
decrease in intestinal BCFA production in healthy preadolescent
children consuming wheat bran (François et al., 2014). Lower
levels of BCFA have been also reported when comparing
high carbohydrate (including fiber)/low protein versus high
protein/low carbohydrate diets in human adults with metabolic
syndrome, as well as in animals (Pieper et al., 2012; Hald et al.,
2016). Therefore, one of the possible explanations for the higher
MP of BCFA observed by us in the elder population could be
related with a reduced availability of fermentable carbohydrates
in the large intestine, due to their reduced intake with diet.
Although the data obtained in this study are not comparable with
those of intervention studies, we can hypothesize the existence of
an inverse association between fiber intake and the consumption
of vegetable proteins that would be in line with the results
proposed in these works. It is important to point out that
all cited studies compare the BCFA production after a dietary
intervention or amino acid supplementation, whereas levels of
BCFA production in feces of individuals with their usual diets
have not been reported previously. Taking this into account,
changes in diet might be a factor affecting the SCFA and BCFA
production, but also it may be related to a physiological decline
in the activity of the microbiota with age, as it has been previously
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reported (Salazar et al., 2019). In fact, undigested fermentable
carbohydrates can be used by microbial BCFA producers such
as Bacteroides or other colonic microorganisms. In vitro studies
have demonstrated that when Bacteroides fragilis grew in slowly
fermentable carbon sources, a shift in its metabolism through
protein fermentation occurred (Rios-Covian et al., 2017). Some
Clostridium and Propionibacterium species are also able to
produce BCFA, although their carbon source preferences have
not been studied in depth yet (Elsden and Hilton, 1978;
Smith and Macfarlane, 1998). As BCFA production has been
correlated in the present study with less fiber consumption,
it may be possible that the reduced availability of fermentable
carbohydrates by the intestinal microbiota promoted a shift to
more protein fermentation and, as a consequence, an enhanced
BCFA production in the gut. In addition, host changes associated
with aging, as higher rate of apoptotic cells of aged gut, could
lead to more availability of fermentable amino acids for the
microbiota, which then may result in higher levels of BCFA
(Moorefield et al., 2017).

In previous studies by other authors, high protein diets have
been related with higher levels of BCFA (Pieper et al., 2012;
Aguirre et al., 2016). In accordance with this, our group of
BMI ≥ 40 showed significantly higher protein intake and higher
production of SCFA, total BCFA, isobutyrate, and isovalerate, as
well as higher proportions of caproate than did the other human
groups with lower BMI. In spite of this, we did not find any
significant correlation between the relative proportions of BCFA
and BMI in the whole population of adults analyzed. These results
indicate that whereas total SCFA levels seem to be affected by BMI
increase, a direct relationship between BCFA and higher protein
intake is not evident in our adult population. One limitation of
this study is that, even though FFQ is widely used in the context
of diet–microbiota relationships, underreporting of energy and
protein intake has been shown with the increase in BMI using
this method (Stice et al., 2015; Trijsburg et al., 2017). Adding
24-h recalls or biochemical indicators of protein intake has been
reported as a way to overcoming this limitation, especially in the
relationship of BCFA with BMI (Freedman et al., 2018). Further
research is needed to make conclusions about the relationship of
BCFA and obesity.

Production of BCFA by the gut microbiota seems to be affected
by several factors that might influence the availability in the
gut of fermentable amino acids, as could be diet, host endogen
metabolism, and the intestinal microbial composition and the
metabolic preferences of the different microbial groups. On the
other hand, some literature has related the levels and MP of BCFA
to some diseases such as depression, Rett syndrome, and anorexia
nervosa (Mack et al., 2016; Szczesniak et al., 2016; Borghi et al.,
2017), pointing to their potential as possible future biomarkers
of health. Further research is needed in order to elucidate the
mechanisms of action of BCFA in health and disease. In this
regard, recent studies have reported a relationship between BCFA
and lipid metabolism; thus, fecal levels of BCFA have been
found to be higher in subjects with hypercholesterolemia in
comparison with normocholesterolemic individuals, with fecal
isobutyric acid levels being associated with a worse lipid profile in
serum (Granado-Serrano et al., 2019). In vitro experiments with

rat and human adipocytes had shown an inhibition of cAMP-
mediated lipolysis and insulin-stimulated lipogenesis by BCFA,
with isobutyric acid also potentiating insulin-stimulated glucose
uptake (Heimann et al., 2016).

One of the limitations of this study is that the measurement
of SCFA and BCFA production was performed in feces, which
reflects the concentrations of these compounds at the end
of the digestive tract, but not necessarily that of the other
parts of the colon. Moreover, levels do not constitute a direct
reflection of production by the intestinal microbiota since
absorption processes are also implied. On the other hand, the
content of water has not been considered in the calculation
of SCFA and BCFA concentrations; however, the comparison
of MP of the different SCFA compounds used in this study
partly prevented the bias introduced by the different water
content of feces from different individuals. Further studies are
needed to shed light into the main factors affecting BCFA
production and the hierarchy of their relationships in the human
intestinal environment.
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