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Constructing biological communities is a major challenge in both basic and applied
sciences. Although model synthetic communities with a few species have been
constructed, designing systems consisting of tens or hundreds of species remains one
of the most difficult goals in ecology and microbiology. By utilizing high-throughput
sequencing data of interspecific association networks, we here propose a framework
for exploring “functional core” species that have great impacts on whole community
processes and functions. The framework allows us to score each species within
a large community based on three criteria: namely, topological positions, functional
portfolios, and functional balance within a target network. The criteria are measures
of each species’ roles in maximizing functional benefits at the community or ecosystem
level. When species with potentially large contributions to ecosystem-level functions
are screened, the framework also helps us design “functional core microbiomes” by
focusing on properties of species groups (modules) within a network. When embedded
into agroecosystems or human gut, such functional core microbiomes are expected
to organize whole microbiome processes and functions. An application to a plant-
associated microbiome dataset actually highlighted potential functional core microbes
that were known to control rhizosphere microbiomes by suppressing pathogens.
Meanwhile, an example of application in mouse gut microbiomes called attention to
poorly investigated bacterial species, whose potential roles within gut microbiomes
deserve future experimental studies. The framework for gaining “bird’s-eye” views of
functional cores within networks is applicable not only to agricultural and medical data
but also to datasets produced in food processing, brewing, waste water purification,
and biofuel production.

Keywords: biodiversity, biospheres, metagenomes, keystone species, hub species, network theory, synthetic
biology, species interactions
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INTRODUCTION

Constructing biological communities composed of multiple
species is a major challenge not only in basic ecology and
microbiology but also in various fields of applied sciences
(Stenuit and Agathos, 2015; Paredes et al., 2018; Toju et al.,
2018; Venturelli et al., 2018). Biological systems consisting of
multiple species are expected to provide functions unavailable
with single species and they can be more resistant to biotic
and abiotic environmental perturbations than single-species
systems (Brenner et al., 2008; Kazamia et al., 2012; Sadoudi
et al., 2012; Kitada et al., 2018). In medicine, optimal sets
of bacteria have been explored to optimize and stabilize gut
microbiomes of humans, thereby controlling host health
by administering such “microbial cocktails” (Faith et al.,
2010; De Roy et al., 2014; Ratner, 2015). In agriculture,
engineering of microbiomes associated with roots and
leaves is the key to maintain crop production under severe
biotic and abiotic conditions in the field (Busby et al.,
2017; Paredes et al., 2018; Toju et al., 2018). In bioenergy
industry, oil-producing algal cultures, whose production
can be dropped by microbial contamination, may be
stabilized by addition of microbial communities resistant
to species colonizing from the environment (Kazamia
et al., 2012). Despite the huge potential of application,
interdisciplinary attempts to integrate ecology, microbiology, and
information science for designing and synthesizing biological
communities are still in their infancy (Brenner et al., 2008;
Stenuit and Agathos, 2015).

One way to design biological communities with favorable
functions is to start from gradually adding species to simple
systems (Shou et al., 2007; De Roy et al., 2014; Paredes et al.,
2018). At the first step, among tens or hundreds of candidate
species, species with preferable functions, such as abilities to
suppress pathogenic species within host animals/plants, are
selected (Jacobsen et al., 1999; Ahmad et al., 2008). After the
single-species screening, pairs of species potentially forming
facilitative interactions are selected (Han et al., 2006; Cassan
et al., 2009). By using these pairs of functional species as
building blocks, the complexity of synthetic communities may
be gradually increased. Because this “bottom-up” approach
is based on existing platforms of screening species with
favorable functions, an increasing number of studies have
yielded productive and insightful results (De Roy et al., 2014;
Paredes et al., 2018). However, it has not yet been examined
whether this pioneering approach ultimately allows us to
optimize functions of communities composed of hundreds
or thousands of species. As nonlinearity is often observed
in systems consisting of multiple species (Hsieh et al., 2005;
Benincà et al., 2008; Ushio et al., 2018), the bottom-up approach
assuming additive effects of species or pairs of species may
lead to local optima, but not global optima, of community
compositions. While the bottom-up approach would be powerful
and productive in designing communities with relatively small
numbers of species, alternative strategies are required when
we try to manage systems that inevitably contain hundreds or

thousands of species (e.g., human gut microbiomes and plant-
associated microbiomes).

In designing synthetic communities with hundreds or
thousands of species, network science provides “bird’s-eye”
views of key elements (species) that can determine community-
level dynamics within complex webs of interactions/associations
between species (Barberán et al., 2012; Faust et al., 2012; van
der Heijden and Hartmann, 2016; Layeghifard et al., 2017).
Studies based on network analyses of biological communities
have inferred hub species that are located at the central positions
within networks of interspecific associations (Barberán et al.,
2012; Agler et al., 2016). As those hub species are linked with
many other species, they potentially have profound effects on
the dynamics of whole communities (Berry and Widder, 2014;
Layeghifard et al., 2017; Toju et al., 2017). While the bottom-up
approach mentioned above explore promising species only from
pools of species with specific functions (e.g., species with direct
positive effects on host animals/plants), the bird’s-eye approach
highlights species based on their potential for organizing webs
of interactions. By embedding species selected in the bird’s-eye
approach at the early stage of community assembly, we may
be able to control ecosystem processes and functions based
on priority effects (Fukami, 2015; Sprockett et al., 2018) of
biological communities (Toju et al., 2018). Nonetheless, metrics
used in exploration of hub, core, or keystone species (e.g., degree,
betweenness, closeness, and eigenvector centralities) (Newman,
2010) are too simple to evaluate potential effects of species
on whole community dynamics and functions. Moreover, there
have been few analytical frameworks for inferring sets of species
with which we can maximize the functions and stability of
biological communities.

In this study, we propose a framework for designing sets of
species that can maximize demanded functions at the community
or ecosystem level. By inputting data of microbe–microbe
network topologies, properties of each species [or operational
taxonomic units (OTUs)], and conditions of samples (e.g., health
conditions of host animal/plant health), the platform allows
us to explore “functional core species” and “functional core
microbiomes,” which are expected to promote co-existence of
species differing in their functions. With the index proposed
in this study, compositions of functional core microbiomes
are designed to block species with negative functions (e.g.,
pathogens and pests). The framework also allows us to increase
the robustness of ecosystem-level functions against stochastic
loss of component species based on optimization of functional
redundancy and balance within microbiomes. We applied the
analytical platform to datasets of plant-associated microbiomes
in the rhizosphere and mouse gut microbiomes. Furthermore, a
candidate taxon of the functional core microbes designated in
the plant microbiome analysis was subjected to an inoculation
experiments using crop plants. We also show how to apply
the proposed framework to laboratory co-culture systems.
Overall, this study provides a framework for maximizing
ecosystem-level functions and stability in construction of
microbiomes or any other types of systems consisting of
multiple species.

