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Methanogenic sludge granules are densely packed, small, spherical biofilms found
in anaerobic digesters used to treat industrial wastewaters, where they underpin
efficient organic waste conversion and biogas production. Each granule theoretically
houses representative microorganisms from all of the trophic groups implicated in
the successive and interdependent reactions of the anaerobic digestion (AD) process.
Information on exactly how methanogenic granules develop, and their eventual fate will
be important for precision management of environmental biotechnologies. Granules
from a full-scale bioreactor were size-separated into small (0.6–1 mm), medium (1–
1.4 mm), and large (1.4–1.8 mm) size fractions. Twelve laboratory-scale bioreactors
were operated using either small, medium, or large granules, or unfractionated sludge.
After >50 days of operation, the granule size distribution in each of the small, medium,
and large bioreactor sets had diversified beyond—to both bigger and smaller than—the
size fraction used for inoculation. Interestingly, extra-small (XS; <0.6 mm) granules were
observed, and retained in all of the bioreactors, suggesting the continuous nature of
granulation, and/or the breakage of larger granules into XS bits. Moreover, evidence
suggested that even granules with small diameters could break. “New” granules
from each emerging size were analyzed by studying community structure based on
high-throughput 16S rRNA gene sequencing. Methanobacterium, Aminobacterium,
Propionibacteriaceae, and Desulfovibrio represented the majority of the community in
new granules. H2-using, and not acetoclastic, methanogens appeared more important,
and were associated with abundant syntrophic bacteria. Multivariate integration (MINT)
analyses identified distinct discriminant taxa responsible for shaping the microbial
communities in different-sized granules.
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INTRODUCTION

Biofilms form in a wide range of natural and built environments
(Sutherland, 2001), and have important significance for
biogeochemical cycling in Nature (Battin et al., 2016; Flemming
and Wuertz, 2019), and further clinical (Arciola et al., 2018)
and industrial implications (Jensen et al., 2016). However,
though biofilms are classically found as layers, or films, attached
to suitable surfaces—from rocks, to medical devices, to ship
hulls—aggregation may also occur due to self-immobilization of
cells into discrete structures, such as flocs or granules, without
the involvement of a surface (Lettinga et al., 1980; Togashi
et al., 2014; Wilbanks et al., 2014). Many such examples can
be found in engineered environments, such as in biological
wastewater treatment, where prevailing conditions of shear, and
hydrodynamic, stresses promote flocculation and granulation.
Common types include anaerobic ammonium oxidizing
(annamox) granules (Kartal et al., 2010), aerobic granules (Beun
et al., 1999), and anaerobic (methanogenic) granules (Lettinga
et al., 1980), which underpin the success of several high-rate
anaerobic wastewater treatment technologies.

Anaerobic granules are small, with diameters generally
ranging 0.1–5.0 mm (Ahn, 2000; Batstone and Keller, 2001; Shin
et al., 2019), densely-packed biofilm spheres. They comprise
a complex microbial community capable of the complete
mineralization of organic pollutants through the anaerobic
digestion (AD) pathway (Liu et al., 2002; Batstone et al., 2019).
The settleabilty of anaerobic granules accounts for long biomass
retention—even in “upflow” bioreactors, such as the upflow
anaerobic sludge bed (UASB) and expanded granular sludge
bed (EGSB) bioreactors, operated with short hydraulic retention
times (HRT), and very high volumetric loading and upflow
velocities (van Lier et al., 2015). The size distribution of anaerobic
granules varies according to wastewater type (Batstone and
Keller, 2001), but has also been linked to the hydrodynamics of
the digester system (Arcand et al., 1994). Moreover, granule size
has been linked to porosity (Wu et al., 2016) and permeability
(Afridi et al., 2017)—having further implications for biofilm
structure, mass transfer, gas diffusion, and activity (Bhunia
and Ghangrekar, 2007; Jiang et al., 2016; Wu et al., 2016;
Afridi et al., 2017).

