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Next-generation sequencing (NGS) based virome analyses of mMRNA and sRNA
have recently become a routine approach for reliable detection of plant viruses and
viroids. In the present study we identified the viral/viroidal spectrum of several Indian
grapevine cultivars and reconstructed their whole genomes using the publically available
mRNAome and sRNAome datasets. Twenty three viruses and viroids (including two
variants of grapevine leafroll associated virus 4) were identified from two tissues (fruit
peels and young leaves) of three cultivars among which nine unique grapevine viruses
and viroids were identified for the first time in India. Irrespective of the assemblers
and tissues used, the mRNA based approach identified more acellular pathogens
than the sRNA based approach across cultivars. Further, the mRNAome was on
par with the whole transcriptome in viral identification. Through de novo assembly of
transcriptomes followed by mapping against reference genome, we reconstructed 19
complete/near complete genomes of identified viruses and viroids. The reconstructed
viral genomes included four larger RNA genomes (>13 kb), a DNA genome (RG
grapevine geminivirus A), a divergent genome (RG grapevine virus B) and a genome
for which no reference is available (RG grapevine virus L). A large number of SNPs
detected in this study ascertained the quasispecies nature of viruses. Detection of
three recombination events and phylogenetic analyses using reconstructed genomes
suggested the possible introduction of viruses and viroids into India from several
continents through the planting material. The whole genome sequences generated in
this study can serve as a resource for reliable indexing of grapevine viruses and viroids
in quarantine stations and certification programs.
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INTRODUCTION

Grapevine (Vitis vinifera L.) is an important cash crop grown
worldwide (McGovern, 2003). Being a clonally propagated crop,
grapevine is amenable for coinfection by different viruses and
viroids (Jo et al., 2018). It is reported to be susceptible to the
largest number of acellular pathogens compared to other crop
species (Beuve et al., 2018; Hily et al., 2018). Till date, more than
70 viruses and 7 viroids have been reported to infect grapevine
(Singhal et al., 2019). Many a time, grapevine viruses deviate from
the classical ‘one pathogen — one disease’ concept, i.e., interaction
among more than one viral agent leads to disease development
(Byrd and Segre, 2016).

Planting pathogen free crop propagules is of paramount
importance in grapevine for increasing the productive life of
vineyards (Kumar et al., 2015). Traditional detection techniques
like ELISA, PCR and their variants are employed for indexing of
a few selected viruses of grapevine while certifying the planting
material for commercial planting. But these methods can only
answer whether the pathogen(s) under investigation is present
or not, leaving the status of all other untested viruses in the
planting material unknown (Czotter et al., 2018). To assure
the health of the planting material of grapevine that remains
productive in the field for an average of 15 years in India, it
would be necessary to subject it to rigorous indexing for all
possible grapevine infecting viruses/viroids. For this, it would
be essential to study the virome (total viral population) of
the mother stock, the results of which can then be used for
developing appropriate detection assays of all pathogens for
screening the clonal propagules. Next-generation sequencing
(NGS) approaches can provide us with a snapshot of the
virome present in the propagule as they are effective not only
in detecting the known viral pathogens and their variants, if
any, but also in unravelling unknown one(s) (Jo et al.,, 2018).
Among the various NGS based approaches, SRNA (sRNAome)
and mRNA (mRNAome) sequencing are commonly used to
reveal the virome of a given sample (Pantaleo et al, 2010;
Pirovano et al.,, 2015; Jones et al., 2017; Maliogka et al., 2018;
Pooggin, 2018; Massart et al., 2019). Recently, a few studies
attempted to reveal the virome of different crops like grapevine,
apple, and pepper from publically available mRNAome data
(Jo et al., 2015, 2016, 2017).

Both sRNA and mRNA pools can effectively capture single as
well as double strand RNA viruses and some DNA viruses (Seguin
et al., 2014; Roossinck et al., 2015; Jo et al., 2017). However, the
relatively lower representation of viral RNA in the background
of total plant RNA limits the use of mRNAome compared to
sRNAome for viral detection (Beuve et al., 2018; Maliogka et al.,
2018). As mRNA based methods can give longer contigs, they
are more useful for variant detection, especially when significant
genetic diversity exists as found in some of the grapevine viruses
such as grapevine leafroll associated virus 3 (GLRaV3) (Xiao et al.,
2019). Thus, it would be worthwhile to study the virome using
both these methods for robust identification of entire virome of
a plant species.

Though India grows grapevine on 137,000 hectares and
exports 185,172 tonnes of grapes annually (FAOSTAT, 2017),

only a few studies have been attempted to detect grapevine
viruses in India. All these studies targeted only one/few virus(es)/
viroid(s) at a time using traditional detection methods (Kumar
etal, 2012, 2013; Sahana et al., 2013; Adkar-Purushothama et al.,
2014; Rai et al.,, 2017; Marwal et al., 2019; Singhal et al.,, 2019).
The current study is the first virome report of grapevines from
India using SRNA and mRNA datasets of three Indian grapevine
cultivars available in the public domain (Tirumalai et al., 2019)
identifying a large number of viruses and viroids.

