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We investigated the incidence of RNA viruses in a collection of Halophytophthora
spp. from estuarine ecosystems in southern Portugal. The first approach to detect the
presence of viruses was based on the occurrence of dsRNA, typically considered as
a viral molecule in plants and fungi. Two dsRNA-banding patterns (∼7 and 9 kb) were
observed in seven of 73 Halophytophthora isolates tested (9.6%). Consequently, two
dsRNA-hosting isolates were chosen to perform stranded RNA sequencing for de novo
virus sequence assembly. A total of eight putative novel virus species with genomic
affinities to members of the order Bunyavirales were detected and their full-length RdRp
gene characterized by RACE. Based on the direct partial amplification of their RdRp
gene by RT-PCR multiple viral infections occur in both isolates selected. Likewise,
the screening of those viruses in the whole collection of Halophytophthora isolates
showed that their occurrence is limited to one single Halophytophthora species. To our
knowledge, this is the first report demonstrating the presence of negative (−) ssRNA
viruses in marine oomycetes.

Keywords: dsRNA, (−) ssRNA, RdRp, mycovirus, marine virology, estuaries

INTRODUCTION

Halophytophthora species are fungal-like oomycetes with similar morphology and life cycles as
members from their well-known plant pathogenic sister genus Phytophthora (Sullivan et al.,
2018). As oomycetes they are distantly related to brown algae and belong to the Kingdom
Stramenopila (Heterokonta). In pre-molecular times most marine oomycetes were assigned to the
genus Halophytophthora but recent phylogenetic studies demonstrated that Halophytophthora is
polyphyletic. Consequently, numerous Halophytophthora species were transferred to several new
genera includingCalycofera, Phytopythium, and Salisapilia (Marano et al., 2014; Bennett et al., 2017;
Jung et al., 2017b; Bennett and Thines, 2019). Currently Halophytophthora sensu stricto contains
nine described species. Most Halophytophthora species live in brackish and salt water habitats
and have been traditionally described as saprophytes playing a key role as decomposers mainly in
mangrove ecosystems (Newell and Fell, 1992, 1997). However, they may also be pathogenic. Several
studies have already illustrated their pathogenicity on the marine eelgrass Zostera marina (Govers
et al., 2016), which has a key ecological role along shores of North America and Eurasia (Man in ’t
Veld et al., 2019). Halophytophthora zostera was shown to restrict the viability of Z. marina seeds
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and seedling development (Govers et al., 2016). Knowledge
on Halophytophthora in temperate ecosystems has been scarce
for a long time, hence, the conditions explaining why
these decomposers may turn pathogenic are still unknown
(Sullivan et al., 2018).

Virus diversity in marine ecosystems appears predominant
(Suttle, 2005). With a total estimation of ∼1030 viruses, they
have been implicated as the most abundant pathogens in
the oceans (Suttle, 2005). Viruses infect all organisms from
bacteria to whales but the majority infect bacteria (phages),
which control microbial abundance and release dissolved organic
matter, influencing global biogeochemical cycles (Wommack and
Colwell, 2000; Weinbauer, 2004; Breitbart, 2012). Regarding
lower eukaryotes, metagenomic and metatranscriptomic studies
are rapidly expanding the knowledge about virus diversity and
can detect the presence of a range of DNA or RNA genomes of
various architectural type and size (Coy et al., 2018). Viruses with
large double-stranded (ds) DNA genomes are typically found
in phytoplankton (Weynberg et al., 2017). Single-stranded (ss)
DNA viruses have been described in diatom algae (Nagasaki
et al., 2005; Coy et al., 2018), corals (Vega Thurber et al., 2008)
and stromatolites (Desnues et al., 2008). DsRNA viruses infect
photosynthetic flagellates, heterotrophic protists (Desnues et al.,
2008) and also fungi. Recently, dsRNA viruses hosted by marine
fungi were isolated from the seagrass Posidonia oceanica (Nerva
et al., 2015) and sea cucumber Holothuria polii (Nerva et al.,
2019a), and identified a negative (−) ssRNA virus in Penicillium
roseopurpureum.

The order Bunyavirales is comprised of viruses with
segmented, linear (−) ssRNA genomes (Abudurexiti et al.,
2019). The morphology of Bunyaviruses varies from symmetric
icosahedral particles, similar to phleboviruses (Halldorsson
et al., 2018), to spherical and pleomorphic particles, similar
to orthobunyaviruses (Obijeski et al., 1976) and hantaviruses
(Huiskonen et al., 2010). A model bunyavirus genome consists of
three RNA segments, the smallest of which (S) may encode
nucleocapside proteins (NP) and silencing suppressors
(NS) while the medium sized (M) segment usually encodes
glycoproteins (Gn and Gc) and movement proteins (Margaria
et al., 2014). Finally, the largest segment (L) appears to possess
a single open reading frame (ORF), which encodes the RNA
dependent RNA polymerase (RdRp). According to the last update
from the International Committee on Taxonomy of Viruses
(ICTV), there are 12 bunyaviral families, four subfamilies, 46
genera and 287 species registered (Abudurexiti et al., 2019).
However, due to more intensive samplings and, in particular,
because of the use of de novo virus detection with metagenomics
sequencing the diversity of bunyaviruses is constantly increasing
(Li et al., 2015; Shi et al., 2016). Currently, bunyaviruses have been
described in plants, invertebrate and vertebrate hosts and are
transmitted by arthropod and mammalian vectors (Abudurexiti
et al., 2019). Viruses with genomic similarities to bunyaviruses
have also been described from diverse fungal hosts, including
the phytopathogenic fungi Botrytis cinerea (Botrytis cinerea
negative-stranded RNA virus 1, BcNSRV-1) (Donaire et al., 2016)
and Macrophomina phaseolina (Macrophomina phaseolina
negative-stranded RNA virus 1, MpNSRV1) (Marzano et al.,