A single granule contains a diverse and dynamic microbial
community, capable of adapting to various changes in
environmental conditions (McKeown et al., 2009; Cerrillo
et al., 2016; Kuroda et al., 2016; Na et al., 2016; Zhu et al.,
2017; Keating et al., 2018). Microbial cells are juxtaposed, and
immobilized, within a complex matrix of extracellular polymeric
substances (EPS) (MacLeod et al., 1995). Within these highly
organized consortia, a collection of microbial trophic groups
mediates a cascade of interdependent reactions resulting in
complete degradation of complex organic wastewater pollutants
(Zehnder and Brock, 1980; Dolfing, 1992; Batstone et al.,
2019). Equally, the consortium’s species rely on efficient mass
transfer of substrates and complex metabolic interdependencies
(Embree et al., 2015).

Granulation is a process whereby suspended particles and
planktonic cells accumulate, forming small dense biofilm

aggregates (Liu et al., 2002; Show et al., 2020). Unlike
conventional biofilm formation, which is a well-documented
phenomenon (O’Toole et al., 2000; Hall-Stoodley et al., 2004),
the specific mechanisms involved in anaerobic sludge granulation
are still being teased-out (Sanjeevi et al., 2013; Kim et al.,
2014; Gagliano et al., 2017, 2020; Sudmalis et al., 2018; Faria
et al., 2019). The topic has been comprehensively reviewed, and
the various theories summarized, which can be categorized as
physical, microbial, or thermodynamic (Hulshoff Pol et al., 2004;
Show et al., 2020). However, none has been solely accepted as
a “unified theory on anaerobic granulation” (Liu et al., 2003).
The primary consensus seems to be that the genus Methanothrix
(Methanosaeta), a group of acetoclastic methanogens, specifically
Methanothrix soehngenii (Tindall, 2014), are key organisms
during the process (Hulshoff Pol et al., 2004; Show et al.,
2020). These archaea can either (i) aggregate together, (ii)
attach to suspended particles, or (iii) potentially form a bridge
between existing microflocs—aiding in the critical first step of
forming granule precursors (Dubourgier et al., 1987; Weigant,
1987; Jian and Shi-yi, 1993). In fact, recent studies still
confirm the importance of Methanosaeta, even at high salinity
(Gagliano et al., 2020).

Many studies have focused on granulation (Show et al.,
2020), and associated dynamics of physico-chemical properties
and microbial community structure. Fewer studies, however,
have addressed the ultimate fate of granular biofilms. Moreover,
several studies have reported the spontaneous disintegration of
granular biofilms, ultimately leading to process failure (McHugh
et al., 2006; Baloch et al., 2008; Kobayashi et al., 2015). Studies
into development and fate of granules could help prevent
or mitigate such phenomena. Therefore, the primary purpose
of this study was to monitor granular growth; to determine
whether granules grow and develop in a predictable way, from
small to medium and, finally, to large. Díaz et al. (2006)
proposed that small granules could be considered “young” and
larger granules “old,” or more mature. However, the eventual
fate of large, old granules remains unclear. This is the first
instance, of which we are aware, when granules have been
compartmentalized into size-resolved fractions (small, medium,
and large), which were then used to separately start up bioreactors
to investigate granule development and fate in such a way.
Moreover, undisturbed sludge, providing a “meta-community”
and full complement of size fractions, was used as a comparator.
The extent, nature and ecology of “new” granules emerging in the
experiments was monitored.

MATERIALS AND METHODS

Source and Fractionation of Biomass
Anaerobic sludge was obtained from a full-scale (8256 m3),
mesophilic (37◦C), EGSB bioreactor in the Netherlands treating
potato-processing wastewater. The full-scale bioreactor was
operated at an upflow velocity of 1.2 m h−1 and an HRT of 6.86 h.

Granules were grouped (Figure 1) into five distinct size
classifications: extra-small (XS; Ø, < 0.6 mm), small (S; Ø, 0.6–
1.0 mm), medium (M; Ø, 1.0–1.4 mm), large (L; Ø, 1.4–1.8 mm),
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FIGURE 1 | Schematics illustrating: (a) the AD pathway of organic matter degradation in the context of a granule; (b) theoretical distribution of the main trophic
groups catalyzing the process; (c) the engineered bioreactor system used to apply granules for wastewater treatment and biogas generation; (d) size distribution of
biomass whereby granules were binned for this study into five size groups: extra-small (XS), small (S), medium (M), large (L), and extra-large (XL); and (e) the
experimental set-up used to test granular growth where bioreactors were inoculated with either S, M, L, or the naturally distributed (mixed) biomass.

and extra-large (XL; Ø, > 1.8 mm). Granules were size-separated
by passing the biomass through stainless steel sieves, separating
specific size ranges. Triplicate samples from each size were stored
at −20◦C for subsequent DNA extractions. The remainder of the
size-separated biomass was subsequently stored in phosphate-
buffered saline (PBS) solution under an N2 headspace at 4◦C
prior to bioreactor inoculation.