MATERIALS AND METHODS

Plant Materials and Library Construction
Detailed information on plant materials and library construction
is available in Tirumalai et al. (2019). In brief, total RNA was
isolated from fruit peels (FP) and young leaves (YL) of three
grapevine cultivars- Bangalore Blue (BB), Dilkush (DK), and
Red Globe (RG). mRNA-seq and sRNA-seq libraries with two
biological replicates, 24 in total, were constructed from isolated
total RNA according to the NEXT flex Rapid directional mRNA-
seq bundle library protocol (Trapnell et al., 2012) and the TruSeq
Small RNA Sample Preparation Guide (Illumina, San Diego,
CA, United States) respectively. Sequencing was performed on
the Illumina NextSeq500 platform which yielded 75 bp single
end reads. Thus, a total, of 12 mRNA and 12 sRNA libraries
obtained from two tissues (FP, YL) of three grapevine cultivars
(BB, DK, RG) in two biological replicates were analyzed in the
current study. The details of the materials used and the complete
processing pipeline are indicated in Figure 1.

Raw Data Pre-processing and de novo
Assembly of Pre-processed Reads

The bioinformatics analyses were performed using Advanced
Super Computing Hub for Omics Knowledge in Agriculture
(ASHOKA) facility at ICAR-IASRI, New Delhi, India. Raw
data of 24 libraries were downloaded from SRA database and
converted to FASTQ files using the SRA toolkit version 2.9.6
(Leinonen et al., 2010). Three approaches were followed for de
novo assembly. In the first approach, mRNA and sRNA libraries,
12 each, were individually assembled using Trinity version
2.5.1 (Grabherr et al, 2011) and CLC genomics workbench
12 de novo assembly tool, respectively with default parameters.
For the second approach, combined mRNAome or sRNAome
for each cultivar was obtained by aggregating corresponding
mRNA or sRNA reads, respectively from four libraries (including
two tissues and two replicates) of each individual cultivar.
Similarly, whole transcriptome of each cultivar was obtained by
aggregating both mRNA and sRNA reads from eight libraries
of individual cultivar in the third approach. Trinity (k = 25),
SPAdes (k = 21,23,25) version 3.13.1 (Bushmanova et al,
2019) and CLC (automatic word size = 20), Velvet (k = 17)
version 1.2.10 (Zerbino and Birney, 2008) were used to assemble
combined mRNAomes and sSRNAomes, respectively while whole
transcriptomes were assembled using SPAdes (k = 17,19,21) and
Velvet (k = 21) assemblers.
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FIGURE 1 | Schematic representation of the viromic study of three Indian grapevine cultivars.

Identification of Viruses and Viroids and

Copy Number Estimation

All the assembled contigs were subjected to standalone
MEGABLAST analysis (e-value cut off: 1le-5 query
coverage: > 80%) against the complete reference sequences
of viruses and viroids' using NCBI blast+ version 2.9.0. Only
contigs of greater than 50 (for sRNAome) and 200 nucleotides
(mRNAome and whole transcriptome) were considered for
analyses. To validate the viruses/viroids identified through
assembly, the reads of each mRNA/ sRNA library were first
mapped to the Vitis vinifera genome (GCF_000003745.3)
using CLC workbench mapping tool with default parameters
(match score-1, mismatch cost-2, length fraction-0.5, similarity
fraction-0.8). The unmapped reads were then analyzed using
MEGABLAST algorithm (e-value cut off: 1e-5; query coverage:
>80%) against the reference genomes of viruses and viroids.
Only those viruses/vioids that were detected through assembly
(from sRNAome/mRNAome/whole transcriptome) and BLAST
analysis of reads from at least two libraries (derived from
the particular nucleic acid pool from which the contigs were
obtained) of the corresponding cultivar were considered. To

Uhttp://www.ncbi.nlm.nih.gov/genome/viruses/

arrive at the copy number for a virus/viroid, the number of
reads associated with either RARp ORF (in case of viruses that
use sub-genomic RNA (sgRNA) for translation) or the entire
polyprotein [in grapevine fleck virus (GFkV), grapevine rupestris
vein feathering virus (GRVFV)] or the entire genome (in viroids)
was multiplied with 75 (for mRNA)/ 24 (for sRNA) followed
by division with the size (bp) of the corresponding genomic
region of the virus/viroid. Intact mRNA reads were used for copy
number estimation while the pre-processed reads were used in
case of SRNA. The average length of pre-processed sRNA reads
in all libraries was near to 24. Hence the factors 75 and 24 were
used for mRNA and sRNA libraries, respectively. As a reference
genome for grapevine virus L (GVL) was not available in NCBI,
we included the de novo assembled GVL genome of the present
study (that was identified by performing BLASTn analysis of
larger contigs against “non-redundant” (nr) (NCBI) database)
for MEGABLAST analysis.