Frontiers in Microbiology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 1361

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01361 June 26, 2020 Time: 13:57 # 3

Toju et al. Core Microbiome Design

MATERIALS AND METHODS

Step 0: Assumptions
To apply the method detailed below to infer potential core
species/taxa and thereby design functional core microbiomes,
we assume that two types of data matrices are available for a
focal microbial system. One is a data matrix of a microbe-to-
microbe network, in which interactions or associations between
each pair of microbial species are described (Friedman and
Alm, 2012; Kurtz et al., 2015; Suzuki et al., 2017; Ushio et al.,
2018; Figure 1A). There are a number of methods for inferring
interactions or associations between species/taxa. Among them,
co-occurrence network analyses, which evaluate patterns of co-
occurrences across samples (Friedman and Alm, 2012; Kurtz
et al., 2015), have been used frequently in microbiome studies
(Toju et al., 2016b). Meanwhile, because co-occurrence patterns
themselves can derive not only from direct interactions between
species/taxa but also from sharing of environmental preferences
(niches) (Toju et al., 2018), alternative approaches have been
proposed (Sugihara et al., 2012; Deyle et al., 2016; Suzuki et al.,
2017). For example, time-series analyses represented by empirical
dynamic modeling (Sugihara et al., 2012; Deyle et al., 2016),
transfer entropy (Schreiber, 2000), and sparse S-map (Suzuki
et al., 2017) allow us to estimate the direction and strength of
interactions between species/taxa. These methods have been used
in some pioneer studies in ecology and microbiology (Suzuki
et al., 2017; Ushio et al., 2018), although they remain inapplicable
to systems that lack time-series data of microbiome dynamics.
Both types (co-occurrence and time-series analyses) of network
data are applicable to our framework detailed below, while
requirement and limitation of each network analytical method
should be taken into account in interpreting results.

The other input matrix used in the following analysis indicates
presence/absence of each physiological/ecological function for
each species/taxon (Figure 1B). Multiple types of functions can
be set in the input data matrix (hereafter, functional layers).
At each functional layer, presence/absence of a specific function
(e.g., nitrogen-fixing ability or suppression of pathogens) is
described for each species/taxon. If genome data are available
for each species/taxa, each functional layer may represent
presence/absence of each gene or KEGG orthology (Kanehisa
et al., 2011; Kanehisa et al., 2015).

Step 1: Estimating Functional Coreness
We develop a framework for scoring each species in terms of
its potential roles in optimizing microbiome-scale (community-
scale) functions. The criteria included in the framework is (1)
topological positions of a focal species within a network, (2)
community-scale functional portfolios, and (3) community-scale
balance of functions. Hereafter, we assume a network dataset
consisting of species for simplicity: however, the methods detailed
below is applicable to datasets composed of genera, strains, or
operational taxonomic units (OTUs).

To evaluate the topological position of a focal species i [T (i)],
we use the betweenness centrality metric (Freeman, 1977) defined
as follows:

T (i) =
∑
k 6=i6=l

σk,l (i)
σk,l

(1)

where σk,l is the number of shortest paths between species k and l,
and σk,l (i) is the number of shortest paths between species k and
l that pass through the focal species i (Figure 2A). In calculating
the betweenness scores, network topology representing only
positive interactions/associations between species should be

FIGURE 1 | Schematic example of input data. (A) Matrix representing network topology of associations between species/OTUs/ASVs. (B) Data file representing
properties of each species/OTU/ASV. The presence (1) and absence (0) of each function is designated for each species/OTU/ASV. Specificity of a species (i) to a
sample condition (j) [s (i, j)] is also shown for each species/OTU/ASV.
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FIGURE 2 | Three criteria for scoring species within a network. (A) Topological positions within a network. A species (or OTU/ASV) i is highly scored if it is located
within the shortest path connecting pairs of other species within a network (e.g., species k and l). (B) Functional redundancy. The score of species i depends on the
functional properties of species k and l as determined the weighting parameter (αn) and the functional redundancy parameter (βn) of each functional layer.
(C) Functional balance. The score of species i depends on functional properties of species k and l as determined by the balancing parameter γ and the weighting
parameter αn [optional: regulated as δ+ (1− δ)αn].

considered: i.e., betweenness scores derived from networks
including negative interactions/associations are misleading,
although inference of negative interactions between pairs of
species (Toju et al., 2016b), per se, may be of some help in
selecting best sets of functional core microbes in the later process.
Along with the classic betweenness metric (Freeman, 1977), the
weighted betweenness metric that uses network edge weights
(Brandes, 2001) is applicable as well.

We next take into account microbial functions by multiplying
the betweenness score of species i by the term representing
functional profiles of species k and l. For each species i, an index
evaluating topological positions and functional portfolios [TP (i)]
is given as follows:

TP (i) =
∑
k6=i6=l

{
σk,l (i)
σk,l

×

[ N∑
n=1

αnz
(
fn,k + fn,l

)]}
(2)

where αn is weight for functional layer n, fn,k is presence
(1) or absence (0) of a function in layer n of species k,
fn,l is presence (1) or absence (0) of a function (or gene)
at layer n of species l, and N is the number of functional
layers (Figure 2B). The function z

(
fn,k + fn,l

)
is defined as

z (0) = 0, z (1) = 1, and z (2) = βn, where βn is the parameter
representing functional redundancy (Peterson et al., 1998;
Rosenfeld, 2002; Ley et al., 2006) at layer n. When species
i is located within the shortest paths connecting species k
and l and either or both species k and l has (have) function
n (i.e., fn,k + fn,l = 1 or 2), the focal species i has a high
score in the above index TP (i). The parameter βn scales

the degree to which functional redundancy is introduced for
function n: when two species interconnected by species i within
shortest paths have function n (i.e., fn,k + fn,l = 2), species i is
weighted in proportion to βn. For analyses based on amplicon
sequencing (DNA metabarcoding), FAPROTAX (Louca et al.,
2016) or FUNGuild (Nguyen et al., 2016) programs may be
used to infer potential functions of each species or OTU.
Alternatively, reference databases of whole genomes may be used
for designating the presence/absence of respective functional
genes for each species or OTU.

Another important criterion in exploring core species is
community-scale balance of functions. For each species i, an
index evaluating topological positions, functional portfolios, and
functional balance [TPB (i)] is given as follows:

TPB (i) =
∑
k6=i6=l

{
σk,l (i)
σk,l

×

[ N∑
n=1

αnz
(
fn,k + fn,l

)]

×

[
1− γ

∣∣∣∣∣
N∑

n=1

Dn
(
fn,k − fn,l

)∣∣∣∣∣
/ N∑

n=1

Dn

]}
(3)

where Dn = δ+ (1− δ)αn, γ(0 ≤ γ ≤ 1) is a parameter for
balancing, and δ(0 ≤ δ ≤ 1) is a parameter for determining the
usage of the number of functional layers or the weight when
calculating the balancing factor (Figure 2C). When only a small
proportion of species among those interconnected by species i
within the shortest paths disproportionately have most functions,
the focal species i is penalized. In other words, by adding
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the third term (1− γ

∣∣∣∑N
n=1 Dn

(
fn,k − fn,l

)∣∣∣ /∑N
n=1 Dn), species

that interconnect sets of other species differing in their functional
compositions are highly evaluated.

