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Hydrofluoric acid elicits cell cycle arrest through a mechanism that has long been
presumed to be linked with the high affinity of fluoride to metals. However, we have
recently found that the acid stress from fluoride exposure is sufficient to elicit many of
the hallmark phenotypes of fluoride toxicity. Here we report the systematic screening
of genes involved in fluoride resistance and general acid resistance using a genome
deletion library in Saccharomyces cerevisiae. We compare these to a variety of acids –
2,4-dinitrophenol, FCCP, hydrochloric acid, and sulfuric acid – none of which has a high
metal affinity. Pathways involved in endocytosis, vesicle trafficking, pH maintenance,
and vacuolar function are of particular importance to fluoride tolerance. The majority
of genes conferring resistance to fluoride stress also enhanced resistance to general
acid toxicity. Genes whose expression regulate Golgi-mediated vesicle transport were
specific to fluoride resistance, and may be linked with fluoride-metal interactions. These
results support the notion that acidity is an important and underappreciated principle
underlying the mechanisms of fluoride toxicity.
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INTRODUCTION

Responsiveness to acid stress is an essential adaptation for microorganisms. Unlike multicellular
organisms in which internal, sensitive tissues are protected from toxicants, microbes are directly
exposed to their environment. As a result, a microbe’s survival is dependent on the evolution
of proteins and pathways capable of mitigating any potential stressors. Fungi have proven quite
successful in combating acid stress in particular; yeast grow optimally in pH 4.0–6.0 media, and
have been reported to efficiently adapt to media with a pH as low as 2.5 (Narendranath and Power,
2005; Liu et al., 2015).

Eukaryotic microbes, such as fungi, contain organelles for the compartmentalization and
specialized functions in combating acid stress. The intracellular pH of the cytoplasm and organelles
are tightly controlled by H+-ATPases, particularly Pma1p, and V-ATPases (Kane, 2016). This
regulation is critical for maintaining the function of intracellular proteins, many of which are
sensitive to pH changes. Of particular sensitivity are transmembrane and metabolic enzymes, such
as phosphate transporters, and phosphofructokinase (Hardewig et al., 1991; Ding et al., 2013).
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During acidosis, fungi lower metabolism and protein synthesis,
and increase the production of saturated lipids and ergosterol
to adjust membrane fluidity (Sousa et al., 2012; Brandao et al.,
2014; Guo and Olsson, 2016; Godinho et al., 2018; Palma et al.,
2018). Cells also undergo remodeling of their plasma membranes
and cytoskeletal components (Mollapour et al., 2006; Guo et al.,
2018). While these are general response mechanisms to acidosis,
different acids often elicit unique stress phenotypes based on their
given properties.

Fungi routinely encounter acids in natural environments.
Strongly acidic environments feature charged ions that cannot
readily cross biological membranes without protein transporters.
Consequently, exposure of fungi to highly acidic extracellular
environments disrupts the electrochemical potential and
function of the fungal plasma membrane (Carmelo et al.,
1996; Russell and Gould, 2003; Johnston and Strobel, 2019).
In contrast, exposure of fungi to weak acids can result in
intracellular acidification (Mira et al., 2010b). Weak acids,
such as carbonylcyanide p-trifluoromethoxyphenylhydrazone
(FCCP), and 2,4-dinitrophenol (DNP), act as protonophores,
shuttling protons across biological membranes (Loomis and
Lipmann, 1948; Benz and McLaughlin, 1983; Kenwood et al.,
2014; Geisler, 2019). Prolonged exposure to FCCP and 2,4-DNP
uncouples oxidative phosphorylation of the mitochondria
(Loomis and Lipmann, 1948; Brennan et al., 2006). While
this was presumed to be due to proton shuttling across the
mitochondrial membrane and the consequent disruption of
mitochondrial membrane potential, it was recently found
that the phenotype was dependent on the acidified cytoplasm
(Berezhnov et al., 2016). Given that different acids cause distinct
toxicity phenotypes, studying the cellular response to an acid
gives insight into its mechanism of toxicity.