Reconstruction of Whole Genomes of

Viruses and Viroids

Virus/viroid associated contigs were filtered from the total
contigs using SAM tools version 1.9 (Li et al, 2009). The
detailed procedure followed for genome reconstruction is given
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in Supplementary Figure S1. In brief, the Trinity assembled
longer contigs from combined mRNAomes were examined for
the presence of intact viral/viroidal genome. Further, the SPAdes
assembled longer contigs from combined mRNAomes and whole
transcriptomes were examined followed by inspection of Trinity
assembled larger contigs in individual mRNA libraries. Next,
the Trinity assembled viral/viroidal contigs from combined
mRNAomes were mapped against the NCBI designated reference
genomes of identified viruses and viroids (CLC workbench
mapping tool). In cases where the Trinity assembled contigs
were insufficient to reconstruct the entire genome, SPAdes
assembled contigs from combined mRNAomes and whole
transcriptomes were supplemented during mapping. Still, if the
genome could not be obtained, the most closely related genome
was used as reference during mapping. The full length consensus
sequence, if obtained, after mapping/directly by de novo assembly
was considered as the complete/near complete genome for a
particular virus/viroid. To find ORFs in assembled viral genomes,
we used NCBI ORF finder?.

Pairwise Distance and Phylogenetic

Analyses

The complete genomes retrieved from NCBI along with the
viral/viroid genomes reconstructed in this study were aligned
using CLUSTALW tool in MEGA7 software version 7.0.26
(Kumar et al, 2016). Aligned sequences were subjected to
pairwise distance analysis and phylogenetic tree construction
using neighborhood joining (NJ) method and Kimura 2-
parameter (K2P) model with 1000 bootstrap replicates. For
grapevine geminivirus A (GGVA), grapevine latent viroid
(GLVd), grapevine leafroll associated virus 4 (GLRaV4),
grapevine virus B (GVB), GVL, grapevine rootstock stem lesion
associated virus (GRSLaV) and GRVEFV, all the respective
complete genomes available in NCBI were used for analysis.
Owing to the availability of a large number of genome sequences
for GLRaV3, only those sequences showing 100% query coverage
in BLASTn analysis against nr (NCBI) database were taken
for analysis. Similarly, in cases of Australian grapevine viroid
(AGVd), grapevine vyellow speckle viroid-1, -2 (GYSVdl,
GYSVd2), and hop stunt viroid (HSVd), only 10 non-redundant
genomes that were highly similar to each isolate of a viroid
were used. In all the cases, an outgroup (except for pairwise
distance analysis) and the NCBI designated reference genome
(except GVL, for which there is no designated reference
sequence) were included.

Single Nucleotide Polymporphism (SNP)

Analyses

The host unmapped reads of individual cultivars were mapped
against the complete/near complete viral/viroid genomes
assembled from the corresponding cultivar using the mapping
tool available in CLC workbench using default parameters
(match score-1, mismatch cost-2, length fraction-0.5, similarity
fraction-0.8). For SNP detection, the mapped files were subjected

2www.ncbi.nlm.nih.gov/orffinder

to fixed ploidy variant detection using CLC workbench. As
viral genomes are haploid, ploidy value was considered as one
throughout the analyses.

Recombination Analyses

Using CLUSTALW aligned MEGA file as input, recombination
analysis was performed using RDP4 package version 4.39
(Martin et al., 2015) employing nine different algorithms. Only
recombination events detected by at least five algorithms in
the reconstructed viral genomes were considered. Only viral
sequences used for phylogenetic analyses were used for detection
of recombinants.

RESULTS

Pre-processing of Raw Data

The number of raw reads ranged from 10.5 to 40.2 million with
an average of 23.3 million for mRNA and 2.9 to 8.3 million with
an average of 4.3 million for sSRNA libraries (Table 1). As mRNA
reads were of acceptable quality (without adapter sequences;
phred-score > 20), we proceeded directly for de novo assembly
while SRNA reads were filtered to remove adapter sequences and
poor quality reads (quality scores < 0.05).

Identification of Viruses and Viroids From

Grapevine mRNAome and sRNAome

We identified more viruses and viroids from mRNAome (23)
than sRNAome (7) across cultivars and tissues (Supplementary
Table S1). The only exception for this was the FP-specific SRNA
datasets of cv. DK which identified six viruses and viroids
while the corresponding mRNAome could identify only five.
Among the two tissues, relatively more viruses/viroids were
identified in FP than YL in all cultivars except DK from mRNA
libraries. However, nearly similar number of viruses/viroids
was identified from sRNA libraries across tissues and cultivars
(Supplementary Figure S2 and Supplementary Table S1).
Combined mRNAome assembly using Trinity identified the same
number of viruses and viroids (23) across cultivars as compared
to the individual mRNA libraries (23). However, on a closer
look, we found that combining the reads of the two tissues of
each cultivar did offer some advantage in case of mRNAome,
since additional virus(es)/viroid(s) were identified in BB (1),
DK (2) and RG (1). The only exception to this is GVE that
was detected in individual mRNA libraries but not in combined
mRNAome (Figures 2A,B, Supplementary Figures S3A,B,
and Supplementary Table S2). Similarly, combined sRNAome
assembly using CLC was more effective as it could identify two
unique viruses (GVF in DK and GRSLaV in RG) in addition
to the seven viruses and viroids identified by the individual
library approach across cultivars (Figures 2D,E, Supplementary
Figures S4A,B, and Supplementary Table S3). Between the
combined sRNAome and combined mRNAome, the former
could identify only a fraction of viruses and viroids (12) identified
by the latter even after accounting for the viruses and viroids
identified by all the assemblers. Interestingly, from combined
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40nly reads with qcov > 80 were considered.

