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Microbiota of the wild blue sheep (Pseudois nayaur) presents a seasonal variation due to
different dietary selection and feeding strategies from different ecological niches chosen
by different sex in summer. To address those issues, we analyzed the variation of gut
microbiota based on the material from the feces, with 16S rRNA and meta-genome
aimed to explore seasonal and gender differences. The results indicate that seasonal
dietary changes and gender differentiation, as expected, cause the variation in sheep’s
gut microbiota structure. The variation of the former is more significant than the latter.
Dominant Firmicutes exists a significantly higher abundance in summer than that in
winter. Subordinate Bacteroides expresses no seasonal difference between the two
seasons. Compared with the winter group, the summer group is featured by abundant
enzymes digesting cellulose and generating short-chain fatty acids (SCFAs), such as
beta-glucosidase (EC: 3.2.1.21) for cellulose digestion, and butyrate kinase (EC:2.7.2.7)
in butyrate metabolism, implying that the changes of the composition in intestinal
flora allow the sheep to adapt to the seasonalized dietary selection through alternated
microbial functions to reach the goal of facilitating the efficiency of energy harvesting. The
results also show that the blue sheep expresses a prominent sexual dimorphism in the
components of gut microbiota, indicating that the two sexes have different adaptations
to the dietary selection, and demands for physical and psychological purposes. Thus,
this study provides an example of demonstrating the principles and regulations of natural
selection and environmental adaptation.

Keywords: wild blue sheep, gut microbiota, seasonal and sexual variations, short-chain fatty acids, aggregation

INTRODUCTION

The community of the gut microbiota is very important to maintain animals’ dynamic stability
of the gastrointestinal tract and help the hosts adapt to alternative dietary choices (Amato et al.,
2015). The gut microbiota, however, always changes in responding to the alterations of food
resources and seasonal variation (Hooper et al., 2012; Morgan et al., 2012; Markle et al., 2013).
Thus, understanding such association, particularly the mechanism of how specific gut microbes
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respond to dietary selection, allows us to amend the formed
conservation strategies and tactics more scientifically for the
animals studied (Bergmann et al., 2015; Kartzinel et al., 2019).
Some recent studies indicate that seasonal reconfiguration of
the microbiota in response to the dietary fluctuation exists in
the Hadza hunter-gatherers in Tanzania (Smits et al., 2017),
the western lowland gorillas and chimpanzees (Hicks et al.,
2018), and red squirrels (Ren et al., 2017). This implies that
seasonal dietary change leads to the reconfiguration of hosts’
gut microbes. It is reported that there also exist individual
differences in gut microbiota, particularly gender differences
that may be prominent by the dietary selection, caused by
alternative demands of different sexes during a non-breeding
period (Bowyer, 2004; Ruckstuhl, 2007). Sexual dimorphism
may also be related to the seasonal dietary variation that
needs to be attested.

Most ruminants highly rely on microbial communities in
the gut to digest food components, which also make animals
adjust dietary choices according to phenological periods of
plants, and physical and psychological demands (Espunyes et al.,
2019; Takada and Minami, 2019). It is reported that seasonal
variation in food resources can cause the alteration of gut
microbial communities (Faith et al., 2013; Ley et al., 2013;
Bergmann et al., 2015; Hu et al., 2018), which then affect energy
production and social behavior among individuals, particularly
between the sexes.

