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Staphylococcus aureus is a leading cause for clinical infections and food intoxications,
causing over 100,000 yearly cases of bacteremia in the United States and 434
food-borne outbreaks in the European Union. Approximately 30% of the population
permanently carry S. aureus asymptomatically in their nasal cavity. The risk of infection
and transmission to food items or the environment is higher in individuals that are
nasally colonized. In addition, S. aureus can acquire various antimicrobial resistances
leading to therapeutic failure, additional medical costs, and fatalities. Methicillin-resistant
S. aureus (MRSA) cause a considerable burden of disease in humans and animals.
MRSA carriage has been associated with animal and in particular livestock contact.
Extensive current data on the virulence gene profiles, as well as data on antimicrobial
resistance determinants is crucial in developing effective strategies to mitigate the
burden of disease. To this end, we screened the anterior nares of 160 test subjects (87
pupils and 73 members of farmer families) in Switzerland for S. aureus carriage. A total
of 73 S. aureus isolates were obtained. Factors such as exposure to farm or companion
animals and personal medical history were recorded using a questionnaire. Using a
DNA microarray, isolates were assigned to clonal complexes (CCs), and virulence and
resistance gene profiles were determined. The collected strains were assigned to 20
CCs, among others CC1, CC7, CC8, CC15, CC30, CC45, CC97, and CC398. Two
MRSA strains and one multiresistant isolate carrying genes blaZ/I/R, InuA, aadD, tetK,
and fosB were isolated from farmers with intensive exposure to animals. Strains carrying
pvl, causing severe skin lesions and necrotizing pneumonia, as well as tetracycline,
erythromycin, and kanamycin resistance genes were found in individuals that had taken
antibiotics during the last year. A variety of superantigenic toxin genes was detected,
including among others, the toxic shock syndrome toxin (tst1), and various enterotoxins
(sea, sec, sel, and the egc cluster). Contact to chickens was identified as a significant
factor contributing to S. aureus colonization.
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INTRODUCTION

Staphylococcus aureus is a human pathogen, resulting in
infections and foodborne intoxications. It caused over
100,000 cases of bacteremia in the United States in 2017
and 434 food-borne outbreaks in the European Union in
2015 (Tong et al., 2015; EFSA, 2016; Kourtis et al., 2019).
Furthermore, it can colonize human anterior nares as a
commensal bacterium. Around 20–30% of the population
permanently carry S. aureus asymptomatically in their nose
(Sakr et al., 2018), another 20–60% can be intermittent
carriers (Kluytmans et al., 1997; Wertheim et al., 2005).
Initial colonization may take place during the first days
of life via transmission from mother to child (Maayan-
Metzger et al., 2017). After birth the hands have been
identified as the main source of transmission for the
pathogen to colonize the nose (Wertheim et al., 2005).
The nasal habitat may act as a reservoir for pathogen
spread and can pose a threat to the carrier itself (Nouwen
et al., 2006). An elevated risk of infection associated with
persistent nasal carriage of S. aureus in surgical or dialysis
patients emphasizes the importance of characterizing nasal
colonization and associated risk factors (Kluytmans et al.,
1997; Nouwen et al., 2006). In addition, antimicrobial
resistance among S. aureus is rapidly emerging globally
and rendering treatment of chronic and acute S. aureus
infections increasingly difficult. The alarming prospect of a
post-antibiotic era highlights the importance of identifying
new therapeutic agents (Johler, 2017; Vestergaard et al., 2019).
Specific virulence factors and/or master virulence regulators
have been suggested as promising targets (Maura et al.,
2016; Ansari et al., 2019). In particular, methicillin-resistant
S. aureus (MRSA) have been studied in recent years with
regard to their transmission dynamics (Christopher et al.,
2011; Davis et al., 2012). Forms of transmission include
hospital-acquired, community-acquired, and livestock-
acquired with the MRSA in question being designated
as HA-MRSA, CA-MRSA, and LA-MRSA, respectively
(Deurenberg and Stobberingh, 2008; Knox et al., 2015;
Smith, 2015; Kwok et al., 2018). Intensive contact to
animals has been shown to increase the risk of LA-MRSA
carriage among farmers, veterinarians, and animal owners
(Graveland et al., 2011; Davis et al., 2012; Fluit, 2012).
Several studies have investigated S. aureus colonization of
veterinarians (Huber et al., 2011; Rosenkranz Wettstein
et al., 2014), on-farm and food-chain epidemiology
(Kraemer et al., 2017; Leuenberger et al., 2019; Morach
et al., 2019), or colonization in the general population in
Switzerland (Mégevand et al., 2010; Olearo et al., 2016).
Here, we aim to provide insight into colonization patterns
in asymptomatic carriers with varying animal exposure.
We screened 160 individuals for nasal S. aureus and
collected data on animal contact and medical history using
a questionnaire. The obtained isolates were characterized
by DNA microarray, which allows for assignment of clonal
complexes (CCs), and determines the presence of resistance and
virulence genes.