2016). Entoleuca phenui-like virus 1 (EnPLV1) has been
identified from an avirulent isolate of Entoleuca sp. collected
from avocado rhizosphere (Velasco et al., 2019). Coniothyrium
diplodiella negative-stranded RNA virus 1 (CdNsRV1),
Alternaria tenuissima negative-stranded RNA virus 2 (AtNsRV2)
and Cladosporium cladosporioides negative-stranded RNA virus
2 (CcNsRV2), were isolated from the grapevine wood-inhabiting
endophytes Coniothyrium diplodiella, Alternaria tenuissima,
and Cladosporium cladosporioides, respectively (Nerva et al.,
2019b). Likewise, the shiitake mushroom (Lentinula edodes)
hosts Lentinula edodes negative-stranded virus 2 (LeNSRV2),
which is related to phenuiviruses (Lin et al., 2019); a marine
fungus, P. roseopurpureum hosts Penicillium roseopurpureum
negative ssRNA virus 1 (PrNSRV1) (Nerva et al., 2019a) and
the oomycete Pythium polare, Pythium polare bunya-like RNA
virus 1 (PpBRV1) (Sasai et al., 2018). However, no effects of
bunyavirus infection on growth or virulence of their fungal or
oomycete hosts have been recorded yet.

Knowledge on viruses infecting oomycetes is relatively limited
(Sutela et al., 2019). Several viruses have been described in downy
mildews (biotrophic plant parasites) including unclassified (+)
ssRNA viruses on Sclerophthora macrospora with similarities to
a Noda-Tombus-like virus (Yokoi et al., 2003) and in Plasmopara
parasitica, which causes hypovirulence on its host (Grasse et al.,
2013; Grasse and Spring, 2017). The genus Pythium is comprised
of water and soilborne oomycetes causing moderate to significant
damages in plant roots (Sutela et al., 2019). Virus-like particles
and/or dsRNA have been described in Pythium irregular (Gillings
et al., 1993). Recently, an unclassified gammapartitivirus was
reported in Pythium nuun (Shiba et al., 2018), a toti-like virus was
also characterized from two strains of Globisporangium splendens
(formerly Pythium splendes) and three virus-like sequences,
Pythium polare RNA virus 1 (PpRV1), Pythium polare RNA
virus 2 (PpRV2) and PpBRV1 were detected in Pythium polare
infecting mosses in the Arctic (Sasai et al., 2018). In the genus
Phytophthora the first virus to be reported in the USA (Hacker
et al., 2005) was classified as an alphaendornavirus. It was found
in an isolate of the undescribed Phytophthora taxon “douglasfir.”
Later, similar virus strains were detected in P. ramorum
isolates from several hosts in Europe (Kozlakidis et al., 2010)
but no further investigations were performed. Phytophthora
infestans, the causal agent of potato late blight, also harbors
four RNA viruses. Phytophthora infestans RNA virus 1 and 2,
(PiRV-1 and PiRV-2, respectively) apparently represent novel
virus families (Cai et al., 2009, 2019), Phytophthora infestans
RNA virus 3 (PiRV-3) is clustered with the newly proposed
family “Fusagraviridae” (Cai et al., 2013) and Phytophthora
infestans RNA virus 4 (PiRV-4) is an unclassified member of
Narnaviridae (Cai et al., 2012). Recently, PiRV2, known to
be 100% transmittable through asexual spores, was shown to
stimulate sporangia production and enhance the virulence of
P. infestans (Cai et al., 2019). Phytophthora cactorum RNA virus
1 (PcRV1), a toti-like virus, has been newly described in an isolate
of Phytophthora cactorum collected from a trunk lesion on silver
birch in Denmark (Poimala and Vainio, 2020).

Because the genus Halophytophthora represents a unique
group of marine microorganisms with uncertain roles as
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phytopathogens on coastal and estuarine grasses, we wished to
expand current research to better understand their behavior
by investigating their potential virome. More precisely, our
study had two goals: (i) to confirm the presence of viruses
in these marine oomycetes by combining traditional and
state-of-art technologies, and (ii) to assess their abundance
and genetic variability in a collection of Halophytophthora
isolates from Portugal.

MATERIALS AND METHODS

Oomycete Isolates
All Halophytophthora isolates studied were collected from seven
localities in southern Portugal (Table 1) using an in situ baiting
technique (Jung et al., 2017a). At each site, 15–20 non-wounded
young leaves of three tree species, Ceratonia siliqua, Citrus
sinensis and Quercus suber, were placed as baits in a 25 × 30 cm
raft, prepared using fly mesh and styrofoam, and the raft put
to float in the tidal zone. The rafts were collected after 3 days.
Baiting leaves were washed in distilled water and blotted dry
on filter paper. Five to ten pieces (approximately 2 × 2 mm)
were cut from the margins of each watersoaked or necrotic
lesion of each leaf, blotted on filter paper and plated onto
selective PARPNH agar (V8-juice agar (V8A) amended with
10 µg/ml pimaricin, 200 µg/ml ampicillin, 10 µg/ml rifampicin,
25 µg/ml pentachloronitrobenzene (PCNB), 50 µg/ml nystatin
and 50 µg/ml hymexazol). The Halophytophthora isolates are
part of the collection of the Phytophthora Research Centre
(Mendel University), located in Brno, Czech Republic. The
Supplementary Table S1 provides detailed information and
species identification of all Halophytophthora isolates, which is
currently under investigation. For the different purposes of the
present study all isolates were grown for 7–21 days in darkness on
V8A media, covered with cellophane (EJA08-100; Gel Company,
Inc., CA, United States).

DsRNA Isolation
A total of 73 isolates from Portugal were screened for dsRNA
(Figure 1), which was purified using a modified version of the
protocol of Morris and Dodds (1979). Approximately 2 g of fresh
mycelium were transferred to a 50 ml Falcon tube and disrupted

FIGURE 1 | DsRNA profiles found in Halophytophthora isolates BD641 (1)
and BD647 (2). DsRNA bands were visualized by gel electrophoresis (120 V;
90 min). Analyzed fragments were separated on 1.5% agarose gel prepared
with a TBE buffer (106177; Merck KGaA, Germany) and stained by Ethidium
Bromide (E1510, Sigma-Aldrich, Germany). Ready-to-use DNA size and mass
standard (F-303SD, Thermo Scientific).

by vortexing for 3 min with two stainless steel balls (diameter
10 mm). The rest of the protocol was performed as described by
Tuomivirta et al. (2002).