Hydrofluoric acid is a weak acid with a pKa of 3.2 and is highly
abundant in the environment. Fluoride inhibits metabolism,
acidifies the cytoplasm, and elicits oxidative stress in cells (Feig
et al., 1971; Kawase and Suzuki, 1989; Hamilton, 1990; Barbier
et al., 2010). The mechanism behind these phenotypes has been
assumed to be linked with the high affinity of fluoride for
metals. In vitro, fluoride has been demonstrated to sequester
the metals from the active site of essential metalloproteins, but
only at millimolar fluoride concentration (Adamek et al., 2005).
Our lab recently discovered that Saccharomyces cerevisiae lacking
fluoride exporters undergoes cell cycle arrest at 50 µM NaF, well
below the concentration required for any known metalloprotein
inhibition (Li et al., 2013). We consequently found that fluoride
induced cytoplasmic acidosis in yeast, resulting in a disruption of
membrane potential and nutrient uptake (Johnston and Strobel,
2019). From this, the question becomes: What aspects of fluoride
toxicity are the direct consequence of acid stress?

Yeast genomic libraries serve as powerful tools for high-
throughput screens. Genetic knockout libraries, encapsulating
the deletion of each nonessential gene in the yeast genome, can be
used to identify genes essential for a particular function (Giaever
and Nislow, 2014). In the context of acid tolerance, deletion
of any gene involved in crucial resistance pathways will result
in sensitivity to that acid. By comparing the genetic resistance
pathways for acids of known toxicity with those for fluoride, we

can identify both overlapping essential genes, and genes that are
specific to fluoride.

Here we report the analysis of genes important for fluoride
resistance, and compare them to genes involved in reducing
extracellular and intracellular acidosis. We selected acids that
do not chelate strongly to metals to distinguish acid stress
effects from inhibition of metalloproteins. We report that several
genes linked to Golgi-vesicle transport are unique to fluoride
toxicity. Nonetheless, there is significant overlap in essential
genes between fluoride and general acid stress.

MATERIALS AND METHODS

Media, Strains, and Knockout Library
The yeast strain used in this study was BY4741. Yeast were
typically grown in YPD buffer, containing 1 g yeast peptone
(Becton, Dickinson and Co., Franklin Lakes, NJ, United States),
0.5 g yeast extract (Becton, Dickinson and Co.), 50 µL of
1% adenine (Sigma), and 2.5 mL of 40% glucose (Sigma)
per 50 mL total volume in water. YPD-agar plates consist
of YPD, plus an additional 1 gr agar per 50 mL solution
(Becton, Dickinson and Co.). Sodium fluoride (Sigma Aldrich),
HCl (Sigma Aldrich, St. Louis, MO, United States), H2SO4
(Sigma Aldrich), 2,4-DNP (Sigma Aldrich), and FCCP (Sigma
Aldrich) were used in the reported experiments. The knockout
library is commercially available (Dharmacon, Lafayette, Colo,
United States). Knockout strains were inoculated overnight
in YPD, then incubated on YPD agar +/- acid at starting
O.D. 0.67 at 30◦C until fully grown, typically 48 h. Some
genetic deletions resulted in slower growth, and required
addition time.

Liquid Growth Assay and Serial Dilutions
Liquid growth assays were conducted over 24-h intervals, as
described in Li et al., 2013. Agar plates used in serial dilutions
were placed in the 30◦C incubator for 48 h before imaging. Serial
dilutions were prepared using the standard protocol.

Determining pHintra and pHextra
Cells were grown in 2 mL YPD ± acid at starting O.D. 0.1.
After 4 h of growth at 30◦C, the cells were harvested by spinning
and resuspending in PBS. The pH of the YPD buffer (pHextra)
was measured using a pH probe. The pH of the cells (pHintra)
was measured using 5(6)-carboxyfluorescein diacetate (CFDA)
dye under its standard protocol. The pH was determined by
comparing fluorescence of each cell to a standard curve of yeast
permeabilized using 70% ethanol, then resuspended in PBS with
pH ranging from 3.5-7.5.

Bioinformatics Analysis of Genetic
Knockout Screen
Genes were grouped by pathway based on their descriptions
on the Saccharomyces Genome Database (yeastgenome.org).
Network clusters were generated using the String Enrichment
app (RRID:SCR_005223), MCode (RRID:SCR_015828), and
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ClueGO (RRID:SCR_005748) on Cytoscape (version 3.7.2).
Enrichment ratios and p-values were generated using WebGestalt
(http://www.webgestalt.org, RRID:SCR_006786). Values were
transferred to Prism Software for graphing (RRID:SCR_002798).