Gregarious animals synchronize their foraging activities and
resources; hence, there is less dietary variation among the
individuals (Galef and Giraldeau, 2001). Some species whose
populations or groups segregate and/or aggregate show great
differences in regional and seasonal dietary selection and
adaptation, which cause remarkable variation in microbial
communities (Ruckstuhl and Neuhaus, 2002; Han et al., 2019;
Stone et al., 2019). On the other hand, sexual dimorphism exists
in diet and microbial communities (Bowyer, 2004; Ruckstuhl,
2007). This especially applies to the species with a great variety
of forage areas and food choices, among them including the
blue sheep, Pseudois nayaur (Mooring et al., 2003; Bonenfant
et al., 2004). This species has a social behavior in which males
separate from females in summer and autumn, but congregate
with the females in winter (Li, 2006). Some researchers indicated
that male ungulates increase fat accumulation by extending
feeding time before the aggregation (Festa-Bianchet et al., 1990;
Jönsson, 1997; Yoccoz et al., 2002; Mysterud et al., 2005).
They also consume a large amount of energy, resulting in
further declining body weight due to frequent copulation during
rutting periods in winter (Clutton-Brock et al., 1982; Pérez-
Barberia et al., 1998; Pelletier, 2005). However, it is hard to
work out how a male’s body weight is reduced, which could
be due to the changes of foraging time and periodical resource
variation (Ferrari et al., 1998; Mysterud et al., 2005). On the
one hand, the dietary alteration can influence gut microbiota
and modify microbial function, which probably aggravates the
reduction of weight (Muegge et al., 2011; Ley et al., 2013).
On the other hand, we do not know whether some social
behaviors could influence the variation of gut microbiota. Thus,
the studies on the variations of microbial composition and its

function can allow us to understand how dietary components are
digested and broken down, and explore the clues comprehending
animals’ physiological and behaviors profiles, possible energy
acquisition, the choice of reproductive sites, and different
foraging strategies between non-breeding and breeding periods
(Shabat et al., 2016).

The blue sheep is a model for such an endeavor. This species
is distributed in central Asia, including western mountains in
China. Its populations are found in an altitudinal range between
2000 and 6000 m, with the habitats of alpine floral structure in
the northern temperate zone showing distinct seasonal vegetation
variation (Di, 1987). The species consumes diverse vegetables,
including herbs, forbs, shrubs, and trees, and takes alternative
plant parts, such as stems, leaves, flowers, fruits, and barks
(Liu et al., 2007). Moreover, our previous findings suggest that
this species exhibits remarkable seasonal dietary variation (Liu
et al., 2007; Chang, 2010). Socially, they form groups in moving,
including gender-oriented or mixed ones in different seasons
(Cao et al., 2005; Zhang et al., 2006).

This study, aimed at analyzing the relationship between
seasonal social behavior and gut microbiota, needs to address
some biological issues: (1) whether there is a significant sexual
dimorphism in gut microbiota; (2) whether a seasonal dietary
change can cause a significant difference in gut microbiota; (3)
whether seasonal variation of the diets results in significant
differences in the microbial function in the gut, which may have
caused prominent influence on digestion and energy absorption,
particularly the males.

EXPERIMENTAL PROCEDURES

Fecal Sample Collection
We collected fecal samples with the line transect method in the
Helan Mountain (N 38◦ 44’, E 106◦ 01’) during July–August
and November–December 2017 (Figure 1A). We surveyed seven
geomorphological transects covering all vegetation types in which
blue sheep inhabit. The length of the transects was from 2 to 6 km
(Liu et al., 2009). All the samples were collected with sterilized
tweezers by the researchers who wore a mask and disposable PE
gloves. Tweezers and gloves were individually used for each of
the samples that were maintained in the ice box and then kept
in the refrigerator at −80◦C for 2 h. We collected a total of 369
fecal samples from which we randomly selected 81 for 16s rRNA
analysis. Then, all the samples were sequenced by metagenomics
(A1, A2, A7, E3, and E5 in winter, and B1, B2, B7, C18, and C19
in summer) (Supplementary Table 1). All samples were divided
into four groups: females in winter (WF, n = 22, E1–E22), males
in winter (WM, n = 19, F1–F19), females in summer (SF, n = 19,
C1–C19), and males in summer (SM, n = 21, D1–D21).