Stranded RNA Sequencing of Samples
BD641 and BD647
Total RNA was purified from approximately 50 mg of fresh
mycelium using SPLIT RNA Extraction Kit (Lexogen, Austria)
and treated with DNase I (ThermoFisher Scientific). RNA
quantity and quality were checked using respectively a Qubit R©

2.0 Fluorometer (Invitrogen) and Tape Station 4200 (Agilent)
resulting in a RNA integrity number (RIN) of 10.

TABLE 1 | Relation of isolates per sampling locality and virus detection.

Locality, municipality N& dsRNA screening$ dsRNA patterns RT-PCR screening+ Virus found by RT-PCR*

Ribeira de Odelouca, Silves 14 14 ∼9 kb 14 None

Rio Séqua, Tavira 9 9 None 9 None

Parque Natural da Ria Formosa, Santa Luzia, Tavira 24 18 ∼7 and 9 kb 21 HRV1-8

Parque Natural da Ria Formosa, Quelfes, Olhão 6 5 ∼9 kb 6 None

Ria de Alvor, Alvor, Portimão 8 6 None 8 None

Parque Natural da Ria Formosa, Almancil, Loulé 9 8 ∼9 kb 8 None

Sapal de Castro Marim /Rio Guadiana, Castro Marim 32 13 None 29 None

&Total number of isolates screened for viruses by both dsRNA isolation and partial amplification of their RdRp by RT-PCR using specific primers for each of them; $number
of isolates used in the dsRNA screening; +number of isolates screened by RT-PCR; *viruses detected by RT-PCR. See Supplementary Table S1 for the complete
information of the isolates, DsRNA and RT-PCR screening.
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Approximately 1 µg of total RNA eluted in RNase-free
water was sent to Fasteris SA (Plan-les-Ouates, Switzerland)
for RNA library construction and deep sequencing. The
library preparation was performed using the Illumina TruSeq R©

stranded RNA Sample Preparation Kit (Illumina, San Diego, CA,
United States). The library was sequenced in pair-end (2x 75 nt)
runs on an Illumina NextSeq 500 machine. Prior to the library
preparation, Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat)
was used successfully. An “in-lane” PhiX control spike was
included in each lane of the flow-cell. 93.94% of the reads had
a quality value (Q30) ≥ 30, i.e., less than 1 error in 1000 bases.
The raw data was deposited in the Sequence Read Archive
(SRA) with the BioProject ID PRJNA619952 and BioSample
ID SAMN14856044.

Bioinformatics Analysis
Adapter trimming was not needed as the adapter sequence
was only present in less than 1% of the reads. All reads were
compared to the genome sequence of Phytophthora cinnamomi1
with BWA 0.7.5a2. Unmapped reads were selected from the
mapping files and saved in a fastq format. BAM post-processing
was performed with toolbox for manipulation of SAM/BAM
files V. 1.13 and BEDTOOLS V. 2.21.04. De novo assembly was
performed with VELVET V1.2.105. As the repeat resolution
module of VELVET assumes linearity and uniform coverage
distribution, it produces fragmented transcriptome assemblies.
To consider the unequal expression levels and alternative
splicing breakpoints, the preliminary assemblies produced by
VELVET were inputted to OASES 0.2.086, which exploits read
sequence and pairing information (if available) to produce
transcript isoforms. When possible, OASES also detects and
reports standard alternative splicing events. The first 1M paired-
reads of each library were mapped on each OASES assembly.
The alignment was done using the mapping software BWA
0.7.5a and SAMTOOLS 1.17. Reads mapping to several positions
on the reference sequence with the same mapping quality
were attributed at random to one of the positions with a
mapping quality of 0. When an input read had N’s in their
nucleotide sequence, BWA replaced the Ns with a random
nucleotide. De novo assembly and validation mapping were done
using BWA 0.7.5a. The result of the mapping of the reads
on the reference sequences is summarized in Supplementary
Table S2. The assemblies with a hash of 51 gave the highest
representability. The numbers of reads aligning and coverage
depth for the final viral sequence were calculated using Geneious
Prime R© 2020.0.4.

The sequence alignment and blast output post-processing with
BLAST ncbi-blast-2.2.267. The contig files were aligned to the

1ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/314/365/GCA_001314365.1_
MP94-48v2/GCA_001314365.1_MP94-48v2_genomic.fna.gz
2http://bio-bwa.sourceforge.net
3http://www.htslib.org/
4http://code.google.com/p/bedtools/
5https://www.ebi.ac.uk/~zerbino/velvet/
6https://www.ebi.ac.uk/~zerbino/oases/
7http://www.htslib.org/doc/samtools-11.html

NCBI database using a local installation of the BLAST software.
The results from the BLASTn, BLASTX and the BLAST search on
the viral reference dataset (RefSeq) were compared. The output
file was then parsed using in-house (Fasteris) scripts.