Monitoring ROS Production
Yeast (wild type or 1VMA11) were grown to log phase, and
then added at O.D. 0.5 to 1.5 mL YPD +/- acids. The acids
were at the IC50 concentration: 75 mM NaF, 20 µM FCCP,
0.3 mM 2,4-DNP, 120 mM HCl, and 30 mM H2SO4. Cells were
shaken at 30◦C for 6 h, and then spun and washed three times
in PBS. Yeast were resuspended in 100 µL PBS and 10 µM
dihydroethidium dye, shaken, and incubated in the dark for
5 min. Relative fluorescence units were measured using a plate
reader, excitationג = 480 nm and emmissionג = 580 nm. Fold change
was calculated by comparing fluorescence of each sample to the
average fluorescence of wild type yeast grown in YPD for 6 h,
adjusted by cell count.

Assessing Glucose Uptake
Yeast were grown for 4 h at 30◦C starting at O.D. 0.5 in
2 mL YPD +/- acids. The acids were tested at the IC50 for
each: 75 mM NaF, 20 µM FCCP, 0.3 mM 2,4-DNP, 120 mM
HCl, and 30 mM H2SO4. Cells were then washed three times
in PBS. Yeast were resuspended in 100 µL PBS with 1 µL 2-
NBDG, a fluorescent glucose mimic. Yeast were placed into a
water bath at 30◦C for 1 h, washed three times in PBS, and
resuspended into 100 µL PBS. Fluorescence was analyzed with
a plate reader at excitationג = 494 nm and emmissionג = 521 nm, and
adjusted by cell count.

Monitoring Intracellular Polyphosphate
With 31P NMR
In vivo NMR was conducted with yeast grown to log phase, as
outlined in Johnston and Strobel, 2019.

RESULTS

Non-essential Genetic Deletion Screen
for Enhanced Acid Sensitivity
We set out to distinguish which aspects of fluoride toxicity are
most likely associated with acid stress rather than metalloprotein
inhibition. In order to establish this distinction, we compared
the results from fluoride exposure to those for exposure to HCl,
H2SO4, FCCP, or 2,4-DNP; each of which elicit acid stress, but do
not have a high affinity for metals.

We first determined the concentration range of each acid
required to elicit growth arrest over 24 h in wildtype yeast
(Figure 1A). The IC50’s ranged broadly between the acids, with
the most potent being FCCP, and 2,4-DNP (0.02 and 0.3 mM,
respectively) and the least being sulfuric acid (30 mM), sodium
fluoride (75 mM), and hydrochloric acid (120 mM). The addition
of weak acids FCCP, 2,4-DNP, and NaF causes intracellular
acidification, but not extracellular acidification (Figures 1B,C).
These acids have positive pKas of 6.2, 4.1, and 3.2, respectively.
Consequently, a subset of each acid would be in its protonated
form inside the cell and able to pass through lipid compartments.
In contrast, the strong acids HCl and H2SO4 with pKas of -6.3 and
-2.0, respectively, do not exist in their protonated form, and only
cause extracellular acidification. In this way, fluoride is the most
like 2,4-DNP and FCCP. It does not significantly alter the pH of
the media, and induces intracellular acidification at 4 h exposure.
However, the degree of intracellular acidification for fluoride is
not as great as 2,4-DNP or FCCP at their respective IC50’s.

A commercially available S. cerevisiae knockout library was
used to identify genes that confer resistance to acid stress.
This library consists of single deletions in 5,250 non-essential
genes. We exposed all 5,250 yeast knockout strains to the lowest
observed adverse effect level (LOAEL) and IC25 concentrations of
each acid on YPD agar plates and allowed the strains to grow to
saturation. Across all five acids, a total of 4,908 genetic deletions
caused no noticeable sensitivity to stress. 342 genetic deletions
resulted in significant growth arrest under acid exposure

FIGURE 1 | Toxicity of acids in yeast. (A) The toxic range of each acid in inhibiting yeast growth is assessed over 24 h by a liquid growth assay, with increasing
concentrations of each acid. Yeast were then exposed to acids at their IC50 concentrations for 4 h, and the (B) intracellular and (C) extracellular pH of the yeast was
established using pH-sensitive dye and a pH electrode, respectively. P values are denoted above, and were calculated using Prism software.
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(Supplementary Table 1). 133 of genetic deletions resulted in
sensitivity to fluoride, 132 genetic deletions resulted in sensitivity
to H2SO4, while 161 total deletions resulted in sensitivity to HCl.
Exposure to either of the weak acids FCCP or 2,4-DNP was
sensitized by 204 or 148 genetic deletions, respectively.

The overwhelming majority of genes caused sensitivity to
more than one acid. Of the 132 genes conferring resistance to
sulfuric acid, less than 2% were specific to sulfuric acid (Figure 2).
The other acids had roughly 20% unique genes related to toxicity
resistance, including fluoride. In other words, approximately
80% of genes conferring resistance to fluoride are involved in
resistance against other acids that lack metal affinity.