Individual and Gender Identification
Fecal DNA was extracted using the kits of QIAamp Fast DNA
Stool Mini (Qiagen, Handelsregister: Amtsgericht Düsseldorf
HRB 45822 USt-IdNr.: DE 121386819) and was detected
by 1.0% of agarose gel electrophoresis (AGE). We used 10
pairs of microsatellite primers (FCB48, ILSTS011, BM1329,
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FIGURE 1 | The geographic location, and gut microbiome composition
among groups. (A) The geographic location of the sample collection site. All
the samples were collected in the Helan Montoin, Yinchuan (N 38◦ 44’,
E106◦01’) during July-August and November-December 2017. (B) Relative
abundence difference among different groups in Phylum level(SF = summer
female, SM = summer male, WF = winter female and WM = winter male).
(C) The Shannon index of the four groups. (D) The Non-Metric
Multi-Dimensional Scaling (NMDS) based on OTUs of the four groups. Each
point in the figure represents a sample, and the distance between the points
indicates the degree of difference. The Stress is less than 0.2, which indicates
that NMDS can accurately reflect the differences between the samples.

INRABERN172, SRCRSP3, JMP58, PND01, PND04, PND05,
and PND06) (Yang et al., 2015) to carry out individual
identification. Gender identification was performed with
the enamel gene PCR method (Ennis and Gallagher, 1994;
Huber et al., 2002).

16S rRNA Amplification
Based on individual and gender identification, fecal samples
were grouped by season and gender, separately, for sequencing.
CTAB method was used to extract DNA samples, and 1%
AGE was used to detect the purity and concentration of the
DNA (Jami and Mizrahi, 2012). DNA samples were then
diluted to 1 ng/µl with sterile water. Bacterial universal
primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) were used for the
amplification of 16S rRNA V4 region (Caporaso et al., 2011),
and all PCR amplifications were performed using New England
Biolabs’ Phusion R© High-Fidelity PCR Master Mix with GC Buffer
and high-fidelity enzyme. PCR reaction system includes 50.0 µl
of the total volume, 5× Phusion HF buffer 10 µl, 10 mM dNTPs
1 µl, template DNA 1.5 µl (150 ng), Phusion DNA Polymerase
0.5 µl, primer 515F 0.5 µM, primer 806R 0.5 µM, and dd H2O
add to 50 µl. PCR reaction procedure included pre-denaturation
at 98◦C for 30 s, denaturation at 98◦C for 10 s, annealing at 55◦C
for 30 s, extending at 72◦C for 2 min, reacting for 35 cycles, and
finally extending at 72◦C for 20 min. The PCR products were
purified by GeneJETTM Gel Recovery Kit (Thermo Scientific,
Waltham, MA, United States).

16S rRNA Library Construction and
Sequencing
The library was constructed by Ion Plus Fragment Library Kit 48
rxns (Thermo Scientific, Waltham, MA, United States) following
the manufacturer’s instructions, and index codes were added.
The library quality was assessed using a Qubit@ 2.0 Fluorometer
(Thermo Scientific, Waltham, MA, United States). Finally, the
library was sequenced on an Ion S5TM XL platform and 400-bp
single-end reads were generated.

Metagenome Library Construction and
Sequencing
A total of 1 µg of DNA per sample was used as input material
for the DNA sample preparations. Sequencing libraries were
generated using the NEBNext R© UltraTM DNA Library Prep Kit
for Illumina (NEB, United States) following the manufacturer’s
recommendations. Briefly, the DNA sample was fragmented by
sonication to a size of 350 bp, and then its fragments were
end-polished, A-tailed, and ligated with the full-length adaptor
for Illumina sequencing with further PCR amplification. At last,
PCR products were purified (AMPure XP system) and libraries
were analyzed for size distribution by Agilent2100 Bioanalyzer
(Agilent Technologies, United States), and quantified using real-
time PCR. After cluster generation, the library preparations were
sequenced on an Illumina HiSeq 2500 platform, and paired-end
reads were generated.
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Bioinformatic Analysis of 16S rRNA Gene
and Metagenome Sequences
Single-end reads from 16S rRNA sequencing were assigned to the
samples based on their unique barcode and truncated by cutting
off the barcode and primer sequence. Quality filtering on the
raw reads was performed under specific filtering conditions to
obtain the high-quality clean reads according to the Cutadapt
(V1.9.1,1) quality-controlled process (Martin, 2011). The reads
were compared with the reference database (Silva database,2)
(Quast et al., 2013) using UCHIME algorithm (UCHIME
Algorithm,3) (Edgar et al., 2011) to detect and remove the
chimera sequences (Haas et al., 2011). Then, the Clean Reads were
finally obtained.