MATERIALS AND METHODS

Questionnaire
A questionnaire was used to collect metadata. We assessed
exposure of participants to farm and companion animals, medical
history including antibiotic prescriptions and hospital or doctor
visits. Answers concerning exposure to animals ranged from
never to daily (0, 1, 2, 3, 4, 5). Medical history was recorded
to assess, whether the individual had been to a doctor/hospital
and/or received antibiotics in the last year (0/1). Raw data can be
examined in Supplementary Table S2.

Sampling, Bacterial Isolation, Species
Identification, and DNA Extraction
Each volunteer (87 pupils and 73 members of farmer
families) provided a written declaration of consent and
took his/her own nasal swab after prior demonstration
of the sampling procedure. All nasal swabs were streaked
on EASY Staph R© plates (BIOKAR Diagnostics, Beauvais,
France) and incubated at 37◦C for 48 h. Presumptive
S. aureus colonies were confirmed using matrix assisted
laser desorption/ionization—time of flight mass spectrometry
(MALDI-TOF MS, Bruker, Fällanden, Switzerland). After
cell lysis with Lysostaphin (Sigma–Aldrich, Buchs, Schweiz),
DNA was extracted with the Blood & Tissue Kit (Qiagen,
Hombrechtikon, Switzerland).

DNA Microarray Analysis
DNA microarray was performed using Staphytype genotyping
kit 2.0 (Alere, Wädenswil, Switzerland) following the
manufacturer’s instructions. An ArrayMate reader (Alere)
was used for signal acquisition. In addition, the similarity
of the virulence and resistance gene profiles was visualized
using SplitsTree41 (Huson and Bryant, 2006) as previously
described (Wattinger et al., 2012). Readouts can be found in
Supplementary Table S1.

Statistical Analysis
Binomial and multinomial logistic regression analyses were
performed to ascertain the effects of age, gender, profession,
medical history, and exposure to farm and companion animals
on the likelihood that participants are colonized with S. aureus,
with certain CCs or harbor MRSA strains or enterotoxin
gene carrying isolates (SPSS, v26.0.0.0). P-values < 0.05 were
considered significant (Supplementary Table S4).

RESULTS

S. aureus Prevalence and Clonal
Complexes in Sampled Populations
Of the 160 nasal swabs from asymptomatic carriers 46%
(n = 73, confidence interval = 7.72) were positive for
S. aureus. In the sampled 87 pupils and 73 family members

1http://www.splitstree.org/
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of farmers colonization rates slightly differed with 44%
in pupils and 48% in family members of farmers. The
most common CCs for pupils were CC45 (n = 11) and
CC15 (n = 10), while for family members of farmers, it
were mainly CC30 (n = 9) and CC45 (n = 5) (Table 1).
Some CC were exclusively found in one of the two
groups, e.g., CC1, CC22, CC101, CC121, CC182, CC361,
and CC509 in family members of farmers, while CC6,
CC12, CC152, CC188, and CC398 were only found in
pupils (Figure 1). All other strains belonged to CC5, CC7,
CC8, CC59, and CC97.

Exposure to Animals and Medical History
of Participants
Overall animal exposure varied greatly between the two
populations. Family members of farmers had an average
exposure value of 2.4, corresponding to monthly-to-weekly
exposure. Pupils on the other hand only reached a value of
0.8, corresponding to never-to-yearly exposure. Almost all
family members of farmers were in contact with cattle on
a daily basis (∅ = 4.8). Binomial logistic regression analysis
revealed that exposure to chickens correlated significantly
with whether an individual was colonized with S. aureus or
not (p = 0.019). No association between exposure to certain
animals and the occurrence of specific CC could be found.
Medical history including visits to doctors or hospitals, as
well as antibiotic prescription was not significantly associated

with neither S. aureus carriage, nor occurrence of resistance in
this study.