We performed enrichment analysis using a serious of
programs in order to determine the biological pathways,
organelles, and genes most important for acid resistance. First,
we utilized the functional analysis tool WebGestalt to calculate
the enrichment of biological processes and molecular functions
within each dataset (Figure 3). Datasets of sensitized genetic
deletions for each of the five acids were enriched for those
involved in vacuolar ATPase, pH maintenance, and vesicle
formation. Genes involved in fluoride resistance were the most
enriched for Golgi function. Genes involved in resistance to
FCCP and 2,4-DNP were heavily enriched for mitochondrial
function and DNA maintenance, as well as protein translation for
2,4-DNP resistance. Genes involved in resistance to strong acids
HCl and H2SO4 were heavily enriched in ion homeostasis and cell
surface genes, including nutrient transporters.

We then used the String Database to plot all 342 genes based
on their corresponding protein-protein interaction networks
(Supplementary Figure 1). Genes with a high degree of
interaction were those associated with the ribosome and vacuole.
Genes involved in fluoride tolerance were heavily enriched
in vacuolar and Golgi interaction networks. Conversely, genes
involved in weak acid tolerance were enriched in vacuolar and
ribosomal networks, and those in strong acid tolerance were
enriched in vacuolar and cell surface networks.

FIGURE 2 | Venn diagram of overlapping genes. Each circle encompasses
the full set of gene deletions resulting in sensitivity to NaF (133 genes, purple),
FCCP (204 genes, red), 2,4-DNP (148 genes, yellow), HCl (161 genes, green),
or H2SO4 (132 genes, blue). Also noted in the figure is the percent of those
genes that do not overlap with any other dataset.

As a third method of bioanalysis, we utilized ClueGO
to examine important cellular components of acid resistance
(Figure 4). Genes involved in mitochondrial and ribosomal
function were enriched in response to weak acid stress caused
by 2,4-DNP and FCCP exposure. Genes involved in endosomal
and vesicle-mediated transport processes were enriched in
response to the strong acids HCl and H2SO4. The vacuolar
ATPase genes – essential in pH maintenance – resulted in
high sensitivity in response to exposure to any of the acids.
Fluoride toxicity was selectively enhanced upon deletion of genes
involved in cytoskeleton, vesicle-mediated transport, and Golgi
function. Genes involved in Golgi, coated vesicles, and SNARE
function were more enriched in response to fluoride stress
than any other acid.

Of the 342 gene deletions that affected acid sensitivity, 39
deletions caused sensitivity to all six acids tested. Within these
genes were significant enrichment for vacuolar ATPase and
pH maintenance, vesicle-mediated transport, and glycoprotein
production (Supplementary Figure 2A). 101 of 342 gene
deletions affected both weak acids 2,4-DNP and FCCP, and 106
gene deletions affected both strong acids HCl and H2SO4. Of
the 133 genetic deletions resulting in sensitivity to fluoride, 32
of those genes – ARF1, CCC2, COX20, CRZ1, ERG24, GOS1,
HOF1, IES6, KES1, MNN10, NHX1, NPR1, PEX17, PRS5, ROX3,
RPP1A, RVS167, SAC1, SLT2, SRN2, STP22, VAM3, VAM7,
VPS8, VPS9, VPS24, VPS28, VPS36, VPS61, VRP1, YDR455C,
and YOR041C – were unique to fluoride resistance. Gene
ontology analysis of these genes showed significant enrichment
for Golgi function, ESCRT machinery, and SNARE receptor
activity (Supplementary Figure 2B).

Fluoride resistance is heavily influenced by the expression of
two fluoride transporters, FEX1, and FEX2. Our lab previously
found that single deletions of fluoride transporters do not affect
fluoride tolerance (Li et al., 2013). As expected, the single
deletions did not appear in our screen to confer sensitivity
to any acid. Conversely, deletion of both genes resulted in
over 1000-fold increased sensitivity to fluoride. There is a
possibility that Golgi function is necessary to successfully
incorporate fluoride transporters to the cell membrane. To test
this, we inserted plasmids containing GFP-FEX1 into 14 of the
genetic deletions specific for fluoride resistance (Supplementary
Figure 3). Microscopy analysis of the yeast demonstrated
strong localization of the GFP signal to the plasma membrane,
indicating the successful incorporation of FEX1. Furthermore,
the genetic deletions specific to fluoride resulted in less than
10-fold increased fluoride sensitivity, as opposed to the 1000-
fold observed by completely abolishing FEX expression. This
is not necessarily unexpected, as genetic deletions that would
completely abolish transmembrane protein incorporation would
mostly likely be lethal. These data suggest that the genes involved
in Golgi function cause sensitivity unrelated to FEX localization.