Bioreactor Design and Operation
Twelve, identical laboratory-scale (2 L) glass, EGSB bioreactors
(Supplementary Figure S1) were constructed, and operated in
four sets of triplicates: the first set (RS1–RS3) containing only
S granules; the second set (RM1–RM3) containing only M-sized
granules; the third set (RL1–RL3) containing only L granules;
and the fourth set (RN1–RN3) started with the unfractionated,
naturally distributed (N) biomass (Figure 1).

Apart from granule size in the starter biomass, the 12
bioreactors, each inoculated with 15 gVS Lbioreactor

−1, were

operated identically at a 24 h HRT for 51 days. The
biomass was allowed a 48-h acclimatization period at 37◦C,
regulated using built-in water jackets and recirculating water
baths (Grant Optima, T100-ST12; Grant Instruments Ltd.,
Shepreth, United Kingdom), before feeding and recirculation
were commenced, which were controlled using peristaltic pumps
(Watson and Marlow 2058 and 300 series, respectively; Cork,
Ireland). Influent was introduced at the base of each bioreactor
at an OLR of 15.7 g COD L−1 day−1, and bioreactor liquor was
recirculated through the system to achieve the superficial upflow
velocity of 1.2 m/h according to the same set-up, and approach,
as described previously (Collins et al., 2005; Madden et al., 2014).

The saccharide-rich, synthetic wastewater, based on
recommendations and component ratios previously reported
(Ahn and Forster, 2000), consisted of glucose (3.75 g/L), fructose
(3.75 g/L), sucrose (3.56 g/L), yeast extract (1.45 g/L), and urea
(2.15 g/L). The synthetic wastewater was further supplemented
with trace elements (Shelton and Tiedje, 1984), and supplied to
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the 12 bioreactors from a single, thoroughly mixed reservoir to
ensure homogeneity. Sodium bicarbonate (10 g/L) was added to
the influent on day 6, and for the remainder of the experiment
to act as a pH buffer, as the pH of the bioreactor liquor had
dropped to 4 during the first week. This modification stabilized
the influent pH at 7.8 for the remainder of the trial.

Upon take-down, on day 51, the biomass wet-weight was
recorded, to determine total biomass loss or gain, and the
entirety was re-fractionated into XS, S, M, L, and XL fractions to
determine new size distribution. Samples from each size fraction
were stored at -20◦C for DNA extractions and sequencing.

Sampling and Analytical Techniques to
Monitor Bioreactor Performance
Biogas concentrations of methane, and effluent concentrations
of total COD (tCOD), soluble COD (sCOD), volatile fatty
acids (VFA), and pH, were monitored three times a week
throughout the 51-day trial. Biogas methane concentrations
were determined using a VARIAN CP-3800 gas chromatograph
(Varian, Inc., Walnut Creek, CA, United States; details available
in Supplementary Material). Methane yield efficiency was
calculated using the theoretical yield based on COD and reported
as an average over three operational phases. pH was measured
using a benchtop meter (Hanna Instruments, Woonsocket,
RI, United States). COD was measured using pre-prepared
COD test kits (Reagacon, Shannon, Ireland) and following the
recommendation of the manufacturer. Samples for tCOD assays
were each prepared by adding a homogenous sample directly
to the test kit, while for sCOD, the sample was first centrifuged
for 10 min at 14,000 r/min and the supernatant was added
to the test kit. COD tests were incubated for 2 h at 150◦C
and concentrations were determined using a spectrophotometer
(Hach Dr/4000; Hach Company, Loveland, CO, United States) at
435 nm. VFA contents of supernatant from effluent samples were
separated, and quantified, using gas chromatography (Varian
450-GC; Varian, Inc., Walnut Creek, CA, United States; details
available in Supplementary Material).