Finally, we extend the index TPB (i) by taking into account
situations in which input data include microbial species with
deleterious functions (e.g., pathogens; αn < 0). The “functional
coreness” of species i [Cfunc(i)] is then calculated as:

Cfunc(i) =
∑
k6=i6=l

σk,l (i)
σk,l

×


∑
n∈N+

αnz
(
fn,k + fn,l

)
×

1− γ

∣∣∣∣∣∣
∑
n∈N+

Dn
(
fn,k − fn,l

)∣∣∣∣∣∣
/ ∑

n∈N+
Dn


+

∑
n∈N−

αnz
(
fn,k + fn,l

)
 (4)

where N+ is a set of functional layers with positive αn values
(αn > 0), N− is a set of functional layers with negative αn
values (αn < 0).

Step 2: Designing Core Microbiomes
Once functional coreness of each species within a network
was calculated, core microbiomes can be designed as
sets of two or more species with highest scores. In this
process, the stability of designed core microbiomes will
be maximized by selecting pairs or groups of candidate
core species within the same network modules. Because
groups of species in the same network module are those
that can co-exist in the environment or within the same
host organisms, choosing components of core microbiomes
within a network module will be the key to design robust
microbiomes. Various types of methods are available for
inferring network modules (Guimera and Amaral, 2005;
Lancichinetti et al., 2011).

When compositions of core microbiomes are arranged
for each network module, we then need to choose one of
the network modules whose candidate core microbiomes will
be used in experimental studies on synthetic microbiomes.
An effective way is to choose network modules that show
highest mean functional coreness or largest sums of functional
coreness. Alternatively, if additional information is available
regarding “soundness” of samples that were used in the
estimation of microbe-to-microbe networks (e.g., health
conditions of host individuals), we can evaluate network
modules based on the observed sample conditions. To evaluate
modules within a microbe-to-microbe network based on
conditions of samples (e.g., host animal or plant health
conditions), we may need to infer how species constituting
each network module show specificity to favorable/unfavorable
sample conditions.

As discussed in a previous study (Toju et al., 2019), specificity
of a species i to sample condition j [s

(
i, j
)
;e.g., healthy

or unhealthy condition of host individuals in a human gut

microbiome study] can be calculated based on a randomization
analysis as follows:

s
(
i, j
)
=

[
Noriginal

(
i, j
)
−Mean(Nrandomized

(
i, j
)
)

SD(Nrandomized
(
i, j
)
)

]
(5)

where Noriginal
(
i, j
)

is the mean number of the sequencing reads
of species i observed in condition j samples in an original
data matrix and Nrandomized

(
i, j
)

is the mean number of the
sequencing reads of species i across condition j samples in
randomized matrices (Figure 3). Mean and SD denote mean
and standard deviation, respectively. There are various types
of methods for making randomized network matrices (Vázquez
et al., 2007; Dormann et al., 2009; Toju et al., 2014): shuffling of
labels denoting sample conditions is the simplest way to make
randomized matrices, although it should be considered carefully
whether the assumptions of each randomization method are
applicable to each dataset. The number of randomized matrices
(usually, 10,000 or more) should be carefully determined as well.
Instead of the above metrics based on the mean number of
sequencing reads, the number of condition j samples from which
species i was observed (Toju et al., 2016a), for example, can be
used in estimation of species× sample condition specificity.

Once specificity scores for respective combinations of species
and sample conditions were obtained, we can then evaluate how
species in a module, on average, represent sample conditions as
follows:

smodule
(
h, j
)
=

∑
i∈Mh

s
(
i, j
)

|Mh|
(6)

where smodule
(
h, j
)

is mean specificity of species in network
module h to sample condition j (sample condition score of a
module) and |Mh| is size of a set of species belonging to module
h (Figure 3). This kind of metric allows us to rank microbe-to-
microbe network modules depending on their associations with
favorable/unfavorable conditions of samples. Network modules
with highest smodule

(
h, j
)

value for favorable sample conditions
are potential targets of core microbiome design because they are
expected to include species promoting or associated with host
animal/plant health (or benign conditions of water/soil samples).

Regarding the number of optimal core species in designing
core microbiomes, there has been few criteria (Toju et al.,
2018). One way of determining the number of core species
used for core microbiome design is to add candidate core
species in an order from the highest Cfunc(i) values until it
decreases disruptively. It also remains to be examined whether
core microbiomes should be constituted exclusively by member
of network modules with highest smodule

(
h, j
)

or they should
include members of other modules with high smodule

(
h, j
)

in
certain proportions.

Application 1: Soybean Rhizosphere
Microbiome
The algorithm for exploring core species was applied to the data
of a plant-associated microbiome (Toju and Tanaka, 2019). The
data represent rhizosphere microbiome structures of the 128
individual soybean plants (Glycine max) collected in the field
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FIGURE 3 | Relationship between network modules and host sample conditions. For the first step, specificity to a host sample conditions [s (i, j)] is calculated or
each species/OTU/ASV as defined in the equation 5. The s (i, j)values are then averaged across members of each network module (h) by focusing on a host sample
condition (j). The obtained smodule (h, j) scores of a favorable sample condition are used as criteria for ranking network modules.

of Kyoto University, Kyoto, Japan (35.033N, 135.785E). In the
field, soybean plants heavily attacked by root-knot nematodes
(Meloidogyne sp.), benign (healthy) plants, and plants showing
intermediate phenotypes were recorded and the information
of host sample conditions was used in interpreting results on
microbiome analyses (Toju and Tanaka, 2019).

The OTU data consisting of bacterial 16S and fungal internal
transcribed spacer (ITS) sequences were analyzed with the
SpiecEasi method (Kurtz et al., 2015) in order to infer co-
occurrence network topology (Toju and Tanaka, 2019). After
removing network edges with negative values, the network
data was converted into a binary format. Because betweenness
centrality could not be calculated for small disconnected sub-
networks consisting of a few species, only the largest sub-
network involving 300 out of 318 bacterial and fungal OTUs
were analyzed in the following process. The number of optimal
network modules within the largest sub-network was estimated
based on a modularity score (Clauset et al., 2004) using the igraph
package (Csardi and Nepusz, 2006) of R 3.5.2.

In the input file indicating functions of each OTU (i.e.,
network node) within the network, six functional layers were
incorporated. For example, nitrogen fixing ability, which was
inferred using the program FAPROTAX 1.1 (Louca et al.,
2016), and potential nematode-suppressing ability discussed in
the original study (Toju and Tanaka, 2019) were included as
functional layers with positive αn values. Likewise, based on
the functional profiling with the FUNGuild program (Nguyen
et al., 2016), endophytic fungi and plant-pathogenic fungi were
included with positive and negative αn values, respectively.
Details of the functional layers and parameter setting are shown

in the caption of Figure 4. The input data and R scripts are
provided as Supplementary Data S1.