V-ATPase Confers Acid Resistance
Through pH and ROS Maintenance
Deletion of V-ATPase subunits resulted in significant sensitivity
to all of the acids tested. This suggests that vacuolar ATPase is
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FIGURE 3 | Enrichment analysis for the biological processes and molecular functions of genes conferring resistance to (A) NaF, (B) FCCP, (C) 2,4-DNP, (D) HCl, and
(E) H2SO4 stress. Enrichment analysis was performed using WebGestalt, and redundant categories were eliminated. The top 30 most enriched pathways are
reported above, having at least an enrichment ration value of 2 and a p-value below 0.01. The colors corresponding to the columns are (green) – golgi, (pink) – ion
homeostasis, (purple) – mitochondria, (red) – nucleus, (yellow) – protein transporters, (brown) – ribosomes, (blue) – vacuole, (turquoise) – vesicle-mediated transport,
and (black) – other.
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FIGURE 4 | Cellular components involved in resistance to (A) NaF, (B) FCCP, (C) 2,4-DNP, (D) HCl, and (E) H2SO4 stress. Images were composed using ClueGO
software from pathways with pV ≤ 0.050. Node size is proportional to the fraction of genes in that particular node.

essential for general acid resistance. V-ATPase is a proton pump
composed of 13 subunits. Deletion of 12 of the 13 subunits
caused significant sensitivity to acid stress, and deletion of 10
of those subunits resulted in sensitivity to all six acids. Of
these, deletion of VMA11 resulted in the greatest acid sensitivity
(Figure 5A). 1VMA11 yeast had a 5-fold lower IC50 to fluoride
than wild type, two-fold to FCCP and 2,4-DNP, and ten-fold
and 35-fold lower to HCl and H2SO4, respectively. We tested for
V-ATPase function in 1VMA11 yeast by monitoring the vacuolar
electrochemical potential (Figure 5B). V-ATPase is essential for
maintaining the pH gradient between the cytosol and vacuole;
consequently, disruption of V-ATPase disrupts this gradient
(Huynh and Grinstein, 2007; Maxson and Grinstein, 2014). We
monitored vacuolar electrochemical potential using the dye FM4-
64, which enters the cells via vesicle trafficking and incorporates
into the vacuolar membrane after 1 h of exposure in normal cells.
In 1VMA11 yeast, we found no evidence of vacuolar staining,
indicating a loss of V-ATPase activity.

Several labs have reported that inhibition of V-ATPase results
in cytoplasmic acidosis (Martínez-Muñoz and Kane, 2008; Diab
and Kane, 2013). We monitored intracellular pH at 4 h of growth
in 1VMA11 yeast, and found that the pH dropped from 6.2
to 5.6 (Figure 5C). pH maintenance is an essential mechanism
for acid resistance. However, disruption in intracellular pH
maintenance might predictably make cells more sensitive to
molecules that further disrupt intracellular pH. Conversely,
1VMA11 yeast were the most sensitive to strong acids HCl

and H2SO4, which primarily alter extracellular pH. This result
suggests that V-ATPase might function beyond intracellular pH
maintenance in resisting acid toxicity.

Several reports have linked vacuolar function with oxidative
stress resistance, although the mechanism is still unknown
(Milgrom et al., 2007; Diab and Kane, 2013; Charoenbhakdi et al.,
2016; Nishikawa et al., 2016). Deletion of V-ATPase subunits in
yeast results in hypersensitivity to a wide variety of oxidative
stresses. We monitored levels of reactive oxygenated species
in yeast, both under acid stress, and in V-ATPase knockout,
and found that deletion of VMA11 was sufficient to increase
intracellular reactive oxygenated species independent of acid
stress (Figure 5D). Addition of acids resulted in increased ROS
production in wild type yeast, and even greater addition in
1VMA11 yeast. HCl and H2SO4 did not significantly induce
ROS production in wild type, but did in 1VMA11 yeast. While
it is already well established that V-ATPase functions in pH
maintenance, its role in lowering cytoplasmic ROS may also
contribute to its function in general acid resistance.