Rapid Amplification of cDNA Ends
(RACE) and Full-Length Viral Sequences
In order to determine the 5′- and 3′- terminal sequences and
lengths of the putative viral genomes the SMARTer R© RACE
5′/3′ KIT (Takara Bio USA, Inc.) was used with total RNA
extracted as described above using SPLIT RNA Extraction Kit
(Lexogen, Austria). The 3′ Poly(A) Tailing of RNA was performed
at 37◦C for 20 min using yeast Poly(A) Polymerase (MCLAB,
San Francisco, CA). Thereafter, approximately 1 µg of total RNA
was used for RACE First-strand cDNA synthesis of both 5′-
and 3′- termini was performed using specific primers designed
for the eight putative viruses in a 5′- and 3′ – orientation
(Supplementary Table S3) as described by the manufacturer.
Then, 5′-RACE and 3′-RACE PCR amplification was performed
to generate the corresponding cDNA fragments using SeqAmp
DNA Polymerase (Takara Bio USA, Inc.) as described by the
manufacturer. Amplicons were extracted and purified from the
gel using NucleoSpin R© Gel and PCR Clean-Up Kit (Macherey-
Nagel GmbH & Co. KG). All amplicons were cloned using In-
Fusion HD Cloning Kit and Stellar Competent Cells (Takara Bio
USA, Inc.). Recombinant plasmids were extracted with Thermo
Scientific GeneJET Plasmid Miniprep Kit and sequenced by
GATC Biotech, Germany. Nested PCR was often necessary in
order to precisely amplify the virus 3′ termini. Here, the screening
forward primers (Supplementary Table S3) in combination with
the Universal Primer mix (UPM) from the SMARTer R© RACE
5′/3′ KIT (Takara Bio USA, Inc.) were used to generate amplicons
to act as template for nested PCR. The nested PCR RACE primers
and the Short Universal primer provided by the kit were used.
To obtain the 3′ end terminal sequence of virus 8 a different
primer was designed.

Screening for Virus Incidence by RT-PCR
Amplification
Mycelium from individual isolates was collected and
homogenized using a bead tube holder devide (740469;
Macherey-Nagel; Germany). RNA was isolated and purified
using the Monarch Total RNA Miniprep Kit (T2010S; New
England Biolabs, MA, United States). Efficient RNA extraction
was achieved using the manufacturer’s recommended protocol
for tough-to-lyse samples. Contaminating host DNA was
removed from the extracts using a combination of gDNA
removal columns and DNase I treatment. RNA was eluted in
30 µl volumes and stored at−80◦C.

cDNA was synthesized using the ProtoScript II First Strand
cDNA Synthesis Kit (E6560; New England Biolabs, MA,
United States). Here, oligo d(T)23VN was incubated with the
RNA at 65◦C for 5 min. Next, random primer mix was added
together with ProtoScript II Enzyme and Reaction Mix, followed
by incubation at 25◦C for 5 min, 42◦C for 60 min and denatured
at 80◦C for 5 min.
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FIGURE 2 | Amino acid alignment showing conserved motifs A to E and premotif A within the RdRp of HRV1-8 and selected bunyaviruses. DUGBA, Dugbe virus
(accession number Q66431.1); RSVT, Rice stripe virus (Q85431.1); UUKS, Uukuniemi virus S23 (P33453.1); TSWV, Tomato spotted wilt virus (P28976.1); BUNYW,
Bunyawera virus (P20470); BUNL8, La Crosse virus L78 (Q8JPR2.1); HANTV, Hantaan virus 76-118 (P23456.3). Gray boxes with numbers represent the number of
positions deleted in the MUSCLE alignment.

Virus incidence in the Halophytophthora ssp. isolates was
tested using PCR amplification with virus-specific primers
(Supplementary Table S4). All primers were used to amplify
a fragment of the RdRp gene of each virus and were designed
by Primer 3 2.3.7 under Geneious Prime R© 2020.0.4. Primer
sequences, amplicon sizes and annealing temperatures are shown
in Supplementary Table S4. PCR amplification was performed
with 12.5 µl OneTaq Quick-Load 2X Master Mix with Standard
Buffer (M0486; New England Biolabs, MA, United States), 0.5 µl
of each 10 mM primer, 3 µl of cDNA in a total volume of
25 µl. Cycling conditions were used according to manufacturer’s
recommendations and the annealing temperature of each primer
set was calculated using the on-line tool8 (v1.9.9 May 30).

Amplicons were visualized and separated by electrophoresis
(300 V; 10 min) through 1.5% agarose gels in TBE buffer
(106177; Merck KGaA, Germany) and with DNA Stain G
(39803; SERVA; Germany). Amplicons of the expected lengths
were purified and sequenced in both directions by GATC
BioTech (Eurofins; Konstanz, Germany) with the primers used
in the initial PCR amplification. All the amplicon sequences
were deposited in the GenBank under the accession number
MT277331-349. As an internal control for successful PCR
amplification from viral RNA templates routine amplification
of an actin housekeeping gene (Weiland and Sundsbak, 2000),
was performed simultaneously with primers MIDFWACT and
MIDREVACT (Supplementary Table S4) in all experiments
under identical conditions (Supplementary Figure S1).

Genetic Variability and Phylogenetic
Analysis
Pairwise identities of the nucleotide and amino acid sequences
(Supplementary Tables S5, S6) were obtained after aligning
the eight viral nucleotide and amino acid sequences by
MUSCLE (Edgar, 2004) and calculated using Geneious

8http://tmcalculator.neb.com/

Prime R© 2020.0.4. DnaSP v5 (Rozas et al., 2017) was used to
estimate genetic diversity parameters for strains of the different
Halophytophthora viruses.

In order to search for conserved domains within the putative
viral proteins the NCBI CD-search tool was used9 (Lu et al., 2020).
Viral protein sequences were aligned by MUSCLE (Edgar, 2004)
using Geneious Prime R© 2020.0.4 (Figure 2).

A maximum likelihood phylogenetic tree was constructed
using a rapid bootstrapping algorithm (Stamatakis et al., 2008)
in RAxML-HPC v.8 on XSEDE conducted in CIPRES Science
Gateway (Miller et al., 2010) (Figure 3). Tree search was enabled
under the GAMMA model to avoid thorough optimization of
the best scoring ML tree at the end of the run. The Jones–
Taylor–Thornton (JTT) model was chosen as the substitution
model for proteins. Bootstrapping was configurated with the
recommended parameters provided by CIPRES Science Gateway.
The resulting data were visualized using the software FIGTREE
software version 1.4.410.