Sequence analysis was performed by Uparse software (Uparse
v7.0.1001,4) (Edgar, 2013). Sequences with ≥97% similarity
were assigned to the same OTUs. Representative sequence
for each OTU was screened for further annotation. For each
representative sequence, the Silva Database2 (Quast et al., 2013)
was used based on Mothur algorithm to annotate taxonomic
information. In order to study the phylogenetic relationship of
different OTUs, and the difference of the dominant species in
different groups, multiple sequence alignment was conducted
using the MUSCLE software (Version 3.8.31,5) (Edgar, 2004).
OTUs’ abundance information was normalized using a standard
of sequence number corresponding to the sample with the
least sequences. Subsequent analysis of alpha diversity and beta
diversity was performed based on this normalized output data.

Pre-processing the Raw Data obtained from the Illumina
HiSeq sequencing platform using Readfq (V8,6) was conducted
to acquire the Clean Data for subsequent analysis. The specific
processing steps are as follows: (a) remove the reads that contain
low-quality bases (quality threshold value ≤ 38) above a certain
portion (length of 40 bp); (b) remove the reads in which the
N base has reached a certain percentage (length of 10 bp); (c)
remove the reads sharing the overlap above a certain portion
with Adapter (length of 15 bp). Considering the possibility
that host pollution may exist in samples, Bowtie2.2.4 software
(Bowtie2.2.4,7) was used to filter the reads that are of host origin
(Karlsson et al., 2012, 2013).The Clean Data was assembled and
analyzed (Luo et al., 2012) by SOAPdenovo software (V2.04,8)
and then interrupted the assembled Scaftigs from N connection
and leave the Scaftigs without N (Mende et al., 2012; Nielsen et al.,
2014; Qin et al., 2014). All samples’ Clean Data were compared to
each Scaffolds respectively by Bowtie2.2.4 software to acquire the
PE reads not used (Qin et al., 2014).

MetaGeneMark (V2.10) was used for ORF prediction (Ennis
and Gallagher, 1994; Huber et al., 2002; Li et al., 2014;
Yang et al., 2015). The redundant prediction result was removed

1http://cutadapt.readthedocs.io/en/stable/
2https://www.arb-silva.de
3http://www.drive5.com/usearch/manual/uchime_algo.html
4http://drive5.com/uparse/
5http://www.drive5.com/muscle/
6https://github.com/cjfields/readfq
7http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
8https://sourceforge.net/projects/soapdenovo2/files/latest/download?source=files

by cd-hit (V4.5.8) (Li and Godzik, 2006). Bowtie2.2.4 (Caporaso
et al., 2011) was used to obtain the gene catalog (Unigenes)
for subsequent analysis (Huber et al., 2002). As for degree
information, software DIAMOND (v0.9.9.110) (Mende et al.,
2012) was used to compare the Unigenes with the bacterial, fungi,
archaea, and virus sequences extracted from the NR database
(Version 2018-01-02) in the NCBI, and to determine species
annotation of the sequence. DIAMOND (v0.9.9.110) software
was then used to compare Unigenes with KEGG, eggNOG, and
CAZy function databases, and select Best Blast Hit results for
subsequent analysis (Karlsson et al., 2013; Nielsen et al., 2014).