mRNAomes and whole transcriptomes exactly the same number
of viruses/viroids was identified in BB, DK and RG cultivars
(6, 10, and 21), representing a total of 23 viruses/viroids
though the identities of a few differed in cvs. DK and RG.
The identified acellular pathogens included 14 grapevine viruses
(including two GLRaV4 variants), four mitoviruses and five
viroids — Alternaria alternata chrysovirus 1 (AaCV1), Alternaria
arborescens mitovirus 1 (AaMV1), AGVd, Erysiphe necator
mitovirus 1 (EnMV1), Erysiphe necator mitovirus 3 (EnMV3),
GFkV, GGVA, GLVd, GLRaV3, grapevine leafroll associated
virus -4, -5, -6 (GLRaV4, GLRaV5, GLRaV6), GVA, GVB,
GVL, GVE, GVE GRSLaV, GRVFV, GYSVd1, GYSVd2, HSVd
and tobacco streak virus (TSV). It is worthy of mention that
while TSV was detected from cvs. BB, RG in the mRNAome,
none of the sRNA libraries could detect it (Supplementary
Tables S2, $3). Interestingly, GLRaV3, GVA, GVB, GYSVd]1, and
HSVd were identified in all the cultivars (Figures 3A-D and
Supplementary Table S4).

Performance of Different Assemblers in
Identification of Viruses and Viroids From
mRNAome, sRNAome, and Whole

Transcriptomes

In case of combined mRNAomes, the number of viruses and
viroids identified by both the assemblers were similar except in
cv. RG where Trinity identified one additional viroid (GYSVd1)
compared to SPAdes (Figures 2B,C and Supplementary
Table S2). However, both the assemblers identified almost similar
number of viral contigs for all but one cultivar (Supplementary
Figures S3B,C). In case of combined sRNAomes, Velvet
identified one additional virus in BB (GVA) and RG (GVE) than
CLC but CLC detected two Velvet undetected virus/viroid in DK
(GVE GYSVd1). Interestingly, GVB was identified in cv. DK
by Velvet but not by CLC (Figures 2E,F and Supplementary
Table S3). Considering the number of viral and viroid contigs,
Velvet identified 67.3, 14.7, and 52.3% more contigs than CLC
in BB, DK, and RG (Supplementary Figures S4B,C). In case of
whole transcriptome assembly, SPAdes identified more viruses
(2, 3, and 6 additional viruses/viroids in cvs. BB, DK, and
RG, respectively) and viral contigs as compared to Velvet in
all cultivars. Notably Velvet based assembly failed to identify
HSVd from any whole transcriptome, or GYSVd2 from DK or
GYSVdL,2 from RG, whereas SPAdes identified HSVd in BB
and RG, and GYSVd2 in DK and GYSVd1,2 in RG from the
corresponding whole transcriptomes. However, Velvet did detect
HSVd in each of the combined sRNAomes and GYSVd2 from
DK and GYSVd1,2 from RG (Figures 2G,H, Supplementary
Figures S5A,B, and Supplementary Tables S3, S5).

Copy Number Estimation for Identified
Viruses and Viroids in Each mRNA and

sRNA Library

The number of host unmapped mRNA and sRNA reads ranged
from 0.41 to 1.80M and 0.18 to 0.70M, respectively across
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FIGURE 2 | Identification of viruses and viroids in three Indian grapevine cultivars — BB, DK, RG. Venn diagrams display the number of identified viruses and viroids
based on Trinity assembled contigs from individual mRNA libraries of each cultivar (A), Trinity (B), SPAdes (k = 21,23,25) assembled contigs from combined
mRNAome of each cultivar (C), CLC assembled contigs from individual sSRNA libraries of each cultivar (D), CLC (E), Velvet (k = 13,15,17) assembled contigs from
combined sRNAome of each cultivar (F), SPAdes (k = 17,19,21) (G) and Velvet (k = 17,19,21) (H) assembled contigs from whole transcriptome of each cultivar.
Blue, green and red circles in the Vlenn diagrams represent the cvs. BB, DK, and RG, respectively.
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libraries. Though the number of host unmapped reads was
higher (0.98M) in case of mRNA compared to sRNA (0.41M),
the proportion of unmapped reads to total reads was higher in
the latter (9.75%) than the former (4.27%). On average, 2.06
and 0.02% of host-unmapped reads from mRNA and sRNA
libraries mapped to viral/viroidal genomes (Supplementary
Figures S6A,B and Table 1). In general, the proportion of
virus/viroid associated reads was relatively higher in mRNA
libraries constructed from FP than YL while no such trend
was observed in case of SRNA libraries. Based on copy number
estimates, HSVd (94-100%) predominated in cv. BB in both
mRNA and sRNA libraries. In case of mRNA libraries of cvs.
DK and RG, HSVd and GYSVd2 were predominant in FP and
YL, respectively. In sSRNA libraries of cv. DK and in all but one
sRNA libraries of cv. RG, GYSVd2 was predominant irrespective
of tissue type (Supplementary Figures S7A,B). Further, both the
replicates in each tissue of a cultivar were highly similar not only
in detecting the viromes but also in estimating their copy number.