Vesicle-Mediated Endocytosis Affects
Nutrient Uptake During Acid Stress
Our lab previously found that fluoride-activated acidosis disrupts
the electrochemical gradient of the plasma membrane and
initiates nutrient starvation signaling (Johnston and Strobel,
2019). While yeast upregulate the expression of nutrient
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FIGURE 5 | Sensitivity of 1VMA11 mutation in yeast. (A) Serial dilutions of wild type and 1VMA11 yeast on agar plates containing normal YPD, and YPD with NaF,
HCl, FCCP, CH3COOH, and H2SO4. The IC50’s of each were calculated using the 24-h liquid growth assay (data not shown). (B) Imaging of vacuolar membrane
using FM4-64 dye. Cells are grown to log phase. (C) Intracellular pH of wild type and 1VMA11 yeast after 4 h of growth, as assessed using 5(6)-CFDA. P-value is
shown; p-value was calculated using GraphPad Prism Software. (D) Change in reactive oxygenated species production in yeast grown 6 h, in YPD or YPD with
acids. Astericks represent statistical significance, as calculated using prism software. Gray asterisks represent the comparison between untreated and acid treated
wild type cells, while black asterisks represent the statistical significance between acid treated wild type, and acid treated 1VMA11 yeast cells.

scavengers under fluoride stress, the transmembrane nutrient
transporters are inhibited by the disrupted pH gradient. This
leads to the question of how the yeast are able to uptake nutrients
with inhibited protein transporters.

After vacuolar ATPase function, the next highest enriched
processes involved in general acid resistance in this screen
were vesicle formation, trafficking, and endocytosis. Vesicle
trafficking and endocytosis are induced during acid stress (Ben-
Dov and Korenstein, 2013). Endocytosis is involved in both
transmembrane protein recycling and nutrient uptake from
the extracellular environment (Grant and Donaldson, 2009;
Antonescu et al., 2014; Hinze and Boucrot, 2018). Consequently,
disruption of essential genes involved in endocytosis resulted in
cell sensitivity to nutrient depletion, particularly glucose, and
amino acids (Jones et al., 2012; Lang et al., 2014). Given that acid
exposure decreases transmembrane nutrient transporter activity
in yeast, we hypothesized that yeast utilize endocytosis during
acid-induced nutrient starvation for the uptake of nutrients.

To test this hypothesis, we monitored glucose uptake during
acid stress using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)
amino]-D-glucose (2-NBDG), a fluorescent glucose mimic
(Figure 6A). As expected, exposure to fluoride induced enhanced
2-NBDG uptake, as did exposure to both strong and weak acids.
Deletion of genes involved in endocytosis did not alter 2-NBDG

uptake under normal conditions. However, those yeast knockout
strains showed reduced uptake of 2-NBDG in the presence of
fluoride or other acid, despite being more sensitized to the acid
stress. The yeast strain lacking VPS16– a gene involved in the
tethering and fusion of endosomes – had the most significant
reduction in 2-NBDG uptake under all conditions. Together,
these data support the hypothesis that endocytosis is involved in
nutrient uptake during acid stress.

We also tested 2-NBDG uptake in V-ATPase genetic
knockouts, and saw a similar reduction in intracellular 2-NBDG
(Figure 6B). This can be either due to reduced sugar uptake, or
a reduction in its storage. V-ATPase is essential for regulating the
pH gradient necessary for vesicle fusion and endocytosis (Geyer
et al., 2002; Lafourcade et al., 2008; Brett et al., 2011; Maxson
and Grinstein, 2014). Beyond that, V-ATPase is essential for
vacuolar activity, including the storage of ions. One particularly
important stored ion is phosphate, which is used by the vacuole
to sequester metals (Nguyen et al., 2019). High concentrations
of stored phosphate have been demonstrated to resist oxidative
stress in yeast (Lev et al., 2017; Johnston and Strobel, 2019). We
assessed phosphate storage using 31P NMR, and as expected, no
vacuolar polyphosphate could be detected in V-ATPase mutants,
and the overall concentration of intracellular phosphate was
lower than wild type (Figure 6C). In all, V-ATPase appears to
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FIGURE 6 | Role of endocytosis, vesicle trafficking and V-ATPase in nutrient uptake. Glucose uptake (monitored using the fluorescent dye 2-NBDG) after 4 h
exposure to acids in wild type (WT) and (A) endocytosis and vesicle trafficking knockouts and (B) V-ATPase subunit knockouts. (C) 31P NMR of wild type and
1VMA11 yeast. Statistical significance analysis for (A) had p < 0.0001 for every value of acid treatment compared to wild type, or acid treatment of wild type
compared with genetic knockouts. The only exception for this was 1RVS161 yeast, which had p < 0.001 difference in sugar uptake compared with wild type.
Statistical analysis for (B) is represented in the graph, whereby gray asterisks represent the comparison between untreated and acid treated wild type cells, while
black asterisks represent the statistical significance between acid treated wild type, and acid treated V-ATPase knockout yeast cells.

function in acid resistance through oxidative stress resistance, pH
maintenance, vesicle trafficking, and nutrient storage.