Statistical Analysis
Cervus 3.0 software was used for individual identification of
the blue sheep (Brookfield, 1996). The diversity index of all
the samples was calculated with QIIME software (Version 1.7).
The dilution curve (Rarefaction Curve) and Rank abundance
curve were drawn by R software (Version 2.15.3). The differences
between the groups were analyzed by the non-parametric Wilcox
test when the group number was two. Kruskal rank-sum test
was used when that number was more than two. A statistically
significant level was determined by p < 0.05. Anosim and MRPP
(Multi Response Permutation Procedure) were utilized to analyze
the significant differences of microbial community structure
between the groups. LEfSe (LDA Effect Size) software was applied
to identify species differences (Segata et al., 2011).

RESULTS

Individual and Gender Identification
A total of 282 blue sheep individuals were identified from 369
blue fecal samples, including 152 males and 130 females. In total,
101 alleles were detected in 10 microsatellite loci with an average
number of 10.1. The observed mean and expected heterozygosity
were 0.7737 and 0.6512, separately. Polymorphic information
content (PIC) is 0.6128. Eight microsatellite loci are consistent
with the Hardy-Weinberg equilibrium test.

Taxonomic Differences of the Blue Sheep
Shannon index of the four groups (SF, SM, WF, and WM) shows a
significant difference among them (K–S test, chi-squared = 13.64,
df = 3, p < 0.01) (Figure 1C, Supplementary Figure 1A). SM
group has the lowest index (Supplementary Table 1).

Dominant phylum identified is Firmicutes (54.1% of the total),
followed by Bacteroides (30.42%) (Supplementary Table 2). The
four groups can, however, be clearly separated based on the
structure of gut microbiota. There is no gender difference in
Firmicutes, while there is a significant seasonal difference: the
summer group expresses a significant higher abundance than
the winter group (Wilcox test, n = 81, W = 1248, p < 0.01);
a significant gender difference in Bacteroides was found in the
summer group (Wilcox test, n = 39, W = 91, p < 0.01), and there
is no significant seasonal difference between summer and winter
groups (Wilcox test, n = 81, W = 713.5, p > 0.05).

In order to test whether there exist significant differences
in intestinal microbial communities among the groups, we
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conducted Adonis analysis (Supplementary Table 3) and Non-
Metric Multi-Dimensional Scaling (NMDS) analysis based on
OTUs of the four subgroups (SF, SM, WF, and WM) (Figure 1D,
Supplementary Figures 1B,C for PCA and PCoA). The results
show that the variation due to seasonal difference is more
significant than that due to the gender. It can be seen from the
figure in which individuals in the same season are remarkably
clustered together, and the individuals of different sexes in the
same season group do not show a significant separation.

To identify differential flora abundance and the associated
categories of the intestinal microbe communities, we used
an LDA Effect Size (LEfSe) analysis (Score >4) to seek
biomarkers showing significant differences between the groups
(Figure 2). The results indicate that biomarkers in the
summer group are Firmicutes, Rikenellaceae, Ruminococcaceae,
Clostrida, and Clostridium, which belong to Firmicutes, except
for Rikenellaceae belonging to the Bacteroidetes. The biomarkers
in the winter group can be categorized into the Tenericutes,
except for Lachnospiraceae.