Viral/Viroid Genome Reconstruction

From de novo Assembled Contigs

By mapping, the viral/viroid associated contigs from combined
mRNAome and whole transcriptome of each cultivar against the
NCBI designated reference genomes of identified viruses and
viroids we obtained complete or near complete (>99%) genomes
of 15 viruses and viroids from three cultivars (Table 2). Some
other viral contigs could not be assembled into full genomes
using the reference genomes as scaffolds. For the assembly of
GLRaV3 and GLRaV4 genomes from cv. RG, the longest Trinity
assembled contig of each virus was first blasted against the
nr (NCBI) database. The complete genome of the most highly
similar isolate was then used as a reference during mapping in
each case. Trinity assembly of library RGFPR2 directly yielded
the whole genome of GVB. Similarly, we obtained GVL genome
from one of the Trinity assembled longest contigs from combined
mRNAome of cv. RG through BLAST against nr (NCBI)
database. In total, we obtained 19 complete/near complete viral/
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FIGURE 3 | Viruses and viroids identified in three Indian grapevine cultivars — BB, DK, RG. Venn diagram displaying viruses and viroids identified by any of the
assemblers from combined mRNAomes, sRNAomes and whole transcriptomes in cultivars BB (A), DK (B), and RG (C). Blue, green, and yellow circles in the Venn
diagrams represent the sRNAome, mRNAome, and whole transcriptome, respectively. Classification of the identified viruses and viroids is on the basis of taxonomy
(D).
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TABLE 2 | Summary of complete/near complete viral/viroidal genomes reconstructed from three Indian grapevine cultivars.

Sl. no. Cultivar Virus/ Reference Size Genome Assigned isolate GenBank accession Contigs assembled Library? Reference used for
viroid (nt) recovery (nt) name number from mapping

1 Bangalore Blue GYSvdi NC_001920.1 366 367 BB GYSVd1 MN662238 Trinity, SPAdes CmR, WT NCBI reference genome
2 Bangalore Blue HSVd NC_001351.1 302 300 BB HSVd MN662243 Trinity, SPAdes CmR, WT NCBI reference genome
3 Dilkush GLRaVv3 NC_004667.1 17919 17919 DK GLRaVv3 MNB662228 Trinity CmR NCBI reference genome
4 Dilkush AGVd NC_0035583.1 369 369 DK AGVd MN662235 Trinity, SPAdes CmR, WT  NCBI reference genome
5 Dilkush GYSvd1 NC_001920.1 366 367 DK GYSvd1 MN662239 Trinity, SPAdes CmR, WT NCBI reference genome
6 Dilkush GYSVd2 NC_003612.1 363 363 DK GYSvd2 MNB662241 Trinity, SPAdes CmR, WT  NCBI reference genome
7 Dilkush HSVd NC_001351.1 302 301 DK HSVd MN662244 Trinity, SPAdes CmR, WT  NCBI reference genome
8 Red Globe GLRaVv3 MH814489.1 18558 18469 RG GLRaVv3 MNB662229 Trinity CmR Closely related genome*
9 Red Globe GRSLaV NC_004724.1 16527 16519 RG GRSLaV MNB662231 Trinity CmR NCBI reference genome
10 Red Globe GLRav4 KY821095.1 13857 13780 RG GLRaVv4 MN662230 Trinity, SPAdes CmR Closely related genome*
11 Red Globe GGVA NC_031340.1 2905 2905 RG GGVA MN661401 Trinity CmR NCBI reference genome
12 Red Globe GVB De novo NA 7621 RG GVB MNB662233 Trinity RGFPR2 NA

13 Red Globe GVL De novo NA 7588 RG GVL MN662234 Trinity CmR NA

14 Red Globe GRVFV NC_034205.1 6730 6703 RG GRVFV MN662232 Trinity CmR NCBI reference genome
15 Red Globe AGVd NC_003553.1 369 370 RG AGVd MNB662236 Trinity CmR NCBI reference genome
16 Red Globe GLvd NC_028131.1 328 329 RG GLvd MN662237 Trinity, SPAdes CmR, WT NCBI reference genome
17 Red Globe GYSvd1 NC_001920.1 366 367 RG GYSvd1 MN662240 Trinity, SPAdes CmR, WT NCBI reference genome
18 Red Globe GYSVd2 NC_003612.1 363 363 RG GYSVd2 MNB662242 Trinity CmR NCBI reference genome
19 Red Globe HSVd NC_001351.1 302 301 RG HSVd MN662245 Trinity, SPAdes CmR, WT NCBI reference genome