RESULTS

Identification of the Mycoviruses
Infecting Selected Halophytophthora
Isolates
A total of 7 out of 73 Halophytophthora isolates (9.6 %)
from three different Portuguese localities were found to
contain one or two dsRNA segments as illustrated by gel
electrophoresis (Table 1 and Supplementary Table S1).
Those isolates which contained dsRNA apparently belong
to three different previously undescribed Halophytophthora
species (Supplementary Table S1). Isolates BD093 and BD094
(Halophytophthora sp. 01) from Ribeira de Odelouca (Silves)

9https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
10http://tree.bio.ed.ac.uk/software/figtree/
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contained a ∼9 kb-dsRNA segment. Isolates BD641, BD647 and
BD654 (H. sp. 04) from Parque Natural da Ria Formosa (Tavira)
contained two different banding patterns with ∼7 and/or ∼9 kb
dsRNA bands (Figure 1). BD665 (H. sp. 03) from Parque Natural
da Ria Formosa in Olhão and BD685 from Parque Natural da Ria
Formosa in Almancil, Loulé, both contained a ∼7 kb segment.
Two of these positive isolates, BD641 and BD647, were chosen
for stranded RNA sequencing.

One sequencing library was prepared from rRNA-depleted
total RNA and generated 3.6 × 1011 75-nucleotide (nt) paired
end (PE) sequence reads (Supplementary Table S2). When
they were assembled against the genome of P. cinamomi as
host reference sequence and 1.15 × 108 PEs mapped. The
unmapped 1.12 × 108 PE reads were selected for the further
investigation. The final contig file had 35,621 contigs (including
548 undetermined bases) with an average length of 894 nt
and a maximum contig length of 21,602 nt. Assembly of the
sequence reads from the final contig file revealed eight potential
virus sequences as evidenced by significant E-values and identity
percentage of their predicted amino acid sequences (Table 2).
The contigs representing the eight potential viruses had different
read numbers and coverage (Table 3), HRV8 had the deepest
coverage and HRV2 the least. The eight sequences identified

11http://www.ncbi.nlm.nih.gov/BLAST

were similar to members of the order Bunyavirales hosted by
fungal pathogens, including Botrytis cinerea (Botrytis cinerea
negative-stranded RNA virus 1, BcNSRV-1, YP_009182153),
Macrophomina phaseolina (Macrophomina phaseolina negative-
stranded RNA virus 1, MpNSRV1, ALD89106.2), oomycetes,
such as Pythium polare (Pythium polare bunya-like RNA virus
1, PpRV1, YP_09551341.1) and arthropod-like insects including
Asellus sp. (Wuhan insect virus 3, AJG39263.1) and crabs (Beihai
sesarmid crab virus 5, APG79283.1) (Table 2). According to
the convention of the International Committee on Taxonomy
of Viruses (ICTV) the eight putative viruses were designated as
Halophytophthora RNA virus (HRV) 1–8 (Table 2).

Virus Genome Organization
Based on our analyses, only ORFs encoding an RdRp
gene were found.

Based on the sequence of the original contigs oligonucleotide
primers were designed to amplify and confirm the terminal RdRp
sequences of the eight viruses (Supplementary Table S4) some
of which, including HRV 1, 2, 3, 4, and 5, were complete or
nearly complete. The remainder of the viral terminal sequences
of HRV6, 7, and 8 were completed by RACE. The eight virus
genomes ranged in size from 7.8 up to 9.3 kb (Table 3) including
a single large ORF encoding an RdRp flanked by 5′ and 3′-
untranslated regions (UTRs) (Figure 4). The longest genome

TABLE 2 | Identification of Halophytophthora viruses’ most similar RdRp sequences in the GenBank based on BLASTX search.

Virus name Acronym GenBank accession numbers Most similar virus in
GenBank

E value Query cover (%) Identity (%)

Halophytophthora RNA virus 1 HRV1 MT277350 Beihai sesarmid crab virus 5 0.0 72 32.73

Halophytophthora RNA virus 2 HRV2 MT277351 Botrytis cinerea
negative-stranded RNA virus 1

0.0 52 32.40

Halophytophthora RNA virus 3 HRV3 MT277352 Botrytis cinerea
negative-stranded RNA virus 1

0.0 54 32.13

Halophytophthora RNA virus 4 HRV4 MT277353 Pythium polare bunya-like RNA
virus 1

0.0 82 38.35

Halophytophthora RNA virus 5 HRV5 MT277354 Pythium polare bunya-like RNA
virus 1

0.0 84 37.84

Halophytophthora RNA virus 6 HRV6 MT277355 Pythium polare bunya-like RNA
virus 1

0.0 86 38.30

Halophytophthora RNA virus 7 HRV7 MT277356 Macrophomina phaseolina
negative-stranded RNA virus 1

7e−126 68 28.76

Halophytophthora RNA virus 8 HRV8 MT277357 Wuhan Insect virus 3 0.0 60 58.07

TABLE 3 | Parameters of the genome organization of Halophytophthora viruses and their initial contigs.

Initial contig length (nt) Genome size (nt) Largest ORF (nt) Largest ORF (aa) Function Read Number Coverage

Halophytophthora RNA virus 1 9,341 9,340 8,184 2,728 RdRp 630,934 5,066

Halophytophthora RNA virus 2 9,134 9,152 8,361 2,787 RdRp 15,298 126

Halophytophthora RNA virus 3 9,113 9,184 8,985 2,995 RdRp 716,385 5,850

Halophytophthora RNA virus 4 7,794 7,822 7,716 2,572 RdRp 341,627 3,275

Halophytophthora RNA virus 5 7,103 7,735 6,681 2,227 RdRp 376,150 3,647

Halophytophthora RNA virus 6 6,326 7,742 5,796 1,932 RdRp 843,893 8,175

Halophytophthora RNA virus 7 5,644 6,789 6,705 2,235 RdRp 264,248 2,919

Halophytophthora RNA virus 8* 3,299 7,874 7,788 2,596 RdRp 720,641 6,864

*The length of the 3′ end remains unsure.
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FIGURE 3 | Maximum likelihood tree (RAxML) depicting the phylogenetic relationship of the predicted RdRp of Halophytophthora viruses with other complete RdRp
belonging to related (–) ssRNA viruses from the orders Bunyavirales and Mononegavirales. Nodes are labeled with bootstrap support values. Branch lengths are
scaled to the expected underlying number of amino acid substitutions per site. Nodes are labeled only with bootstrap percentages ≥ 50%. Tree is rooted in the
midpoint. Halophytophthora RNA viruses 1-8 (HRV1-8) are represented by their abbreviation names. Family classification and the corresponding pBLAST accession
numbers are shown next to the virus names. *Family names proposed by Nerva et al. (2019b) and family Epsilonmycobunyaviridae, proposed in this study. +These
members of the Order Mononegavirales are classified within the family Mymonaviridae.

corresponds to HRV1 (9,340 bp) and the shortest to HRV6
(6,816 bp) (Figure 3 and Table 3).