Differences in Metabolic Pathways of
Microbes Between Two Seasons
The results from NMDS analysis show that there is a significant
different metabolic difference in pathways between the two
seasons, and a significant difference in the Kegg function
of intestinal flora between summer and winter was found
(Figure 3A). The Anosim analysis was used to test the differences
between the two groups (Supplementary Figure 2). We used
LEfSe (LDA Effect Size) (Score >4) to seek a significant difference
in metabolic pathways between summer and winter samples
at Kegg level 1 (Figure 3C). Replication recombination and
repair are more abundant in the winter group. The following
items show significant abundance in summer than winter:
carbohydrate transport and metabolism, chromatin structure
and dynamics, energy production and conversion, translation
ribosomal structure, and biogenesis. We used Metastat analysis to
determine top pathways showing significant differences between
summer and winter groups (Supplementary Figure 3) and built
a clustering heat map based on the 35 functions with the highest
abundance (Supplementary Figure 4). The reactions of intestinal
flora from the summer group include K03088 (RNA polymerase
sigma-70 factor, ECF subfamily), K06147 (ATP-binding
cassette, subfamily B, bacterial), K05349 (beta-glucosidase
[EC: 3.2.1.21]), K02355 (elongation factor G), K01190 (beta-
galactosidase [EC: 3.2.1.23] galactosidase), K03046 (rpoC
DNA-directed RNA polymerase subunit beta [EC: 2.7.7.6]),
K03043 (rpoB; DNA-directed RNA polymerase subunit beta [EC:
2.7.7.6]), K01006 (ppdK; pyruvate, orthophosphate dikinase),
K03737 (pyruvate-ferredoxin/flavodoxin oxidoreductase [EC:
1.2.7.1 1.2.7]), K03497 (ParB family transcriptional regulator,
chromosome partitioning protein), and K02469 (DNA gyrase
subunit A [EC: 5.6.2.2]). The reactions of intestinal flora from
the winter group is K07133 (protein with unknown function)
(Supplementary Figure 5).

In addition, the significant enrichment in the SCFAs-yielding
pathways was found in the summer group. In total, seven

enzymes in the Butyrate metabolism pathways were identified
both in the summer and winter groups. All mean that the
relative abundance of the enzymes in summer is higher than
that in winter. A significant difference among three enzymes
(EC:1.8.1.4, EC:1.1.1.157, and EC:2.7.2.7) was found by Wilcox
test. Eleven enzymes in the Propionate metabolism pathways
were determined in both summer and winter groups. All relative
abundance of the enzymes in summer is higher than that
in winter, and a significant difference among five enzymes
(EC:1.3.5.4, EC:2.8.3.1, EC:6.2.1.17, EC:6.2.1.1, and EC:2.7.2.1)
was found by Wilcox test. EC:6.2.1.17 was only found in the
summer group (Figure 5, Supplementary Figure 6).

DISCUSSION

Seasonal and Sexual Effects on
Intestinal Microbial Structure
Male sheep separate from females in the summer, but they
converge together in the winter for reproduction purpose, thus,
intestinal microbes of the wild blue sheep are characterized by
seasonal changes and sexual dimorphism in dietary selection
(Figure 3). The variation due to seasonal changes is more
prominent than that due to gender differentiation caused by
physiology and feeding behaviors. Considering the results of
NMDS (Figure 3), the two groups in summer and winter
present a significant separation phenomenon, but not between
the genders. This shows that sheep maintain very stable intestinal
microbial composition in the same season. That is to say, seasonal
dietary choices and other external environmental factors play an
important role in driving the composition and structure of the
intestinal flora.

It is interesting to note that, based on the results from the
analysis of alpha diversity, summer males have significantly lower
alpha diversity (Figure 1C, Supplementary Table 1). Because
of its special relationships with reproduction, special function
purposes, and stability, alpha diversity is widely regarded to
be an indicator of assessing ecosystem status (Naeem et al.,
1994; Kennedy et al., 2002; Isbell et al., 2015; Duffy et al.,
2017). It is usually closely related to dietary differentiation. For
example, herbivores generally have a higher level of diversity
than other mammals (Reese and Dunn, 2018). On the other
hand, humans with higher-fiber diets and longer transit time
have been found to demonstrate higher-diversity gut microbiota
than those living with Westernized lifestyles (Schnorr et al.,
2014; Clemente et al., 2015). Furthermore, a diverse diet is
expected to create a more metabolic niche for the microbiota,
thereby increasing the diversity of the microbial community
(Schluter and Foster, 2012). In this study, the diversity of gut
microbiota doesn’t show a significant sexual difference in winter,
but in summer. Thus, it seems that physiological differences and
dietary selection between the sexes in winter won’t influence the
microbial diversity of the wild blue sheep, while they are living
together, but in summer, while they are separated. In females,
there are no seasonal differences in alpha diversity of the gut
microbiota. This differentiation, however, exists in males, with a
decreased diversity in summer. This implies that seasonal dietary
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FIGURE 2 | Distribution histogram of LDA and system evolutionary distribution based on biomarkers with statistically significant differences in abundance between
the two groups.
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FIGURE 3 | The KEGG pathways differences between summer and winter group. (A) The NMDS analysis of metabolic pathways between two seasons based on
the KEGG database. (B) Heat map of the KEGG level 1 pathways,KEGG database, all the samples were clustered by Bray-Curtis distance. (C) Distribution
histogram of LDA based on KEGG pathways with statistically significant differences between the summer and winter.
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FIGURE 4 | Comparisons of gene and transcript abundance gor enzymes involved in summer and winter. (A) The pathway of cellulose degradation, emzymes
enriched in summer group are highlighted with red. (B) Relative abundence for each enzyme between summer and winter.