DNA Extraction
For each sample investigated, a mass of 0.1 g wet sludge was
transferred to respective, sterile tubes in triplicate. Genomic
DNA was extracted on ice following the DNA/RNA co-
extraction method (Griffiths et al., 2000), which is based on bead
beating in 5% (w/v) cetyl trimethylammonium bromide (CTAB)
extraction buffer, followed by phenol-chloroform extraction.
Quality of nucleic acids was assessed using a NanoDropTM

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
United States), and concentrations were determined using a
Qubit fluorometer (Invitrogen, Carlsbad, CA, United States) and
normalized to 5 ng DNA µL−1 for storage at -80◦C.

High-Throughput Gene Sequencing
Partial 16S rRNA gene sequences were amplified using the
universal bacterial and archaeal primers, 515F and 806R, and
under to the conditions previously applied by Caporaso et al.
(2011), but using 2x KAPA HiFi HotStart ReadyMix (Roche;

Clarehill, Clare, Ireland). After clean-up using an AMPure XP
purification kit (Beckman Coulter, Clare, Ireland), according to
the manufacturer’s instructions, amplicons were sequenced, with
PhiX (PhiX Control Kit v3) as internal control, on an Illumina
MiSeq platform (at FISABIO, Valencia, Spain).

Bioinformatics and Statistical Analysis
Abundance tables were generated by constructing OTUs. An
OTU table was generated for this study by matching the original
barcoded reads against clean OTUs (a total of 2,793 OTUs for
n = 49 samples) at 97% similarity (a proxy for species-level
separation). Statistical analyses were performed in R (v. 3.4.4)
using the combined data generated from the bioinformatics as
well as meta data associated with the study. Alpha diversity
analyses included the calculation of Shannon entropies and
rarefied richness. Further multivariate integration (MINT)–
sparse projection to latent structure (sPLS) algorithms identified
study-wise discriminants. Additional details are available in
Supplementary Material.

RESULTS

Bioreactor Performance
Each of the four size-constrained sets of bioreactors responded
similarly throughout the trial, regardless of being inoculated
with differently sized granules. During the 4 days, influent pH
decreased to 4.1 in each of the bioreactors. After supplementation
of the influent with sodium bicarbonate, the pH stabilized (mean,
pH 7.8) over the remainder of the experiment. Biogas methane
concentrations were low during the initial acidification, but
increased throughout the rest of the trial (Figure 2).

This pH shock also produced a strong effect on the COD
removal. During the first 25 days of operation, more COD left
the bioreactors than was supplied to them (Figure 2)—indicating
biomass washout and a very unstable performance. This was
largely reversed over the remainder of the trial, and COD
removal, and methane yield efficiency continued to improve
over the subsequent weeks, culminating in roughly 50% sCOD
removal efficiencies by each of the bioreactors. Nonetheless,
COD removal was lower again during the final approximately
2 weeks of the trial (Figure 2). Acetate, propionate, and butyrate
contributed to 50–90% of effluent sCOD (Figure 2).

Biomass washout was observed from each bioreactor variously
over the course of the 51-day experiment (Supplementary
Figure S2), including from the “naturally distributed” condition
(RN1-3). Bioreactor RN2 failed—and was stopped—on day 22, due
to the loss of 52% of the biomass. The remaining 11 bioreactors
experienced losses reaching up to 50%. Washout of biomass
was noted particularly during the initial few days during the
initial acidification, and again at the end of the trial, evidenced
by increased COD in the effluent. A net gain in biomass was
observed in only two bioreactors, RL1 and RL3.

Shifts in Granule Size Distribution
Operation of laboratory-scale bioreactors, inoculated with size-
constrained granules, allowed the emergence of “new” granule
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FIGURE 2 | Methane yield efficiency; COD conversions (n = 3); and key VFA (acetate, propionate, and butyrate) contributions to effluent sCOD; in each of the four
bioreactor sets: (A) RS1–RS3; (B) RM1–RM3; (C) RL1–RL3; (D) RN1–RN3.

sizes, to be detected and studied. Size fractionation of biomass at
the conclusion of the trial showed that the distribution of granule
sizes had changed, and new granules—or “emerging sizes”—were
apparent in all of the bioreactors (Figure 3). In all three of the RL
bioreactors, and in two of the RM bioreactors, a full range of sizes
(from the XS, S, M, L, XL classifications) had emerged (Figure 3).
In the two surviving RN bioreactors, granules each of the five
size classifications were still present, although the proportion of
granules in M or above had increased. In fact, with only the
exception of L granules in RS2 and RM2, and XL granules in RS2
and RS3, all five sizes emerged from all bioreactors (Figure 3).