Application 2: Mouse Gut Microbiome
We next applied the algorithm to the data of a gut microbiome
study using mice as hosts (Ishii et al., 2018). In the previous
study, mice were fed with the diet whose nutritional compositions
was equivalent to daily human nutritional content in the
United States (as described in a report distributed by National
Research Council of United States) (Hashimoto et al., 2009)
and with normal (control) diet CA-1 chow (CLEA Japan,
Inc., Meguro, Tokyo, Japan). Five and six mice were fed with
American diet and normal diet, respectively, and fecal samples of
each mouse individual was collected at 8, 12, 24, 36, and 52 weeks
of age (Ishii et al., 2018). The fecal samples were then subjected to
16S rRNA sequencing analyses and prokaryote biome data of the
55 samples (11 mice× 5 time points) were obtained.

The published sequencing data were processed in the pipeline
of the program DADA2 (Callahan et al., 2016) and the taxonomic
assignment of the output amplicon sequence variants (ASVs)
was performed with the SILVA reference database v.132 (Quast
et al., 2012). Within the list of ASVs, the taxa whose positive
effects on host mice/humans were shown in previous studies (e.g.,
Lactobacillus) (Gorbach, 2000; Bravo et al., 2011; Ritze et al.,
2014) and those possibly having negative effects on hosts (e.g.,
Erysipelatoclostridium) (Zakham et al., 2019) were designated at
separate functional layers. Co-occurrence patterns of the ASVs
across the 55 samples were analyzed with the SpiecEasi program:
ASVs appearing in 15 or more samples were subjected to the
analysis. The network depicting co-occurrence patterns was
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FIGURE 4 | Functional coreness analysis for the dataset of the soybean rhizosphere microbiome. Networks depicting co-occurrence patterns of prokaryote and
fungal OTUs are shown. Size of nodes is roughly proportional to functional coreness scores. Specificity to healthy soybeans is calculated for each network module.
wo functional layers were included in the analysis (layer 1, nitrogen fixation; layer 2, nematode-attacking function; layer 3, plant pathogenicity; layer 4, fungal
parasitism; layer 5, endophytic guild; layer 6, saprotrophy). The parameters used are as follows: weight for each functional layer, α1 = 1, α2 = 1, α3 = –1, α4 = –1,
α5 = 1, and α6 = 1; functional redundancy of each functional layer, β1 = 2, β2 = 2, β3 = 1, β4 = 1, β5 = 2, and β6 = 1; a parameter for balancing, γ = 1; an additional
parameter for balancing, δ = 0.

subdivided into two main clusters (sub-networks) including 38
and 33 ASVs, respectively, and many small clusters consisting of
1-3 ASVs. For each of the two main sub-networks, the functional
coreness analyses detailed above were performed. Details of the
functional layers and parameter setting are shown in the caption
of Figure 5. The input data and R scripts are provided as
Supplementary Data S2.

Application 3: Laboratory Co-cultures
We also targeted artificial microbiomes maintained under
a laboratory environmental condition for future use of the
algorithm in industrial applications. We set up laboratory co-
culture systems by introducing soil-derived microbes to liquid
media. The source soil was sampled in the forest of Center for
Ecological Research, Kyoto University (34.971N, 135.960E) and
then it was sieved with 2-mm mesh. The 5 g of sieved soil was
mixed in 30 mL of autoclaved distilled water and then the water
was diluted by 10-folds by autoclaved distilled water. The water
containing microbiomes (200 µL) was then introduced into 2-mL
deep well plate, in which 800 µL of liquid medium was installed
beforehand in each well. Three types of media were used: Media
A [0.5% (w/v) milled oatmeal (Nisshoku Oats; Nippon Food
Manufacturer)], Media B [0.5% (w/v) milled oatmeal + 0.5%
(w/v) peptone (Bacto Peptone, BD)], and Media C (0.5% (w/v)
peptone). For each medium type, 16 replicate samples were set

up. After pre-culture for 5 days, 200 µL of co-culture liquid was
collected from each sample every 24 h and then 200 µL fresh
medium was added to the continual co-culture. The sampling of
co-culture media was continued for 31 days, yielding, in total,
1,488 samples (3 medium types × 16 replicates × 31 days).
Of the sampled 200 µL co-culture, 25 µL was mixed with
50 µL of buffer containing Sodium Dodecyl Sulfate (0.0025%),
ethylenediaminetetraacetic acid (0.125 mM), Tris (1 mM), NaCl
(4 nM), and Proteinase K (×1/100). The sample-buffer mixtures
were processed with the temperature profile of 37◦C for 60 min
followed by 95◦C for 10 min and then they were vortexed for
10 min to extract DNA.

To reveal the microbiome structure of each sample,
Prokaryote 16S ribosomal RNA region was PCR-amplified
with the forward primer 515f (Caporaso et al., 2011) fused with
3–6-mer Ns for improved Illumina sequencing quality (Lundberg
et al., 2013) and the forward Illumina sequencing primer (5′-
TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG-
[3–6-mer Ns] – [515f] -3′) and the reverse primer 806rB (Apprill
et al., 2015) used with 3–6-mer Ns and the reverse sequencing
primer (5′- GTC TCG TGG GCT CGG AGA TGT GTA TAA
GAG ACA G [3–6-mer Ns] − [806rB]-3′) (0.2 µM each).
The DNA-polymerase–buffer system of KOD One (Toyobo)
was used with the temperature profile of 35 cycles at 98◦C
(denaturation) for 10 s, 55◦C (annealing of primers) for 5 s, and
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FIGURE 5 | Functional coreness analysis for the dataset of the mouse gut microbiome. Networks depicting co-occurrence patterns of prokaryote ASVs are shown.
Size of nodes is roughly proportional to functional coreness scores. Specificity to normal diet over American diet is calculated for each network module. Small
network clusters (sub-networks) consisting of 1–3 ASVs are not shown. Two functional layers were included in the analysis (layer 1, potential positive effects on host
health; layer 2, potential negative effects on host health). The parameters used are as follows: weight for each functional layer, α1 = 1 and α2 = –1; functional
redundancy of each functional layer, β1 = 1 and β2 = 1; a parameter for balancing, γ = 1; an additional parameter for balancing, δ = 0.

68◦C (extension) for 30 s. To prevent generation of chimeric
sequences, the ramp rate through the thermal cycles was set
to 1◦C/s (Stevens et al., 2013). Illumina sequencing adaptors
were then added to respective samples in the supplemental PCR
using the forward fusion primers consisting of the P5 Illumina
adaptor, 8-mer indexes for sample identification (Hamady
et al., 2008) and a partial sequence of the sequencing primer
(5′- AAT GAT ACG GCG ACC ACC GAG ATC TAC AC −
[8-mer index] − TCG TCG GCA GCG TC -3′) and the reverse
fusion primers consisting of the P7 adaptor, 8-mer indexes, and
a partial sequence of the sequencing primer (5′- CAA GCA
GAA GAC GGC ATA CGA GAT − [8-mer index] − GTC TCG
TGG GCT CGG -3′). KOD One was used with a temperature
profile of 8 cycles at 98◦C for 10 s, 55◦C for 5 s, and 68◦C for
30 s (ramp rate = 1◦C/s). The PCR amplicons of the samples
were then pooled after a purification/equalization process with
the AMPureXP Kit (Beckman Coulter). Primer dimers, which
were shorter than 200 bp, were removed from the pooled library
by supplemental purification with AMpureXP: the ratio of
AMPureXP reagent to the pooled library was set to 0.6 (v/v)
in this process. The sequencing library was processed with an
Illumina MiSeq sequencer (run center: KYOTO-HE; 2× 250 bp;
15% PhiX spike-in).