DISCUSSION

Research into the mechanics of fluoride toxicity has seen
increased interest with the concern of public safety in fluoridated
water. Fluoride is naturally abundant throughout our ecosystem,
and additionally supplied in government-regulated water at 0.7–
1.2 ppm (40–60 µM) to increase our bone health. However,
too much fluoride results in toxicity. While the exact cause
of intracellular fluoride toxicity is unknown, the downstream
stress phenotypes are well established. Fluoride elicits oxidative
stress, metabolic inhibition, and intracellular acidosis (Barbier
et al., 2010; Agalakova and Gusev, 2011). This has been long
presumed to be due to metalloprotein interactions with fluoride,
particularly glycolytic enzymes such as enolase (Marquis, 1995).
However, HF is also an acid, which has underappreciated
biological consequences. Here we report the screening of 5,250
non-essential S. cerevisiae genes for their involvement in acid
resistance using a deletion library. The results demonstrate
a heavy enrichment of genes involved in vacuolar function
and vesicle-mediated transport for general acid resistance.
Genes involved in resistance to fluoride (tested at 35 and
50 mM) overlapped largely with those of other acids, but had
a higher enrichment in genes involved in Golgi function than
the other acids.

Out of the 5,250 genes tested in this knockout screen, 32
gene deletions resulted in sensitivity to only fluoride. Of these,
three genes (VPS61, YOR041C, and YDR455C), are putative
open reading frames with unknown function. However, all three
overlap in the genome with genes that could confer fluoride
resistance. VPS61, whose deletion causes vacuolar defects,
overlaps with RGP1, part of the Golgi membrane exchange factor.
YOR041C overlaps with CUE5, coding a ubiquitin-binding
protein involved in autophagy signaling. YDR455C overlaps with
the Na+/H+ exchanger NHX, which itself conferred resistance
to fluoride toxicity and is required for osmotolerance. Other
genes involved uniquely in fluoride tolerance were the copper

transporter CCC2, the cytochrome c oxidase gene COX20, stress
transcription factor CRZ1, and the DNA repair gene IES6. Each
of these were not part of a conserved pathway of genes related to
fluoride resistance, but most probably function in general stress
resistance. Fluoride is well established to cause metal imbalance,
DNA damage, oxidative stress, and metabolic arrest; expression
of these genes would counteract these effects (He and Chen, 2006;
Fina et al., 2014; Johnston and Strobel, 2019).

The most significantly enriched pathway unique to fluoride
resistance was Golgi function and vesicle-mediated transport.
Among these were genes involved in endocytosis and cell surface
maintenance, including ERG24, HOF1, RVS167, VPS9, and
VRP1. Also unique to fluoride were subunits of the endocytosis
tethering complexes ESCRT and CORVET. Endocytosis was
found to confer resistance against all acids tested in this report.
Why these five genes caused sensitivity only to fluoride, is not
immediately clear. Fluoride has previously been reported to
selectively inhibit vesicle trafficking, both through metal- and
G-protein-interactions (Matsuo et al., 1998; Stow and Heimann,
1998; Taraschi et al., 2001; Barbier et al., 2010). As such, it could
be that these sets of genes are particularly sensitized to fluoride as
opposed to other acids. Supporting the hypothesis that vesicle-
transport is most sensitized to fluoride exposure, many genes
essential for SNARE and Golgi function conferred resistance
to only fluoride. Metallo-fluoride also reversibly disrupts Golgi
stacking and inhibits essential Golgi GTPases (Finazzi et al., 1994;
Back et al., 2004). One particular known target, Arf1p GTPase,
was among the genetic deletions that caused sensitivity only to
fluoride toxicity (Lanoix et al., 2001). Given that these genes
are unique in affecting fluoride resistance and there is scientific
precedent that metallo-fluoride alters their activity, Golgi and
vesicular trafficking are likely specific targets of fluoride.