Microbial Community Structure of New
Sizes
Alpha diversity measurements, using Shannon entropy, indicated
similar trends for granules from the RM and RL bioreactors
(Figure 4). A reduction in alpha diversity was apparent from
S through to XL granules (i.e., there was more diversity in the
microbial communities found in S granules than in bigger ones).
Nonetheless, the alpha diversity in XS granules was significantly
lower than in S granules. In fact, the diversity found in XS
granules was similar to the diversity in XL granules (Figure 4).
Size fractions emerging from RS, however, were statistically
similar, and did not follow the same diversity trend.

The initial (day 0) community structure comprised of a
mix of hydrogenotrophic (Methanobacterium, Methanolinea)
and acetoclastic (Methanosaeta) methanogens (archaea). At the

same time, the bacteria found to be relatively most abundant
were generally all heterotrophic fermenters. Over the course
of the trial, the make-up of the most abundant taxa shifted
considerably. Across all of the new (or growing) granules—i.e.,
the emerging sizes from the bioreactors—the community
structure was dominated by four operational taxonomic unit
(OTU) classifications of Methanobacterium, in many cases
accounting for 25–50% of the relative abundance of all taxa
(Figure 4). Interestingly, Methanosaeta completely disappeared
from among the 25 most abundant OTUs. Other highly
abundant taxa included Aminobacterium, Propionibacteiraceae,
and Desulfovibrio.

Multivariate integration algorithms used for study-wise
discriminant analyses identified a total of 38 “discriminant”
OTUs from 11 distinct phyla using two identified “components”
(Supplementary Figure S3). Mean relative abundances of these
OTUs showed two general groupings: (i) those OTUs more
abundant in either, or both, of the XS and XL sized granules,
and (ii) those OTUs which were more abundant in the S, M, and
L granule sizes.

DISCUSSION

Emerging Sizes: Granules Grow
This study demonstrates that methanogenic granules in
anaerobic digesters do, indeed, “grow.” In each of the nine
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FIGURE 3 | Changes in distribution of granule sizes in the RS, RM, RL, and RN bioreactors during the trial (day 0 and each of the respective bioreactors at day 51),
showing: (A) RS1–RS3; (B) RM1–RM3; (C) RL1–RL3; (D) RN1 and RN3 bioreactors. Colors indicate the granule size classification and their proportion of the total
biomass present. (E) Map indicating frequency of observations of emerging sizes across the experiment. No sequencing data available for samples marked with (*).

bioreactors started up with granules from a discrete size
classification (Figure 1), the final distribution of granule
sizes shifted to include new (or “grown”) granules that were
either larger or smaller than the original granules (Figure 3),
while also still containing granules of the original sizes. The
emergence of larger granules almost certainly indicates the
growth of granules due to cell replication and the accumulation
of formerly planktonic cells from the surrounding environment.
The observation of granules smaller than the original biomass
might be explained in two ways: that (i) completely new
granules formed from planktonic cells in the wastewater and
the granulation process was continually initiated inside the
digester, or (ii) parts of older, larger granules broke away and
provided the foundation for new, small granules (Figure 5).
The second explanation offers a potential mechanism of granule
development. What is actually likely, we suggest, is that both
phenomena proceed simultaneously.

An important component of the experiment was the set
of bioreactors (RN) started up with a full complement of
granule sizes, representing a “meta-community” of individual
ecosystems (individual granules)—inspired in part by the recent
description (Rillig et al., 2017) of soil aggregates as parallel
incubators of evolution. In the RN bioreactors, the relative size
distribution shifted toward larger granules. This may be due
to granule growth. Conversely, it may be that small granules
were preferentially lost from RN bioreactors, thus shifting the

relative size distribution. However, smaller granules remained
abundant in the other (RS, RM, or RL) bioreactors and many
XS granules appeared to resist washout, ultimately suggesting
that the shift in size distribution toward larger sizes was the
result of growth.