The raw sequencing data were converted into FASTQ files
using the program bcl2fastq 1.8.4 distributed by Illumina
(DDBJ DRA accession: DRA010262). The output FASTQ files

were demultiplexed with the program Claident v0.2. 2018.05.29
(Tanabe, 2018). The 16S rRNA dataset was subsequently
processed with the program DADA2. The sample × ASV matrix
obtained was subjected to a co-occurrence network analysis with
the Spiec-Easi program: ASVs that appeared in less than 50
samples were omitted in the analysis. The network depicting co-
occurrence patterns was subdivided into two main clusters (sub-
networks) including 70 and 20 ASVs and many small clusters
consisting of single ASVs. For each of the two main sub-networks,
functional coreness analyses were performed. Properties of each
ASV were inferred with FAPROTAX and chemoheterotrophy
(αn = 1) and pathogenicity for humans (αn = −1) were included
as functional layers. Details of the functional layers and parameter
setting are shown in the caption of Figure 6. The input data and
R scripts are provided as Supplementary Data S3.

Inoculation Experiment of a Core
Microbe
We performed a preliminary experiment to examine effects of
an inferred core species on host plant growth based on the
results on the soybean rhizosphere microbiome (application 1).
Among OTUs with highest functional coreness [Cfunc(i)] within
modules with high sample condition scores [smodule

(
h, j
)
], we

chose one whose close relatives were available for inoculation
experiments. A Trichoderma fungal strain isolated from the
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FIGURE 6 | Functional coreness analysis for the dataset of the co-culture experiment. Networks depicting co-occurrence patterns of prokaryote ASVs are shown.
Size of nodes is roughly proportional to functional coreness scores. Specificity to Medium A is calculated for each network module. The two largest network clusters
(sub-networks) are shown: other clusters consisted of single ASVs. Two functional layers were included in the analysis (layer 1, chemohetrotrophy; layer 2, human
pathogenicity). The parameters used are as follows: weight for each functional layer, 1 = 1 and 2 = –1; functional redundancy of each functional layer, β1 = 2 and
β2 = 1; a parameter for balancing, γ = 1; an additional parameter for balancing, δ = 0.

site close to the Kyoto University field (Trichoderma sp. strain
KUCER00000218) was selected and used in the inoculation
experiment (Supplementary Figure S1). The fungal isolate was
cultured in 1.5% (w/v) malt extract (BD). Grown hyphae were
washed with autoclaved distilled water and were subsequently
fragmented using a mill (OML-1, Osaka Chemical Co., Ltd.).
To make inoculum of the Trichoderma fungus, the fragmented
hyphae were then introduced into a fungus culture bag
(Shinkoen) filled with the mixture of autoclaved leaf mold,
wood chips (sawdust), and rice bran (3:1:1). We also made a
fungus culture bag with no fungal inoculum as a control. After
the Trichoderma hyphae spread within the fungus culture bag,
the inoculum was mixed with autoclaved potting soil (“Silver
Soil,” Kanea) consisting mainly of fermented bark, peat moss,
and coconut peat by the proportion of 1:9. For the rapid
evaluation of plant growth responses, seeds of a Brassicaceae
plant species, Brassica rapa var. perviridis (cultivar “Komatsuna
Wase,” Atariya Co., Ltd.), were sawn to the mixed soil. Three
seeds were sawn in each pot (40 × 40 × 45 mm). In total, 20
pots were made for both inoculation and control experiments
(Experiment A). To examine the reproducibility of the results on
plant growth responses, an additional experiment using the same
brassica species (B. rapa var. perviridis) and a tomato (Solanum
lycopersicum) cultivar “Marmande” (Daiousyokai Co., Ltd.) were
performed (two seeds per pot; 20 pots for each plant species for
each inoculum/control experiment) (Experiment B). The pots
were kept under a 12L/12D light condition at 25◦C. After 27 days

and 21 days, the Experiment A and B plant samples, respectively,
were harvested to measure their dry shoot mass.

RESULTS

Application 1: Soybean Rhizosphere
Microbiome
Within the microbe–microbe co-occurrence network, Modules
1, 4, 6, and 8 represented healthy host plants (Figure 4).
Among the modules, Module 1 included bacterial and fungal
OTUs with highest functional coreness scores such as fungi
allied to Penicillium janthinellum, Trichoderma asperellum, or
Chaetomium sp., and a bacterium in the phylum Chloroflexi
(Table 1). Of the microbial OTUs, the Penicillium OTU had
the highest functional coreness score but its host specificity for
healthy plants was relatively weak (Table 1). Meanwhile, the
Trichoderma OTU, whose ITS sequence completely matched
reference database sequences of T. asperellum, T. harzianum,
and T. viride, showed the third highest functional coreness
and high host specificity for healthy plants (Table 1). The
Penicillium and Trichoderma OTUs showed higher scores of
functional coreness than OTUs in other modules within the
soybean microbiome (Table 1).

Within Module 4, archaeal OTUs in the genus Nitrosocosmicus
and actinobacterial OTUs phylogenetically allied to
Pseudonocardia and Sphaerobacter showed highest scores
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TABLE 1 | Prokaryote and fungal OTUs with highest functional coreness in the dataset of the soybean rhizosphere microbiome.

Specificity for host state NCBI BLAST top-hit

Module OTU code Functional
coreness

Healthy Intermediate Unhealthy Taxon Description Cover Identity Accession

1 1101.3345.18703__S_087 1180.1 1.26 −0.52 −1.15 Fungi Penicillium janthinellum 100.0% 99.6% AB293968.1

1101.4076.18464__S_109 808.1 3.43 −2.34 −2.14 Fungi -

2103.24272.18923__S_104 755.0 2.38 −1.40 −1.72 Fungi Trichoderma asperellum 100.0% 100.0% MK791647.1

1101.14063.24282__S_086 544.3 1.79 −0.84 −1.53 Fungi Chaetomium succineum 100.0% 99.2% MH860808.1

1101.8921.10364__S_092 498.0 3.06 −2.07 −1.93 Bacteria Thermomicrobium carboxidum 100.0% 86.7% NR_134218.1

4 2103.16582.20845__S_096 492.5 3.09 −2.32 −1.71 Archaea Nitrosocosmicus franklandus 100.0% 99.2% LR216287.1