Similarity of Genomic Profiles
All isolates grouped according to their respective CC, with the
exception of one CC8 strain that clustered closely with CC5 and
CC97 strains (Figure 1). The two MRSA strains grouped very far
from each other. The same applies for the two pvl positive strains.
Genomic profiles of CC1, CC6, CC7, CC59, CC101, CC121,
CC188, and CC361 all clustered closely.

Resistance Genes
A broad variety of resistance genes was found among isolates. The
most common resistance genes were blaZ/I/R (n = 52) conferring
β-lactam resistance and fosB (n = 40) coding for a metallothiol
transferase, followed by ermA (n = 3) an erythromycin resistance
gene, and tetK (n = 2) coding for tetracycline resistance. Two
strains were identified as MRSA (CC8, CC30), both harboring
the mecA cassette. Both were isolated from family members of
farmers (Figure 1).

Other resistance genes included the arginine catabolic mobile
element (ACME) that provides multiple immune modulating
functions including resistance to polyamines (Joshi et al., 2012).
A fusidic acid resistance protein fusC, and the genes msr(A) and
mph(C) both coding for macrolide efflux pumps (Ross et al., 1995;
Matsuoka et al., 2003) were observed. Genes aadD and aphA3
conferring resistance to aminoglycosides such as kanamycin and

TABLE 1 | Clonal complexes found in nasal samples from farmers and pupils.

Clonal complex Farmers Pupils Total Resistance genesa Enterotoxin genesa Commentsa

CC1 1 1 fusC, blaZ/I/R seab, seb, seh, sek, seq

CC5 1 1 2 blaZ/I/R, fosB sed, sej, ser, egcc

CC6 1 1 fosB seab

CC7 2 1 3 blaZ/I/R (2) seab

CC8 4 2 6 mecA (1), blaZ/I/R (3), ACME (1), msr(A) (1),
mph(C) (1), aphA3 (1), fosB

seab (2), sed (1), sej (1), sek (2), seq
(2), ser (1), egcc (1)

MRSA (mecA) and
pvl (1)

CC12 1 1 blaZ/I/R, fosB seab

CC15 3 10 13 blaZ/I/R (12), InuA (1), aadD (1), tetK (1), fosB

CC22 1 1 blaZ/I/R egc

CC30 9 4 13 mecA (1), blaZ/I/R, ermA (2), fosB tst1 (9), seab (5), sec (1), sel (1), egc MRSA (mecA) (1)

CC45 5 11 16 blaZ/I/R (8) sec (10), seg (1), sel (10), egcc

CC59 1 1 2 ermA (1)

CC97 2 1 3

CC101 1 1 blaZ/I/R, fosB

CC121 2 2 blaZ/I/R, fosB egcc

CC152 1 1 blaZ/I/R, tetK, qacA pvl

CC182 1 1 seh, egcc

CC188 1 1 blaZ/I/R

CC361 1 1 blaZ/I/R, fosB egcc

CC398 3 3 blaZ/I/R (2), qacC (1)

CC509 1 1 blaZ/I/R egcc

Total 35 38 73

Resistance and enterotoxin genes found by microarray are listed, grouped by CC. a If not all isolates assigned to the respective CC harbored a gene, the number of
positive isolates is indicated in brackets. bEither sea or allelic variant seaN315 was found, the respective variant is indicated in Supplementary Table S3. cEnterotoxin
gene cluster (egc) containing genes: seg, sei, sem, sen, seo, seu.
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FIGURE 1 | Splitstree showing the similarity of genomic profiles determined by microarray. Clonal complexes are grouped by an arc, if there were at least two
isolates of the same CC. Symbol shape denominates whether the isolate originated from a farmer (O) or pupil (1). The fill color indicates presence of tst1 (green), pvl
(yellow), or MRSA (red). ∗CC8 strain that grouped differently than other CC8 strains.

gentamycin were found. Additionally, InuA a gene responsible
for lincosamide modification, and qacA and caqC encoding
antiseptic resistance were discovered (Supplementary Table S3).