Based on the amino acid (aa) sequence analysis of the eight
viral ORFs all of them contained conserved regions belonging to
pfam04196, Bunyavirus RdRp, which is the solitary member of
the superfamily cl20265. Taken in turn, HRV1 has a conserved

region ranging from aa 1454–1759 (expect value 1.01 e−11);
HRV2 from aa 1036–1394 (E-value: 9.37 e−13); HRV3 from aa
1239–1588 (E-value: 5.11 e−10); HRV4 from aa 735–1208 (E-
value: 1.51 e−07); HRV5 from aa 716–1301 (E-value: 1.53 e−07);
HRV6 from aa 1132- 1421 (E-value: 4.89 e−06); HRV7 from
aa 1204-1771 (E-value: 6.24e−10); HRV8 from aa 894 to 1515
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FIGURE 4 | Representation of the RdRp organization of the eight viruses found in Halophytopthora spp. Boxes represent the ORFs detected and they are shown in
the direction of the original contig, from which primers for RT-PCR screening and RACE were designed. Primer names are indicated next to their position in the
nucleotide sequence, primers were designed and named based on the orientation of the original stranded contig, which in the case of HRV3 and 5 it was genomic
and in the case of HRV1, 2, 4, 6, 7, and 8, it was antigenomic. Numbers represent the genome length.

(E-value: 1.27 e−30) and from aa 615 to 806 (E-value: 7.55
e−06). The alignment of the RdRps of HRV1-8 with other viral
sequences indicated the presence of the typical conserved motifs
in RdRps of bunyaviruses (Kormelink et al., 2011) with certain
variability (Figure 2): motif A (DxxxWx), where HRV1-3 had
an arginine (R) instead of lysine (K) before the tryptophan (W),
motif B (XGxxNxxSS), motif C (SDD), motif D (KK) and motif E
(ExxSx). Premotif A with the three basic residues inside (K, R and
R/K) and, downstream, the glutamic acid (E), were also identified.
In addition, the conserved aa triplet TPD, typical of bunyaviruses
(Muller et al., 1994), was identified in HRV1-7 (but not in HRV8)
in positions 160, 107, 321, 83, 87, 282, and 160, respectively. The
doublet RY was strictly conserved in HRV1, 4-8 in positions 894,
754, 757, 970, 1212 and 894, respectively, and partly conserved in
HRV2 and 3 (positions 205 and 1019, respectively), which had R
(arginine) and N (asparagine) instead of Y (tyrosine).

Phylogenetic Relationships Between the
Halophytophthora Viruses and Other (−)
ssRNA Viruses
An examination of the phylogenetic relationships between the
Halophytophthora viruses and other (−) ssRNA viruses retrieved
from the GenBank shows that they cluster with unclassified
viruses with genomic affinities of the order Bunyavirales
(Figure 3). HRV1 to 7 are very closely related to one another
and form a cluster with MpNSRV1, BcNSRV-1 and PpRV1.
This cluster includes other bunyaviruses described in invertebrate

species representing different metazoan phyla including sesarmid
crabs (Beihai sesarmid crab virus 5) and nematodes (Soybean
cyst nematode bunya-like virus 1, SCN-BLV1). HRV8 differs
from HRV1-7 and is grouped in a different cluster with a
virus apparently hosted by Aselus sp. insects (Wuhan insect
virus 3), which are phylogenetically closer to reported members
of bunyavirus families including Tospoviridae, Fimoviridae,
Peribunyaviridae, Hantaviridae, and Phenuiviridae. All HRV1-8
appeared distanced from members of the family Mymonaviridae
in the order Mononegavirales.

HRV Occurrence in the
Halophytophthora Isolate Collection
A total of four out of 95 Halophytophthora isolates (4.2%)
from one sampling locality (Parque Natural da Ria Formosa,
Santa Luzia, Tavira) resulted to host one or more of the eight
Halophytophthora viruses described in this study. The most
abundant was HRV6, which was present in 4 isolates (BD641,
BD647, BD650, and BD654); HRV1 and HRV8 in 3 isolates
(BD641, BD647, and BD654). HRV7 in isolates BD641 and
BD647; HRV3 in isolates BD641 and BD654; HRV5 is in isolates
BD647 and BD654, and HRV2 and HRV4 seem to be only present
in isolate BD647.

While isolates BD093, BD094, BD665, and BD685 contained
dsRNA elements (results not resulted) they were unrelated
to the bunyaviral dsRNAs described as determined by RT-
PCR (Supplementary Table S1). In some cases, e.g., HRV6 in
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TABLE 4 | Genetic parameters of the partial RdRp nucleotide
sequences of HRV strains.

Species N Sites Net sites S h Hd π AvNumDif

HRV1 3 708 704 51 3 1.00 0.05 34

HRV2 1 – – – – – – –

HRV3 2 701 700 52 2 1.00 0.07 52

HRV4 1 – – – – – – –

HRV5 2 655 654 80 2 1.00 0.12 80

HRV6 4 523 523 50 4 1.00 0.05 28

HRV7 3 473 473 34 3 1.00 0.05 23

HRV8 3 659 652 65 3 1.00 0.07 44

(–) not assessed; (N) Number of isolates; (Sites) length of the sequence,
(Net sites) length of the sequence analyzed; (S) number of segregating sites;
(h) number of haplotypes; (π ), nucleotide diversity estimated by the average
number of differences per site between two sequences; (AvNumDif) average
number of differences.