Notably, the shift in size, and breaking of granules, while
likely a natural process, was potentially further facilitated
by the stressful conditions inside the bioreactors, similar to
observations made regarding granule disintegration under high
VFA conditions (McHugh et al., 2006). Moreover, we may
also consider that the hydrodynamic conditions with respect
to bioreactor scale (Connelly et al., 2017) and HRT (Arcand
et al., 1994) may also have contributed to changes in the
size distribution.

Emerging Pathways: Dominance of
Hydrogenotrophic Methanogenesis
Early in the trial the reactors were subject to a severe drop
in pH, which although not ideal, grants insights into the
microbial community of anaerobic granules under stress. The
predominant members of the microbiome across all of the
samples from the end of the trial included Methanobacterium,
Aminobacterium, Propionibacteriaceae, and Desulfovibrio
species—none of which were dominant initially. The shift in
community was likely a consequence of the pH stress early in
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FIGURE 4 | Box plots (A–D) of rarefied richness of the various size classifications from across the four bioreactor sets: (A) RS1–RS3; (B) RM1–RM3; (C) RL1–RL3;
(D) RN1 and RN3; and bar chart (E) showing the top 25 relatively most abundant OTUs in original and new granules. Lines for figures (A–D) connect samples where
differences were significant (ANOVA) indicated by *p < 0.05, **p < 0.01, ***p < 0.001.

the trial. Previous studies (Hori et al., 2006) found that low
pH and increasing VFA concentrations in anaerobic digesters
resulted in more abundant Methanosarcina (acetoclastic and
hydrogenotrophic methanogens) and Methanothermobacter
(hydrogenotrophic methanogens) but fewer Methanoculleus
(also hydrogenotrophic), concluding that VFA accumulation
strongly influences archaeal community structure.

This was also supported by our study. Methanosaeta
(Methanothrix)—an acetoclastic methanogen, which was
abundant in the granules on day 0—was not detected in
the new granules, while Methanobacterium—autotrophic,
H2-using methanogens (Jarrell et al., 1982; Pennings et al.,
1998; Shlimon et al., 2004; Ma et al., 2005; Lennon and
Jones, 2011) also capable of formate reduction (Schauer
and Ferry, 1980)—were dominant and likely feeding on
increased dissolved hydrogen resulting from the accumulating
VFA (Cord-Ruwisch et al., 1997). Propionibacteriaceae—
a family of heterotrophic glucose fermenters, producing

propionate and acetate as primary products (Akasaka et al.,
2003)—were also abundant in new granules, likely as VFA-
producing acetogens. It is, of course, interesting to observe
that granules grew in this experiment without the apparent
dominant involvement of the filamentous Methanosaeta
(Methanothrix), which tends to contradict the conventional
understanding of granulation microbiology (Weigant, 1987;
Hulshoff Pol et al., 2004). Other filamentous bacteria,
however, were present such as Streptococcus, which was
recently linked to granulation in high-salinity wastewaters
(Gagliano et al., 2020).

Emerging Ecology: Supporting
Syntrophic Relationships
The dominance of hydrogenotrophic methanogens
(Supplementary Figure S3) by the end of the trial appeared
to support the abundance of syntrophic bacteria, including
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FIGURE 5 | Granular growth and biofilm development model. (a) Operation of the model inside an anaerobic bioreactor; (b) size fraction parameters; and (c) the
generalized growth model including the break-up of larger granules to form new, smaller granules.

Aminobacterium—heterotrophic fermenters of amino acids
that grow well with methanogenic, H2-consuming partners,
such as Methanobacterium (Baena et al., 1998; Hamdi et al.,
2015)—and Desulfovibrio—sulfate-reducing bacteria (SRB)
widespread in the environment (Goldstein et al., 2003), where
they respire hydrogen or organic acids (Heidelberg et al.,
2004) often in syntrophy with methanogens (Meyer et al.,
2013). Interspecies metabolite exchange and hydrogen transfer
(Stams and Plugge, 2009) between syntrophic partners is
critical in AD because the oxidation of organic acids and
alcohols by acetogens may be thermodynamically feasible only
when hydrogenotrophic methanogens (in this case, likely the
Methanobacterium) consume, and maintain sufficiently low
concentrations of, H2. It is clear that the microbial community
responded to the prevailing environmental stresses within
the bioreactors. Indeed, had there not been an accumulation
of VFA in the bioreactors and a striking dominance of the
H2-oxidizing methanogens, a different community—perhaps
characterized more strongly by the acetoclastic methanogens,
may have developed.