Enterotoxin Genes and Other Virulence
Factors
Of the 73 isolates 48 isolates (66%) carried at least one enterotoxin
gene (Table 1). Two isolates (CC8, CC152) carried the virulence
factor panton-valentine leukocidin (pvl) gene that is responsible
for severe skin lesions and necrotizing pneumonia (Lina et al.,
1999; Kaneko and Kamio, 2004). One of the obtained pvl isolates
was identified as an MRSA strain (Figure 1). All strains harboring
the tst1 gene (n = 9) were assigned to CC30 (Figure 1). The
most common enterotoxin genes were the genes grouped in the

enterotoxin gene cluster egc: seg, sei, sem, sen, seo, seu (n = 38), sea
(n = 13), sec (n = 11), and sel (n = 11). Other enterotoxin genes
included seb (n = 1), sed (n = 3), seh (n = 2), sej (n = 3), sek (n = 3),
and seq (n = 3).

DISCUSSION

The observed colonization frequency of 46% (44% in pupils
and 48% in family members of farmers) is in accordance with
current estimates for nasal carriage rates (Sakr et al., 2018).
When we compared the genomic profiles of all isolates, there
were no overlaps, meaning that all isolates were unique in their
genomic profile and therefore not clonal. All big clusters of
CCs with more than three isolates were found in both family
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members of farmers and pupils. The large clusters of CC8,
CC15, CC30, and CC45 comprised 66% of isolates and all
represent community or hospital associated complexes (Pérez-
Montarelo et al., 2017). One CC8 strain differed from all
other detected CC8 strains in view of its enterotoxin gene
profile. While other CC8 strains harbored diverse enterotoxins,
the outlier strain only carried egc. Strains carrying egc were
shown to be more common in asymptomatic carriers than
in infections (Van Belkum et al., 2006). Similar distributions
have been reported (Van Belkum et al., 2006; Mohamed
et al., 2019). Surprisingly, strains of CC398 were exclusively
found in pupils with very limited farm animal contact (once
a year or less), although this CC has regularly been linked
to livestock (Verkade and Kluytmans, 2014). This may be
a first indicator for a possible shift from livestock-acquired
to community-acquired transmission. Most other complexes
were associated with isolates from both populations. This is
consistent with findings of previous studies for various CCs
including CC5, CC7, CC59, and CC97 (Nulens et al., 2008;
Coombs et al., 2010; Budd et al., 2015; Wang et al., 2017;
Challagundla et al., 2018).

Chickens were identified as a significant factor for whether an
individual was colonized with S. aureus or not. No significant
factors that correlated with colonization of certain CC, resistance
genes, or toxin profiles could be determined. This was likely
due to limitations in sample size and overall low number
of strains exhibiting resistance/toxin genes. It is, however,
noteworthy that one of the two MRSA strains was isolated
from an individual that had taken antibiotics during the last
year. The same was the case for both strains harboring pvl,
both strains harboring qacA/C, and one of the strains carrying
ermA. Increased occurrence of these genes in HA-strains has
been reported (Lina et al., 1999; Schmitz et al., 2000; Mayer
et al., 2001). An unusual accumulation of CC152 pvl strains
has been reported in African refugees in Switzerland, possibly
representing an emerging genotype (Jaton et al., 2016). One
of two MRSA strains (CC8) that was isolated from a family
member on a farm with intensive contact to cattle, pigs, and
chicken possessed additional genes coding for pvl, ACME,
blaZ/I/R, msr(A), mph(C), aphA3, and fosB. This represents
a combination very similar to USA300 MRSA, a CA-MRSA
strain often encountered in the US and considered a “superbug”
(Monecke et al., 2011; Smith, 2015; Planet, 2017). Similar
strains were found in Swiss hospital patients accounting for
approximately 10% of the encountered MRSA (Seidl et al.,
2014). The second MRSA strain featured genetic elements
that are typical for CA- or HA-acquired MRSA of CC30,
including the presence of blaZ/I/R, ermA, fosB, egc, and tst1
(Monecke et al., 2011). Another strain belonging to CC15 was
classified as multiresistant according to international standard
definitions for acquired resistance (Magiorakos et al., 2012)
by carrying blaZ/I/R, InuA, aadD, tetK, and fosB. All three
multiresistant strains were isolated from individuals regularly
exposed to animals. While the DNA microarray data presented
in this study provide new insights into the genetic structure
of the tested isolates, it should not be used to extrapolate
phenotypic traits.

This study provides an overview of S. aureus isolates found
in asymptomatic carriers with varying exposure to animals.
A diverse set of strains was characterized in terms of population
structure and presence of virulence and resistance determinants.
Our findings suggest that exposure to chicken may increase
the risk of S. aureus nasal colonization and that intensive
animal exposure may represent a risk factor for acquisition of
multiresistant strains.
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