4CmR- Combined mRNAome, WT- Whole Transcriptome, RGFPR2- Red Globe Fruit Peel Replicate 2 (one of the individual libraries). NA- Not Applicable. *Initially RG GLRaV3, 4 genomes could not be reconstructed by
using their corresponding NCBI designated reference genomes during mapping. However, use of their most closely related genome, that were identified by BLASTn analysis of longest Trinity assembled contigs against
nr (NCBI) database, yielded their near complete genomes.
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viroid genomes from three cultivars (Table 2). Trinity yielded
relatively longer contigs for most viruses and viroids as compared
to SPAdes in all cultivars with mRNA reads (Supplementary
Figures S8, §9). On the contrary, SPAdes yielded relatively longer
viral/viroid contigs as compared to Velvet in most instances
when whole transcriptomes were assembled (Supplementary
Figures S10, S11). Though Velvet assembled more viral/
viroid contigs from combined sRNAomes, CLC yielded longer
contigs for most viruses and viroids as compared to Velvet
(Supplementary Figures S12, S13). However, we could not
reconstruct any viral genome using contigs assembled from
combined sRNAomes. From the reconstructed complete/near
complete viral genomes, we could identify all of the anticipated
ORFs for all recovered viruses using NCBI ORF finder
(Supplementary Table S6). Failure to identify intact ORFs in
nearly complete genomes that could be assembled to the tune of
>95% (Supplementary Table S7) were still deemed incomplete.

Pairwise Distance and Phylogenetic
Analyses Using Reconstructed Viral/
Viroid Genomes

Each of the complete/near complete genomes obtained were
subjected to pairwise distance (Supplementary Tables S8-
S§19) and phylogenetic analyses (Figures 4A-L) along with
related complete genomes retrieved from NCBI, and the most
closely related genomes are indicated here, including their
country of origin.

Viruses
a-RG GVB (MN662233) was related to a South African
isolate GVB-H1 [79.7% nucleotide (nt) identity; GU733707.1]
(Figure 4A and Supplementary Table S8).
b-RG GLRaV4 (MN662230) was closely related to a Pakistani
isolate LH3 (97.9% nt identity; KY821095.1) (Figure 4B and
Supplementary Table S9).
¢-RG GRVFV (MN662232) was related to a New Zealand
isolate NZ Ch8021 (80.6% nt identity; MF000325.1)
(Figure 4C and Supplementary Table S10).
d-RG GGVA (MN661401) was most closely related to
a Japanese isolate Pione (99.6% nt identity; KX570616.1)
(Figure 4D and Supplementary Table S11).
e-RG GVL (MN662234) was closely related to a Croatian
isolate VL (94.0% nt identity; MH681991.1) (Figure 4E and
Supplementary Table S12).
f-RG GLVd (MN662237) was closely related to an Italian
isolate ITA (98.4% nt identity; MG770884.1) (Figure 4F and
Supplementary Table S13).
¢g-RG GRSLaV (MN662231) was most closely related
to a Californian isolate obtained from the cv. RG
(99.8% nt identity; NC_004724.1) (Figure 4G and
Supplementary Table S14).
h-DK GLRaV3 (MN662228) shared 99.0% nt identity
with  Canadian  isolates- 14G463 (MH814490.1),
14G466 (MHS814491.1), 14G462 (MH814489.1), 3138-07
(JX559645.1), a Brazilian isolate TRAJ-BR (KX756669.1) and
an US isolate WA-MR (GU983863.1).

i-RG GLRaV3 (MN662229) shared 99.4% nt identity with US
isolates- Bla223 (MH521090.2), WA-MR 314 (GU983863.1),
Canadian isolates- 14G463 (MHS814490.1), 14G462
(MH814489.1) and a Brazilian isolate TRAJ-BR (KX756669.1).
j-GLRaV3 isolates from cvs. DK and RG showed only 1.3%
divergence (Figure 4H and Supplementary Table S15).

Viroids
k-BB HSVd (MN662243) shared 99.3% nt identity
with Brazilian isolates- VL-TC (MG431974.1), VV-CF

(MF774875.1), VV-CG (MF774872.1), VV-IT (MF774871.1),
VV-CS (MF774862.1) and a German isolate obtained from cv.
Riesling (X06873.1).