1101.16038.26534__S_086 424.8 1.28 −0.68 −1.00 Bacteria Sphaerobacter thermophilus 100.0% 93.6% AJ871226.1

2102.27378.12243__R_025 317.5 1.52 −0.67 −1.34 Bacteria Pseudonocardia hispaniensis 100.0% 99.2% NR_108504.1

1102.12538.12759__R_097 192.4 0.46 −0.51 −0.08 Bacteria Sphaerobacter thermophilus 99.0% 84.3% NR_074379.1

1101.9485.12425__S_006 180.6 −0.04 0.55 −0.52 Archaea Nitrosocosmicus franklandus 100.0% 95.2% LR216287.1

6 1101.17470.18566__S_062 433.5 2.66 −2.17 −1.29 Bacteria Gaiella occulta 100.0% 92.7% NR_118138.1

1101.14235.9128__S_109 248.9 1.14 −1.07 −0.41 Bacteria Gaiella occulta 100.0% 92.7% NR_118138.1

1101.13362.20123__R_019 197.0 3.03 −2.82 −1.11 Bacteria Gaiella occulta 100.0% 91.1% NR_118138.1

2104.25099.6606__S_038 173.5 2.79 −2.55 −1.06 Bacteria Gaiella occulta 99.0% 89.1% NR_118138.1

1102.18652.2332__S_085 84.1 2.83 −2.54 −1.11 Bacteria Syntrophothermus lipocalidus 99.0% 83.0% NR_102767.2

8 1101.12622.18103__S_037 687.7 1.67 0.18 −2.44 Fungi Chaetomium lentum 98.0% 100.0% MH861858.1

1103.12024.20997__R_098 239.2 0.38 −0.19 −0.31 Fungi Codinaea acaciae 100.0% 100.0% KY965397.1

1101.12117.21960__S_024 200.8 1.33 −0.80 −0.95 Bacteria Gemmatimonas phototrophica 100.0% 93.6% CP011454.1

1104.7567.17169__S_008 189.2 2.06 −1.21 −1.49 Fungi Coniochaeta canina 97.0% 84.8% MH866063.1

1101.11119.24889__S_052 148.9 −1.34 −0.50 2.34 Bacteria Planctomycetaceae sp. 95.0% 91.1% KC921182.1

For each network module with a positive specificity value for healthy soybean plants [smodule (h, j); Figure 4], top-5 OTUs with highest functional coreness are shown.
A functional coreness score, specificity for host plant conditions [s (i, j)], and NCBI BLAST top-hit results are indicated for each OTU.

of functional coreness (Table 1). In Module 6, OTUs allied
to the actinobacterial genus Gaiella and an OTU distantly
allied to the Firmicutes genus Syntrophothermus displayed high
functional coreness (Table 1). In Module 8, the list of microbes
with high functional coreness involved fungal OTUs allied to
Chaetomium, Codinaea, and Coniochaeta, and bacterial OTUs
allied to Gemmatimonas and Planctomycetaceae sp. (Table 1).

Application 2: Mouse Gut Microbiome
Within the network depicting the co-occurrence patterns of
bacteria in mouse gut, Modules 1, 3, and 5 represented high
average specificity for normal diet over American diet conditions
(Figure 5). As Module 5 included only two ASVs, it was omitted
in the downstream analysis. In Module 1, ASVs phylogenetically
allied to Roseburia, Faecalitalea, Clostridium, Bacteroides, and
Breznakia showed high scores of functional coreness. Although
four of them showed low 16S rRNA sequence similarity to
bacteria in the NCBI database, an ASV allied closely allied to
Bacteroides caecimuris (Table 2). In Module 3, an ASV allied to
Muribaculum intestinale and one allied to Lactobacillus murinus
displayed high functional coreness scores and high 16S rRNA
sequence similarity to bacteria in public database sequences
(Table 2). Other ASVs in the module showed low functional
coreness and their taxonomic identity was uncertain (Table 2).

Application 3: Laboratory Co-cultures
For simplicity, we here report results on the two network
modules with highest specificity values for Medium A (oatmeal)
(Figure 6). Within Module 1, which had the highest specificity to

Medium A, bacteria in the genera Mucilaginibacter, Terriglobus,
and Paraburkholderia showed highest functional coreness
(Table 3). Likewise, in Module 3, bacteria in the genera
Mucilaginibacter, Sphingomonas, Bdellovibrio, Clostridium, and
Pelosinus were highly ranked in terms of functional coreness
(Table 3).

Inoculation Experiment of a Core
Microbe
In Experiment A, shoot dry mass of the host Brassica plants
was 75.7 (SD = 34.3) mg for control (uninoculated) samples
and 258.8 (SD = 139.9) mg for samples inoculated with the
selected Trichoderma strain (ANOVA: F1,78 = 64.7, P < 0.0001;
Figure 7A). This positive effect of the Trichoderma strain on
Brassica host growth was confirmed in an additional inoculation
experiment (Experiment B) (ANOVA: F1,71 = 74.3, P < 0.0001):
mean shoot dry mass was 14.9 (SD = 9.0) mg for control samples
and 212.3 (SD = 137.1) mg for inoculated samples (Figure 7B):.
Similar growth promotion effects were observed also in an
experiment in which the Trichoderma strain was inoculated to
tomato plants (ANOVA: F1,61 = 30.5, P < 0.0001): mean shoot
dry mass was 34.4 (SD = 17.9) mg for control samples and 95.4
(SD = 58.9) mg for inoculated samples (Figure 7B).

DISCUSSION

A fundamental limitation in synthesizing biological communities
is “the curse of dimensionality.” If libraries of plant-growth
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TABLE 2 | Prokaryote ASVs with highest functional coreness in the dataset of the mouse gut microbiome.

Specificity for host diet NCBIBLAT top-hit

Module ASV code Functional
coreness

Normal diet American diet Taxon Description Cover Identity Accession

1 taxon_9690 24.0 4.91 −4.91 Bacteria Roseburia intestinalis 100.0% 91.2% LR027880.1

taxon_11885 21.4 4.05 −4.05 Bacteria Faecalitalea cylindroides 100.0% 88.0% NR_113163.1

taxon_14124 20.6 3.72 −3.72 Bacteria Clostridium ramosum 100.0% 86.0% X73440.1

taxon_14609 18.9 5.42 −5.42 Bacteria Bacteroides caecimuris 100.0% 99.4% CP015401.2

taxon_15658 17.5 4.79 −4.79 Bacteria Breznakia pachnodae 96.0% 81.0% NR_146687.1

3 taxon_10484 33.4 1.94 −1.94 Bacteria Muribaculum intestinale 100.0% 98.9% MG970330.1

taxon_15204 14.3 2.86 −2.86 Bacteria Lactobacillus murinus 100.0% 99.2% MK929062.1

taxon_12498 8.4 4.36 −4.36 Bacteria Acutalibacter muris 100.0% 84.7% NR_144605.1

taxon_13301 5.7 4.74 −4.74 Bacteria Duncaniella sp. 100.0% 85.6% MK521456.1

taxon_303 2.8 2.70 −2.70 Bacteria Muribaculum intestinale 100.0% 86.9% CP021421.1

For each network module with a positive specificity value for normal host diet [smodule (h, j); Figure 5], top-5 ASVs with highest functional coreness are shown. A functional
coreness score, specificity for mouse diet [s (i, j)], and NCBI BLAST top-hit results are indicated for each ASV. Results on module 5 are now shown as the module
included only two ASVs.