changes are not a determining factor in shaping the micro-
environment in sheep’s gut. It seems that a low diversity in males’
gut microbiota during summer is likely to be caused by their
own foraging strategy. In our previous research (Chang, 2010),

it was indicated that male blue sheep in summer have a larger
foraging range than females. They can leave more accessible
and higher-quality food to the females who are facing greater
nutritional stress in winter of the breeding period, so that males
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FIGURE 5 | Reconstruction of the metabolic pathways associated with SCAFs formation in the wild blue sheep. KO categories enriched in summer are highlighted
with red. Boxed KO categories have statistically significant difference between summer and winter (detailed given in Supplementary Figure 4).

more prefer to take herbaceous plants with a broader distribution
range and lower nutrient contents. As a result, the diversity
of the recipes in the intestinal microbial community has been
reduced in males. This may apply to the cases in the blue sheep
analyzed in this study.

We also found that seasonal dietary variation strikingly shapes
intestinal flora in summer, which is relatively stable in other
seasons. Composition of the intestinal microbiota in the blue
sheep is somewhat very similar to that in other ruminants
(Costa et al., 2012; Oikonomou et al., 2013; Sun et al., 2020).
Firmicutes is the most abundant phylum in blue sheep, followed
by Bacteroides. There are also significant seasonal differences:
abundant Firmicutes in summer and a significantly higher
proportion than in winter (Supplementary Figure 7). Another
phylum, Tenericutes, also shows a significant difference between
summer and winter (Figure 2) (W = 236, p < 0.01). A study
on the bison indicated that the abundant Tenericute increases
following the increased seasonal protein intake (Bergmann et al.,
2015). In summer and autumn, bison’s diet has a higher protein
proportion (Craine and Dybzinski, 2013). A seasonal difference
of Tenericutes in the blue sheep may also be caused by the
difference in food protein content between summer and winter.

At the genus level, there are significant differences between
the two seasons regarding Anaerotruncus, Oscillibacter, and
Ruminiclostridium (Supplementary Figure 8), all of them are
Firmicutes. They are strikingly abundant in summer than
in winter. Anaerotruncus is a butyrate producer (Duncan
et al., 2002; Louis et al., 2014), and butyrate is the main
energy resource for the colon cells (Scott et al., 2008) to
maintain normal physiological functions of the intestine. All
three genera are responsible to degrade the fibers during the
process of forming organic acids and SCFAs (Koh et al.,
2016), facilitating the host to digest complex carbohydrates (e.g.,
cellulose, hemicellulose) (Dehority and Scott, 1967; McAllister
et al., 1994) and absorbing more energy. The calories produced
by fiber fermentation account for 10% in Western human
society. This proportion in ruminant animals is, however,

approximately 50–70%, the main part for energy supply
(Bergman, 1990).