Genes involved in general protein turnover, including
peroxisome function, amino acid synthesis, and ribosomal
function, are involved in fluoride resistance. Stress, in general,
is rescued by functional protein turnover, which can degrade
inhibited or counterproductive proteins and synthesize proteins
that combat stress. However, fluoride is known to inhibit
ribosomes (Ravel et al., 1966; Vesco and Colombo, 1970;
Hardesty et al., 1973). Fluoride also elicits oxidative stress, which
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independently halts translation (Shenton et al., 2006). Given
that acid stress is rescued by protein turnover, non-essential
genes that aid in protein synthesis could provide significant
tolerance to fluoride.

The majority of genes that conferred significant resistance
to fluoride toxicity also conferred resistance to acids lacking
high metal affinity. These genes were largely enriched for
involvement in V-ATPase and vesicle-mediated transport. Both
of these have a multitude of functions that could potentially
aid in acid resistance. For instance, V-ATPase functions in
pH maintenance, endocytosis regulation, and nutrient storage
(Maxson and Grinstein, 2014). We also demonstrate that
inhibition of V-ATPase resulted in an increase of intracellular
ROS independent of additional stressors. As many acids –
including fluoride – cause oxidative stress, loss of ROS
maintenance would predictably enhance toxicity. Endocytosis is
also involved in many processes, including cell surface turnover
and protein recycling (Goode et al., 2015). Endocytosis has
been previously reported to confer resistance to acid stress,
and conversely, both alkaline and acid stress partially inhibit
endocytosis (Sandvig et al., 1987; Pereira et al., 2012; Ben-
Dov and Korenstein, 2013). We report here that endocytosis
is involved in the uptake of nutrients during pH disruption.
Given that many acids facilitate pH disruption along the plasma
membrane, one might predict that endocytosis is involved in
general acid resistance.

Other laboratories have reported using genetic knockout
libraries to investigate acid stress. In this study, we compared
fluoride with acids whose stress is primarily attributed to
pH imbalance. We also compared the genes involved in
fluoride resistance with previously published genetic screens
for sensitivity to formic, propionic, acetic, and sorbic acids
(Mollapour et al., 2004; Mira et al., 2009, 2010a; Henriques et al.,
2017). These acids cause a broader range of toxicity phenotypes
compared to strong acids or protonophores. Phenotypes include
oxidative stress, nutrient starvation, and metabolic inhibition
(Kitanovic et al., 2012; Liu et al., 2012; Stratford et al., 2020).
Consequently, the published gene lists have significantly less
overlap between these wide-range acid toxicants compared with
more similar acids, such as HCl and H2SO4 (Supplementary
Figure 4). Acetic acid was the most unique, with 400–500 more
gene deletions conferring significant growth defects compared
to other acids. Importantly, fluoride was the most similar to
other acids, with only 25% unique genes. Of the 75% shared
genes, the majority were shared by either acetic acid or sorbic
acid. This is consistent with our observation that roughly 80% of
genes conferring resistance to fluoride also function in rescuing
from general acid stress. Formic, propionic, acetic, and sorbic
acids each have a much higher proportion of unique genes
compared with fluoride, which suggests that they have more
specific mechanisms of toxicity.

Due to the limitations of a genetic knockout library, we are not
able to assess the involvement of essential genes in general acid
resistance. This includes the glycolytic protein enolase, which
has long been presumed to be a key target of fluoride toxicity,
because it is an essential gene and not available in the screen.
However, we are able to investigate the role of nonessential genes

involved in metabolism to identify the overlap between fluoride
and general acid toxicity resistance. These nonessential genes,
whose deletion would lower but not inhibit metabolism, did not
significantly impact fluoride, nor general acid resistance. This
suggests that the ability of a cell to metabolize at an optimal rate
does not influence acid tolerance. In support of this hypothesis,
the Nislow lab conducted a loss-of-function screen of 87.1%
essential yeast genes for fluoride sensitivity, and found only 13
that conferred significant sensitivity (Yan et al., 2008). Of these,
half were involved in lipid biosynthesis and vesicle-mediated
transport, and none were involved in carbohydrate metabolism.

Fluoride toxicity has long been attributed to metal interactions
in vivo. While metal binding is undoubtedly a factor, the role
of acid stress has been underappreciated. Here, we report that
the majority of nonessential genes involved in fluoride resistance
are also involved in general acid resistance, particularly pH
maintenance and vesicle transport. Acid stress is commonly
encountered in the wild. As such, it would confer a significant
evolutionary advantage for organisms to retain a widespread
resistance mechanism. Overall, these data suggest that a
significant factor in fluoride toxicity can be attributed to its
properties as an acid.
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