TABLE 3 | Prokaryote ASVs with highest functional coreness in the dataset of the co-culture experiment.

Host state BLAST top-hit

Module ASV code Functional
coreness

Medium A Medium B Medium C Taxon Description Cover Identity Accession

1 asv_0041 239.4 12.547 −6.274 −6.262 Bacteria Mucilaginibacter oryzae 100% 98.42% AB682426.1

asv_0125 225.3 11.660 −5.835 −5.831 Bacteria Mucilaginibacter herbaticus 100% 99.60% NR_109510.1

asv_0047 83.8 17.267 −8.640 −8.637 Bacteria Terriglobus roseus 100% 100.00% LT629690.1

asv_0018 77.4 19.123 −10.071 −9.024 Bacteria Paraburkholderia kirstenboschensis 100% 100.00% MN204221.1

asv_0058 67.2 17.950 −8.964 −8.953 Bacteria Mucilaginibacter boryungensis 100% 99.21% NR_108986.1

3 asv_0050 345.3 7.875 −3.949 −3.933 Bacteria Mucilaginibacter puniceus 100% 99.21% NR_152668.1

asv_0153 100.0 5.708 −2.858 −2.850 Bacteria Sphingomonas polyaromaticivorans 100% 99.21% LN890119.1

asv_0118 57.0 6.635 −3.339 −3.328 Bacteria Bdellovibrio bacteriovorus 100% 96.84% KX450994.1

asv_0131 41.3 7.592 −3.804 −3.782 Bacteria Clostridium pasteurianum 100% 100.00% CP003261.1

asv_0088 39.8 9.018 −3.634 −5.396 Bacteria Pelosinus fermentans 100% 98.81% CP010978.1

For the two network modules with the highest specificity values for Medium A [smodule (h, j); Figure 6], top-5 ASVs with highest functional coreness are shown. A functional
coreness score, specificity for media [s (i, j)], and NCBI BLAST top-hit results are indicated for each ASV.

promoting microbes are available, best species/stain pairs that
maximize plant growth might be found through round-robin
experiments (e.g., inoculation of microbial pairs on animal/plant
hosts). However, the success of this bottom-up approach
depends on the size of libraries. Even in a relatively simple
situation in which 50 candidate species/stains are available, the
1,225 combinations (50C2) should be examined to find best
pairs. The number of combinations to be tested inflates with
that of candidate species/strains and the size of synthesized
communities. Even in a moderate case in which a five-
species community is designed based on libraries including
500 species, the number of possible combinations to test
exceeds 2.6 × 1011 (500C5). Thus, synthetic community design
requires pre-screening of compatibility between species based on
genomic information (Qin et al., 2010; Arumugam et al., 2011;
Bai et al., 2015).

By utilizing accumulated information of microbial functions
and reference genomes, we herein proposed a “bird’s-eye view”

approach of systematically exploring best combinations of
species/strains that potentially maximize functionality at the
community/ecosystem level. Although similar framework for
designing microbiomes has been discussed in a previous study,
its application was limited to selection of best pairs of microbial
species (Toju et al., 2018). Moreover, the previous method
did not allow to optimize community-scale characteristics
of designed core microbiomes. The workflow proposed in
this study starts from scoring potential contributions of each
species/strain to the community-level functions. The method
allows us to design synthetic communities with arbitrary number
of core species/strains based on three criteria. First, species
that potentially intermediate interactions between other species
are highlighted based on their topological positions within a
network (Figure 2A). Betweenness centrality metric (Freeman,
1977; Brandes, 2001) was used to evaluate each species’ position
in light of shortest paths connecting pairs of other species within
a network. Second, portfolios of functions at the community
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FIGURE 7 | Inoculation experiment of a functional core. (A) Experiment A. Shoot dry mass of Brassica rapa var. perviridis is shown for individual plants
uninoculated/inoculated with Trichoderma sp. strain KUCER00000218. (B) Experiment B. Shoot dry mass of B. rapa var. perviridis (left) and Solanum lycopersicum
(right) is shown for individual plants uninoculated/inoculated with Trichoderma sp. strain KUCER00000218. In the photograph, B. rapa var. perviridis and
S. lycopersicum are found in the lower and upper parts, respectively.

level is designed by setting weights of respective functions
and the degree of each function’s redundancy (Figure 2B). By
giving negative weighting parameters to unfavorable functions
(αn < 0), potential assembly of pathogens/pests is penalized.
In addition, we may control functional stability of synthetic
communities against accidental loss of species by increasing
functional redundancy of whole microbiomes. That is, even if
a species with key functions is lost (goes extinct), ecosystem-
level functions may be maintained if there are other species
with the same functions within the community (Peterson et al.,
1998; Rosenfeld, 2002; Ley et al., 2006). Third, we can determine
balance of functions throughout an association/interaction
network (Figure 2C). Communities in which major functions are
provided by a few species may be less resistant to perturbations
than those in which important functions are distributed across
the network. Interactions between functional portfolios and
functional balance are set by a balancing parameter (γ).
After calculating scores that represent species’ contributions to
ecosystem-level functions (functional coreness), the framework
allows us to design synthetic communities with arbitrary number
of core species/strains (functional core microbiomes). Alternative
candidates of functional core microbiomes are evaluated by
focusing on properties of network modules (Figures 3−6).

One important benefit of our approach is that it estimates
whole-system-scale contributions of each species. Species
mutualistic to animal/plant hosts in a single-species context
does not necessarily maximize whole-system functions in
multi-species contexts. In other words, species with neutral,
or even slightly negative, direct effects on their hosts may
play pivotal roles at the community level. Our index scores
each species based on how it potentially mediates interactions
between all pairs of other species with specific functions,
thereby evaluating webs of indirect interactions (Ohgushi,
2005; Guimarães et al., 2017). If species with high functional
coreness are introduced at early stages of community assembly,
they are expected to support colonization of peripheral species
with favorable functions and block entry of species with
unfavorable effects (pests or pathogens) into the ecosystem
(Toju et al., 2018). In general, microbial species introduced
into communities earlier are more likely to persist in the
communities, controlling assembly of follower (latecomer)
species (Fukami, 2015; Werner and Kiers, 2015; Sprockett
et al., 2018). The strategy of embedding core species/strains
whose priority effects (Toju et al., 2018) lead whole community
structures toward favorable functional profiles deserves further
theoretical investigations.
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Also importantly, synthetic communities designed by our
method are expected to be more resistant to stochastic extinctions
and external perturbations than communities designed without
considering functional redundancy and possible colonization
(contamination) of species from surrounding environments
(Stachowicz et al., 1999; Rosenfeld, 2002; Allison and Martiny,
2008). Microbiomes in agroecosystems, human gut, and biofuel
production plants are inevitably affected by stochastic loss and
immigration of species (Hooper and Gordon, 2001; Morris and
Monier, 2003; Kazamia et al., 2012). Given that even communities
with a few species often show unpredictable dynamics (Benincà
et al., 2008; Sugihara et al., 2012; Deyle et al., 2016; Ushio
et al., 2018), keeping community compositions of synthetic
communities in practical applications is extremely difficult. Our
bird’s-eye approach allows us to deploy backups of functional
species, thereby increasing constancy of functional profiles at
the ecosystem level. Maximizing robustness of ecosystem-level
functions is the key to design synthetic communities with high
application values in agriculture, medicine, and industry.