BD650, dsRNA elements were not visualized by gel staining
but RT-PCR confirmed the presence of a virus (Supplementary
Table S1). Isolates BD641 and BD647 contained two and one
dsRNA elements, respectively (Table 1 and Figure 1), which
have not been correlated with HRV1-8 by RT-PCR using
dsRNA as a template.

Genetic Diversity of HRV
At the nucleotide level (Supplementary Table S5), the highest
pairwise identity between viruses was HRV2 and 3 (57.05%)
followed by HRV2 and 3 (39.00%). Conversely, the lowest
pairwise identity was between HRV1 and 7 (23.43%). At the
amino acid (aa) level (Supplementary Table S6), HRV2 and 3
also have the highest pairwise identity (47.48%), followed by
HRV5 and 4 (39.91%). And, HRV7 and 8, the lowest (9.00%).

The genetic variability of the partially sequenced RdRp genes
of the eight Halophytophthora virus strains was also assessed for
those viruses that were hosted in more than one isolate (Table 4).
All of the isolates appear to have very high haplotype diversity
with HRV5 possessing the highest nucleotide diversity (0.12) and
segregating sites (80). Conversely, HRV7 seems to be the least
genetically diverse virus with a low nucleotide diversity (0.05) and
the lowest number of segregating sites (34).

DISCUSSION

Traditional dsRNA extraction procedures were used to
identify the potential presence of viruses in a collection of
Halophytophthora spp. isolates from estuarine ecosystems in
southern Portugal. Subsequently, stranded RNA sequencing
followed by de novo contig assembling and comparative
BLAST searches were used to identify eight putative novel viral
sequences in two dsRNA-hosting isolates (Figure 1) belonging
to the same Halophytophthora species (H. sp. 04, Supplementary
Table S1). Primer-specific RT-PCR and 5′ and 3′ RACE were
performed to confirm the presence and complete the sequences
of each virus. All eight viral sequences contained elements
of RdRp genes and bunyavirus motifs (Figure 2). Their eight
virus genomes ranged in size from 6.8 to 9.3 kb (Table 3).

BLAST analysis revealed that the eight viruses were significantly
similar in sequence (ca. 30% identity; Table 2) to a number of
unclassified bunya-like viruses isolated from different fungi,
oomycetes, insects and crabs (Table 2). HRV8 differs from
HRV1-7 and appears in a phylogenetic outgroup and is 58.07%
similar to Wuhan insect virus 3 which is apparently hosted by
Asellus sp. in China.

The overall pairwise nucleotide and aa identity of the eight
viruses was 30.7 and 16.6%, respectively. HRV2 and 3 appear
to one another apparently share identities of 57.05 and 47.80%
at the nucleotide and aa levels, respectively. The remainder of
the pairwise sequence comparisons (PASC) between the HRV
isolates reveal lower identities of 40 and 20% at the nucleotide
and aa levels (Supplementary Tables S5, S6). Analysis of the
RdRp of HRV1-8 illustrate that they differ > 10% between one
another and with their most similar matches in the GenBank.
Since the primary classification criteria for genus and species
used currently are based on pairwise sequence comparisons
(PASC) and phylogenetic analyses, the viruses discovered in this
investigation may constitute eight novel virus species, designated
as Halophytophthora RNA Virus 1-8 (HRV1-8).

Bunyaviruses are enveloped viruses with a genome consisting
of three ssRNA segments (called L, M, and S), the S RNA encodes
the nucleocapsid protein, the M glycoproteins and the L segments
encode the RNA polymerase. Each genome segment is coated by
the viral nucleoproteins (NPs) and the polymerase (L protein)
to form a functional ribonucleoprotein (RNP) complex, which
is necessary for the RNA replication and gene transcription
(reviewed in Ferron et al., 2017). However, in our study we have
only discovered the L segment. Our result does not categorically
rule out the existence of M and S segments but their copy number
might be very low compared to the polymerase fragment. The
NGS performed in this investigation may not have analyzed
sufficient reads to identify smaller HRV genomic components
but this is unlikely because it has been established that 100
M reads is sufficient to identify all RNAs of interest and the
rRNA depletion worked successfully. A quality check for the
presence of rRNAs was performed by mapping the reads on
rRNA animal and human databases and <5% of rRNA reads
were detected. Similar to HRV1-8 a number of other bunya-
like mycoviruses, including BcNSRV-1 (Donaire et al., 2016),
MpNSRV1 (Marzano et al., 2016), and PpRV1 (Sasai et al., 2018)
apparently only possess an RdRp. However, it is more plausible
that the genome description of these viruses (including HRV1-
8) is incomplete. The putative NP and other non-structural (Ns)
associated proteins are likely not conserved enough to be detected
by homology, in contrast to what has been observed in other
viruses including PrNSRV1 (Nerva et al., 2019a) and LeNSRV2
(Lin et al., 2019).