I-DK HSVd (MN662244) was closely related to a Nigerian
isolate DgHV-6 (99.3% nt identity; MF576419.1) while RG
HSVd (MN662245) was closely related to a New Zealand
isolate 09-2009-2140hs (96.8% nt identity; HQ447057.1).
Interestingly, RG HSVd diverged largely from DK
HSVd (4.7%) and BB HSVd (5.5%) while DK HSVd
showed 2.9% divergence from BB HSVd (Figure 4I and
Supplementary Table S16).

m-Similarly, while BB GYSVdl (MN662238) was closely
related to a Thailand isolate Wangnamkeay-5 (98.0% nt
identity; KP010008.1), DK GYSVdl (MN662239) shared
99.7% nt identity with a German isolate IXc (X87913.1),
two Nigerian isolates DgSV1-8 (MF576407.1), R3SV1-2
(MF576403.1) and two Chinese isolates clone 6s CZZ
(KX966267.1), clone 7s CZZ (KX966268.1) and RG GYSVd1
(MN662240) was most closely related to yet another Pakistani
isolate Q4-III (99.1% nt identity; KY978404.1).

n-Like HSVd, RG GYSVdI diverged from DK (3.2%) and BB
GYSVd1 (5.0%) while DK GYSVdI1 showed 2.9% divergence
from BB GYSVdI (Figure 4] and Supplementary Table S17).
0-RG GYSVd2 (MN662242) was identical (100% nt identity)
to Greek isolates- Sup4 (LR735996.1), Sup3 (LR735995.1),
N132 (LR735994.1), a Croatian isolate VB-108 (MF979530.1),
a Pakistani isolate SL13- I (KY978405.1) and a Chinese isolate
clone 22-8 (FJ490172.1) while the DK GYSVd2 (MN662241)
isolate shared 99.7% nt identity with all the six closest
relatives of RG GYSVd2 and also with the RG GYSVd2 isolate
(Figure 4K and Supplementary Table S18).

p-DK AGVd (MN662235) was identical to a Chilean isolate
6089_AGVd_Crim (100% nt identity; KF007272.1) while RG
AGVd (MN662236) shared 99.4% nt identity with an Indian
isolate Ind-2 (KJ019301.1) and two Chinese isolates- clone 22-
2 (EU743606.1), clone 22-129 (FJ746822.1). It is noteworthy
that DK and RG AGVd isolates fell within two separate clades
(1.9% divergence) (Figure 4L and Supplementary Table S19).

SNP Detection and Recombination

Analyses in Reconstructed Genomes

A large number of SNPs was detected for RG GRVFV (168)
followed by RG GLRaV3 (117), that were equally distributed
throughout the genome, while no SNP was detected in case of
RG GGVA, RG GLVd, RG GYSVd2, DK AGVd, and BB GYSVd1.
Other viruses that had a good number of SNPs included GLRaV3
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from cv. DK (102) and GLRaV4 (100), GVL (64), and GVB (40)
from cv. RG (Figure 5A).

The reconstructed viral genomes, after alignment, were
subjected to detection of recombination events. Among the eight
reconstructed viral genomes, recombination events supported by
at least five algorithms were detected in only three genomes.
In GLRaV3 genomes of DK and RG, a similar recombination
event was detected in 5 region of the genome. An additional
recombination event was detected in 3’ region of RG GLRaV3.
For RG GLRaV4, we found only one recombinant sequence at 3’
region (Figure 5B and Supplementary Table $20).

DISCUSSION

In this study, viromes of three Indian grapevine cultivars were
determined and some of their whole genomes were reconstructed
from publically available mRNAome and sRNAome datasets
(Tirumalai et al., 2019). Since the materials used in the present
study were obtained from Indian Institute of Horticultural

Research (in Bangalore, India) one of the leading grapevine
breeding centers in the tropical region (Tirumalai et al., 2019),
it is the most appropriate one for performing virome analysis
as all the vegetative propagules derived from the breeding
stock would be expected to be infected with the same viruses.
Interestingly the cv. RG, an introduction from California had
the maximum viral load in our study compared to the native
cvs., BB and DK.

Uneven distribution of viruses and viroids across tissues of a
perennial plant like grapevine (Kominek et al., 2009), suggested
that sampling different tissues will reveal a more accurate sanitary
status of a plant. We also found pooling samples from different
tissues was more reliable than relying on individual tissue for
virome analysis. Earlier, Jo et al. (2015), also reported the
superiority of tissues-combined assemblies over the individual
ones. We further observed that the combined mRNAome and
whole transcriptome identified nearly similar acellular pathogens
and both these approaches were more sensitive than individual or
combined sRNAomes. This might be because of the smaller size
and number of reads generated from sRNA libraries. Contrary
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FIGURE 4 | Phylogenetic analyses for genome reconstructed viruses and viroids.

An outgroup was used in the analysis of each virus/viroid.