When functional coreness of each species is calculated, we
then need to consider sets of functional core species (i.e.,
functional core microbiomes). Because species belonging to
the same network modules are expected to coexist, stable
functional core microbiomes would be designed by combining
multiple species with highest functional coreness in a target
module. We then need to choose a best network module with
which a core microbiome is designed. Choosing the module
that includes species showing the highest functional coreness
within a whole network is a possible solution. Alternatively,
properties of modules per se can give us a criterion for choosing
among modules (Figure 3): see Morone et al. (2019); Kitsak
et al. (2010) for an additional criterion for selecting modules
based on topological features. If there are some modules with
equally favorable properties, they may be entitled as alternative
sources of functional core microbiomes (Toju et al., 2018). For
a module, a functional core microbiome would be designed by
listing candidate species from the top until functional coreness
drops disruptively: in general, inferring optimal number of
functional core species is an important issue to be addressed
in future studies.

In an application to plant-associated microbiome data,
we found that the bird’s-eye approach actually highlighted
species with great impacts on other species within microbiomes
(Figure 4 and Table 1). For example, the fungus with the highest
functional coreness was identified as Penicillium janthinellum,
which had been known to show antibacterial properties (Marinho
et al., 2005). Likewise, the fungus with the third highest
functional coreness was phylogenetically allied to T. asperellum,
T. harzianum, and T. viride, which are known to induce plants’
resistance against pathogens (Yedidia et al., 2003; Shoresh et al.,
2005; Wu et al., 2017) and suppress various pathogens such
as Athelia rolfsii, Rhizoctonia solani, Pythium aphanidermatum,
and Fusarium spp. (Elad et al., 1980; Sivan, 1984; Dolatabadi
et al., 2012). These abilities possibly contribute to organization
of favorable microbiomes in the rhizosphere. Moreover, a
phylogenetically close Trichoderma species (T. hamatum) not
only increases resistance of hosts against pathogens but also

directly promotes plant growth (Studholme et al., 2013).
A preliminary inoculation experiment using a fungal strain
belonging to the Trichoderma clade (Supporting Figure S1)
confirmed the positive effects of the Trichoderma group on
preferable host plant conditions (Figure 7). These results
suggest that our method can highlight species with both
microbiome-regulating abilities and direct positive effects on
hosts, while species with only the former characteristics, in
principle, can be explored as well. In agricultural applications,
those functional core species may be used to activate immune
systems of host seeds or seedlings (Kloepper et al., 2004;
Pieterse et al., 2014; Mauch-Mani et al., 2017). When inoculated
seeds/seedlings are introduced into croplands, the embedded
core microbes will block pathogens/pests and recruit species
with diverse positive functions from native microbiomes, thereby
maximizing microbial functions at the agroecosystem level
(Toju et al., 2018).

In contrast to the results on plant-associated microbiomes,
those on a mouse gut microbiome dataset spotlighted many
unidentified microbes (i.e., microbes with low sequence identities
with reference databases) and microbes with unknown functions
as candidates of functional cores (Figure 5 and Table 2). Among
bacterial ASVs with high functional coreness, only three were
unambiguously allied to known taxa (>97% identities with
database sequences; Table 2). Of the three, Lactobacillus murinus
was known to produce antibacterial compounds (Nardi et al.,
2005; Elayaraja et al., 2014) and show positive probiotic effects
on host animals (Perelmuter et al., 2008), while the remaining
two species, Bacteroides caecimuris and Muribaculum intestinale,
have been reported with unknown functions (Lagkouvardos et al.,
2016; Brugiroux et al., 2017; Osaka et al., 2017; Medvecky et al.,
2018). Detailed analyses on the genomic structures of those
bacteria will help us infer roles of those poorly investigated
bacteria in gut microbiomes.

Although we put the emphasis of this study on microbiomes
associated with plants and animals, the method itself can be
applied to other types of microbial (and non-microbial) systems.
In this respect, we performed a pilot study based on a laboratory
co-culture experiment (Figure 6). The list of bacteria with high
functional coreness itself (Table 3) does not provide any inference
for industrial applications and results on such experiments would
differ depending on used media. Our aim here was to show
the entire process of functional coreness analyses in laboratory
co-culture systems, which should be optimized for purposes
of each trial. Technologies for controlling co-culture systems
themselves are prospective in various industrial fields such as
food processing, brewing, waste water purification, and biofuel
production (Kazamia et al., 2012; Sadoudi et al., 2012; Wang
et al., 2019). In addition, experimental co-culture systems can be
used to keep “unculturable” microbes that cannot be maintained
in single-species culture (Pham and Kim, 2012; Stewart, 2012),
increasing repertoires of microbial resources used for screening
in drug discovery (Pettit, 2009; Bertrand et al., 2014).

The validity and power of the approach proposed herein
need to be examined in future studies with more comprehensive
datasets of microbiomes. The rough functional categorization
implemented in this study should be replaced with background
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profiling of genes and metabolic pathways based on reference
genome analyses. Building systematic ways for gaining functional
information of respective microbial species/strains is an emergent
task. From the aspect of application, experimental tests (e.g.,
inoculations to animal/plant hosts) should be conducted to
examine whether designed functional core microbiomes actually
increase community- or ecosystem-level functions and stability.
Through feedback between in silico community design and its
experimental evaluation, parameters in the index [Cfunc(i)] need
to be optimized in each system. Comparison of performance
of designed communities between bottom-up and bird’s-eye
approaches is also necessary. Sophistication of methods for
evaluating community stability (McCann, 2000; Allesina and
Tang, 2012; Ushio et al., 2018) and those for identifying
alternative stable states (Scheffer et al., 2001; Beisner et al.,
2003; Suding et al., 2004) and tipping points (Scheffer et al.,
2009; Dai et al., 2012; Suzuki et al., 2019) in community
dynamics is also awaited. Furthermore, while the present method
uses only undirected-graph information of positive interactions,
incorporating information of various types of interactions (e.g.,
mutualism, competition, commensalism, etc.) in directed-graph
format (Deyle et al., 2016; Ushio et al., 2018) may enhance
the utility of the network-based approach. Albeit in its infancy,
interdisciplinary science of synthetic community design is
cultivating frontiers in microbiology.
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