Referring to the result from LEfSe analysis (Figure 2),
biomarkers in the summer group are Clostrida, Clostridium,
and Ruminococcaceae, which is one of the two most abundant
flora recorded in mammalian intestines. These bacteria
can degrade fibers to produce organic acids and SCFAs
(Koh et al., 2016), which may play an important role in
maintaining intestinal health (Huws et al., 2011), particularly
regarding fiber digestion of the herbivores (Jami and Mizrahi,
2012; Bian et al., 2013). These biomarkers probably make a
significant contribution to shaping gut microbes in the summer
group, a special adaptation to taking the diet with a higher
proportion of the fibers.

Our results indicate that microbial structure in the gut of
the blue sheep differs seasonally (Figures 1, 3). Blue sheep is
one of the seasonal aggregating ruminants; its structure and
composition of microbial flora exhibit significant sexual variation
during the segregation period. Males and females, however, tend
to have very similar microorganisms after they have gathered
together. Blue sheep are distributed in alpine region with
enormous diversified food resources from season to season. In
summer, their dietary components contain forbs, accounting for
70% of the total; with higher dietary fiber contents, leaves of
shrubs are composed of 60% in all dietary categories in winter
(Liu et al., 2007; Chang, 2010). Consequently, seasonal variations
of intestinal microorganisms respond to seasonal dietary variety.
This may be a factor facilitating blue sheep to accumulate
enough energy before the sexual congregation in winter for
mating purposes.

Metagenomic Function and Energy
Intake Differences Between Summer and
Winter
Based on the KEGG pathway database, the summer group
has more abundant carbohydrate transport and metabolism
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pathways, energy production, and conversion pathways
(Figure 3C). Within the 12 pathways with the highest abundance
between the two groups, 11 of them present more abundance
in the summer group, among which K05349, beta-glucosidase
[EC: 3.2.1.21], is an important fiber-degrading enzyme. The
results from the pathway of cellulose degradation to cellobiose
indicate that two important enzymes, EC3.2.1.21 and 3.2.1.4, have
significant enrichment in the summer group (Figure 4). Captive
populations of the Pere David deer with a higher fiber diet also
show a higher proportion of EC3.2.1.21 and 3.2.1.4 enzyme
(Wang et al., 2019). The reports on the yak and sheep, another
two ruminant mammal species in the Qinghai-Tibet Plateau,
indicate that they have higher energy absorption efficiency,
and more abundant fiber degradation pathway (Zhang et al.,
2016). Except for the advantages of fiber degradation pathways,
the summer group also shows enrichment of carbon fixation
pathways, for example, the Butyrate metabolism pathways
and the Propionate metabolism pathways (Figure 5). This
corresponds to the efficient formation of the short-chain fatty
acid (Russell and Rychlik, 2001; Fuchs, 2011). Thus, given
a higher enrichment of β-glucosidase, and two short-chain
fatty acid of the metabolic pathways in the summer group, we
speculate that a unique intestinal flora in the summer group helps
the host accumulate more energy for the preparation of coming
breeding season in winter.

Animal symbiotic microbiota presents a great variation
referring to their changeable dietary components and feeding
behavioral patterns (Ley et al., 2013; David et al., 2014). Gut
microbial flora is also shaped during evolutionary development
and by external environmental microbiota (Sullam et al.,
2012; Sommer and Baeckhed, 2013; Hale et al., 2018). That
blue sheep females and males segregate seasonally can cause
gut macrobiotic variation between them because they feed
in different habitat niches. Thus, this study indicates that
blue sheep have a significant sexual dimorphism in gut
microbiota, especially regarding lower intestinal flora diversity
due to their different dietary selection and feeding strategy in
summer. However, more information on their differences in
physiological and nutritional demands is required to interpret
such dimorphism mechanism, and their seasonal dietary choices
result in significant differentiation in gut microbiota—summer
flora helps the hosts to specifically degrade the fibers and produce
more short-chain fatty acids and energy. Such a mechanism of
natural selection and environmental adaptation allows the blue

sheep to hoard much energy, and get ready for the breeding
season in winter.
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