(E) GLVd (F), GRSLaV (G), GLRaV3 (H), HSVd (), GYSVd1 (J), GYSVd2 (K), and AGVd (L) isolates obtained in this study with global isolates. Phylogenetic tree was
constructed using Neighborhood joining (NJ) method and Kimura 2-parameter model (K2P) with 1000 bootstrap replicates. Yellow colored boxes indicate the
isolates obtained in this study. Blue colored boxes indicate the corresponding NCBI designated reference genome. Only bootstrap values more than 50 are shown.
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to the observation of Maliogka et al. (2018), the proportion
of viral and viroidal reads in mRNA libraries was higher than
sRNA libraries in our study. This might be due to the fact that
viral sSRNAs are produced only upon activation of host’s antiviral
defense while mRNAomes can even detect viruses and viroids
that are unrecognized by the host (Hily et al., 2018). Further,
similar number of viruses and viroids were identified by Trinity
and SPAdes assemblers from mRNAomes and CLC and Velvet
assemblers from sRNAomes. However, SPAdes outperformed
Velvet in case of whole transcriptomes. So, when more than one
assembler was used, one or more viruses that escaped detection
by one assembler could be detected by the other (Massart et al.,
2019). Thus, use of multiple tissues and assemblers enabled better
unraveling of grapevine virome.

In the present study, we identified 19 grapevine viruses and
viroids (including two variants of GLRaV4) and four mycoviruses
associated with the grapevine fungal pathogens- Erysiphe necator
and Alternaria spp. (Kakalikova et al., 2009; Feng et al., 2018).
Included among these is GRSLaV, which was earlier reported
as a novel virus from California in cv. RG. This indicates the
possible introduction of GRSLaV from California along with the
RG propagule. However, GRSLaV is now regarded as a strain of
grapevine leafroll associated virus 2 (GLRaV2) (as GLRaV-2RG)

(Alkowni et al., 2011). Nonetheless, this is the first study that
could successfully detect GLRaV-2 or any of its variants in India.
Though Kumar et al. (2013) did attempt to detect this virus in
India they could not succeed rather they detected GLRaV1 and
GLRaV3. Further, GLRaV5 and GLRaV6 are presently regarded
as the strains of GLRaV4 (Rai et al., 2017). On this basis, nine
grapevine viruses and viroids (GGVA, GLRaV2, GRVFV, GVA,
GVE, GVE GVL, TSV, and GLVd) were detected for the first
time in grapevine cultivars grown in Indian soil. Interestingly, we
could identify GVL, the reference for which is not yet available in
the NCBI, using the GVL genome obtained in this study.

Of the 19 complete/near complete genomes (>99%
completion but <100%) obtained in this study, seven viral
(including four genomes with > 13 kb) and 1 viroidal genome
were recovered for the first time from any Indian grapevine
cultivar. None of the viral whole genomes could be recovered
from combined sRNAome assembled contigs as reported by
Baranwal et al. (2015) and Jo et al. (2016). However, this might
be due to the use of lower number of sSRNA reads (approximately
one-fifth) as compared to the mRNA reads in the current
study. Identification of DNA viruses in mRNAome is rare and
construction of their whole genome is still scarce (Jo et al,
2017), but we could not only identify GGVA in mRNA of cv.
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RG but could also reconstruct its genome in entirety with 2905
nucleotides. Initially, the RG GVB and GVL genomes could
not be recognized as the former diverged significantly (23%)
from the reference genome while there was no reference genome
for the latter. However, inspection of Trinity assembled longer
contigs of individual and combined mRNA libraries through
BLAST analysis against nr (NCBI) database coupled with ORF
prediction, identified the whole genomes of these isolates.
Complete genomes could not be reconstructed for RG GLRaV3,
4 isolates using reference-based mapping because of their
divergence (2.7 and 9.6% divergence of RG GLRaV3, 4 genomes,
respectively) from the corresponding reference genome, though
their near complete genomes could be reconstructed using
the closely related genomes. Thus, examination of larger
contigs assembled by various de novo assemblers coupled with
usage of increased number of reference genomes of a virus
during mapping could increase the chances of whole genome
recovery. Identification of large number of viral SNPs in this
study ascertains the quasispecies nature of plant viruses (Jo
et al, 2018). Hence, the complete/near complete genomes
reconstructed in this study were the consensus of viral variants
present in a given cultivar.

We followed Jo et al. (2015) for copy number estimation
except that we considered reads from only the non sgRNA
region to reflect the true abundance of viruses that use
sgRNA strategy for translation. Phylogenetic and distance
matrix analyses revealed the divergence of AGVd, HSVd and

GYSVdI isolates obtained from different cultivars while the
GLRaV3 and GYSVd2 isolates from cvs. DK and RG were
related. Recombination analyses revealed that the RG GLRaV3,
DK GLRaV3, and RG GLRaV4 isolates were recombinants
of global isolates. Owing to the vegetative propagation of
grapevine and free trade of planting materials, viruses and
viroids can easily spread globally. In addition, coinfection
of a single plant with numerous isolates of same/different
viruses offers scope for recombination among different isolates
(Jo et al., 2016).

Plants do not always express symptoms associated with
every virus/viroid present, hence symptomology and individual
virus/viroid based detection assays are not sufficient to determine
the full spectrum of viruses/viroids present in a plant. Rather, use
of available or newer transcriptome datasets is a better choice
for profiling of viromes that can serve as a reliable base for
indexing of planting materials in plant quarantine stations and
during certification.
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