Emerging Discriminants: Size-Specific
OTUs
In general, the communities of all differently sized granules were
very similar with some, though few, significant differences in

alpha diversity and rarefied richness. Nonetheless, 32 study-wise
discriminants could be identified, using MINT-sPLS analysis,
which were responsible for minor community shifts across the
different sizes from each bioreactor set. Phylogenetically, these
discriminants formed two distinct clades—the first made up
primarily of the phyla Firmicutes, Synergistetes, and Chloroflexi,
and the second clade comprising of Proteobacteria, Spirochaetae,
Bacteroidetes, and Euryarchaeota. Many of the discriminant
OTUs were generally upregulated in the S, M, or L granules,
or were upregulated in either or both XS and XL granules.
For example, Lactococcus, a glucose fermenter and primary
member of the lactic acid bacteria group, and Stenotrophomonas,
a likely nitrate reducer, were both upregulated in XS and XL
granules, but rare in S, M, and L granules. Conversely, other
taxa, such as the Phycisphaerae, Leptospiraceae, and Bdellovibrio,
were upregulated in the S, M, and L granules but infrequent in
XS or XL granules.

Granular Growth and Biofilm Fate
Granulation and the subsequent growth of granules, resulting in
various size distributions is not a new concept (Arcand et al.,
1994; Batstone and Keller, 2001; Hulshoff Pol et al., 2004; Show
et al., 2004), nor is it unique to anaerobic granules (Volcke
et al., 2012; Zhou et al., 2016). Granular growth, which was
clearly evidenced in our study, was also accompanied, and
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reported here for the first time, by the accumulation of XS
granules in each of the initially size-constrained bioreactors,
supporting the idea that granules break apart into smaller
aggregates at some point during their “lifetime.” These smaller
pieces did not appear to be selectively washed away, but were
retained, making up a group of “new” smaller granules, which,
in turn, will continue to grow. Such a concept is supported
by previous evidence, that the larger the granule becomes,
the more structurally unstable it is (Díaz et al., 2006), and
that it eventually breaks apart. Our idea is that these broken
bits, still containing an active microbial community eventually
round off (due to shear forces within the digester) and become
the basis for new, small granules, so that the process is
cyclical (Figure 5).

To accept such a concept regarding granular growth, we
would need to see that bioreactors initially containing only small
granules, would eventually contain medium, then large and,
finally, XL granules. An equivalent scenario would be observed
for each bioreactor set. Equally, clear trends in microbial
community structure might be observed across the different sizes.
For example, an XL granule would have a similar community
structure to an XS granule, but may be significantly different to
an S or M granule.

Although the experimental design provided an interesting
means to uncover the trajectory and fate of granules, each set
of bioreactors was started with a different, size-limited, microbial
consortium. Thus, granules grew from size-constrained consortia
rather than a replete reservoir of granule sizes. Nonetheless,
this study does provide evidence for “growing” granules and for
the emergence and retention of very small granules, which are
either the result of bigger aggregates breaking apart, or continued
growth of de novo granules—but likely both. Granule growth
was apparent in all nine of the RS, RM, and RL bioreactors.
Indeed, most contained granules—albeit, sometimes very few—
from each of the five size classifications used. Moreover, this
study would suggest, based on emergence of XS granules
in the RS bioreactors (Figure 3), that even small granules
can break apart.

CONCLUSION

In summary, granules were demonstrated to be dynamic
aggregates inside anaerobic digesters, appearing to follow a
progressive growth pattern from small, to medium to large.
XS granules emerged in all bioreactors, regardless of the
starting size distribution. These either formed de novo, from
the aggregation of free cells, or as a result of larger granules
breaking apart. Further experiments should be done, under
more stable bioreactor conditions, and with more intensive
sampling regimes, to provide more evidence. The rate of
biomass accumulation, as well as requirements to replace
biomass, impinge on bioreactor performance and are important
considerations in biomass management in anaerobic digesters.
The results of experiments based on innovative approaches
to track the fate of growing granules will provide valuable
information to environmental engineers running bioreactors

and to microbial ecologists studying community assembly
phenomena, alike.
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