The phylogenetic tree shown in Figure 2, which includes
HRV1-8 and 42 (−) ssRNA viruses, illustrates that HRV1-
7 cluster with several unclassified viruses found in a variety
of fungal, oomycete, nematode, crab and insect hosts, and a
virus detected by NGS approach from the stool of a rhesus
monkey (Macaca mulatta) (Zhao et al., 2017). More specifically,
HRV4-6 are significantly similar in sequence to PpRV1 from
the Arctic and Antarctic moss pathogen Pythium polare (Sasai
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et al., 2018). HRV2, 3, and 7 are closer to BcNSRV-1 from the
air-borne fungal pathogen Botrytis cinerea (Donaire et al., 2016)
and MpNSRV1 from the soil-borne pathogen Macrophomina
phaseolina (Marzano et al., 2016), and HRV1 is grouped with
Combu negative-strand RNA mycovirus isolate C3B from the
soil fungus Mucor irregularis in Belém, a port municipality in the
Brasilian Amazon (accession number MH990635, unpublished),
and Beihai sesarmid crab virus 5 detected by NGS from a
sesarmid crab mix from Beihai, China. Sesarmid crabs have
an important ecological role in mangrove ecosystems because
they consume large amounts of leaf litter (Lee, 1998). HRV8
has some sequence similarity with classified bunyaviruses and,
particularly, with Wuhan insect virus 3, hosted by an individual
of Asellus sp. This genus of isopod crustaceans is known
to feed primarily on decaying vegetation, microscopic algae
and small invertebrates (reviewed in O’Callaghan et al., 2019).
Since Halophytophthora spp. are the first colonizers of fallen
mangrove leaves (Newell and Fell, 1992; Man in ’t Veld et al.,
2019) and estuarine grasses due to their ability to produce
large amounts of chemotactic zoospores (reviewed in Man in
’t Veld et al., 2019) they likely share their habitat with insects,
nematodes and crustaceans, where they undoubtedly interact.
As an example, the class Oomycota includes marine holocarpic
pathogens of nematodes, algae, crustaceans and molluscs (Thines
and Choi, 2016), thus some of the viruses discovered by NGS
of invertebrates may have originated from their gut mycoflora
and/or parasites. Even though arthropods are thought to be
the ancestral hosts of bunyaviruses (Marklewitz et al., 2015) if
viruses with similar genomes continue to be discovered in other
invertebrates, protists and fungi (Shi et al., 2018) this theory may
have to be redefined.

The phylogenetic tree shown in Figure 2 has similarities
with previous phylogenetic studies that group novel bunya-like
mycoviruses separated from most of the currently classified
bunyavirus families (Donaire et al., 2016; Marzano et al.,
2016; Sasai et al., 2018; Nerva et al., 2019b). And, it also
supports the proposal of different mycobunyaviral families
(Nerva et al., 2019b): family Deltamycobunyaviridae with
MpNSRV1, BcNSRV1 also includes PpRV1 and HRV1-7;
two other families (proposed alfamycobunyaviridae and
betamycobunyaviridae) including myco-phlebo-like viruses
(Lin et al., 2019; Velasco et al., 2019; Chiapello et al., 2020) and
the family Gammamycobunyaviridae with CcNSRV2, RsNSV4
and Plasmopara associated mycobunyavirales-like RNA Virus
2 (Nerva et al., 2019b; Chiapello et al., 2020). In addition, we
propose a fifth family (Epsilonmycobunyaviridae) for HRV8
and Wuhan insect virus 3. As indicated previously (Nerva et al.,
2019b), this classification is not formal as it has not been accepted
by ICTV but it sheds light on the current knowledge of novel
bunya-like mycoviruses.

The genetic variability of the partial RdRp sequences of HRV1-
8 showed that they have a relatively low nucleotide but high
haplotype diversity since all the strains were different (Table 4).
In this regard, HRV5 possessed the highest nucleotide variability
(0.12). It is well established that bunyavirus replication is error-
prone and results in genome modification. Such modifications
can accumulate over the time either due either to random

genetic drift or as genetic adaptations of the virus to a new
environment and/or a new host (Schneider and Roossinck, 2001;
Li and Roossinck, 2004; Barr and Fearns, 2010). Novel viral
genotypes can be generated through mutation, recombination
and reassortment. Viral reassortment seems to be a powerful
mechanism underlying the evolution of the Bunyavirales order
(Coupeau et al., 2019). Briese et al. (2013) pointed out that
most bunyaviruses described so far are actually reassortants
of existing or extinguished viruses. This process leads to the
generation of progeny viruses with novel genomic organizations
as a result of gene shuffling between coinfecting closely related
bunyaviruses (Coupeau et al., 2019). The same might exist
for HRV1-8, which are only hosted by four Halophytophthora
isolates, BD641, BD647, BD650 and BD654. These isolates
belong to the same species (H. sp. 04) and were sampled
from the same site, Parque Natural da Ria Formosa, Santa
Luzia, Tavira, Portugal. As this yet undescribed Halophytophthora
species has a functional homothallic sexual system it is feasible
that the viruses were transferred between isolates during the
mating process or by simple contact between vegetative hyphae,
resulting in the coinfection of their viruses. Interestingly,
HRV1-8 only occur in H. sp. 04 despite the presence of
at least seven Halophytophthora species at the Santa Luzia
site. The viruses were not found in isolates of H. sp. 04
at the Ria de Alvor, Alvor, Portimão site, suggesting that
HRV1-8 might only be transmitted intraspecifically between co-
occurring Halophytophthora isolates. Little is known about virus
transmission in oomycetes. The only studies concerning virus
transmission in oomycetes were performed in P. infestans, where
several viruses are stably maintained (Cai et al., 2019). For
instance, individual zoospores show 100% inheritance of PiRV-
3 (Cai et al., 2019). In addition, PiRV-2 is readily horizontally
transmitted by hyphal anastomosis, and vertically transmitted
by asexual reproduction through sporangia (Cai et al., 2019).
However, attempts to transfer PiRV-2 into apparently vegetative
incompatible P. infestans isolates failed. Although several studies
have demonstrated that interspecies transmission does occur
naturally (Van Diepeningen et al., 1998; Melzer et al., 2002;
Vainio et al., 2011), mycovirus transmission typically occurs
between strains of the same fungal species. Viruses spread
readily through fungal hyphal networks crossing pores contained
in compartmenting septa. However, as potential detrimental
cytoplasmic elements, their transmission between strains may be
restrained by a genetic self/non-self recognition system termed
vegetative incompatibility (vic), mating type incompatibility or
intersterility (Leslie and Zeller, 1996). Oomycetes lack septa and
in some cases, as in the genus Phytophthora, they are prompted to
interspecific hybridizations which play a major role in speciation
and species radiations in diverse natural ecosystems (Schardl
and Craven, 2003; Jung et al., 2017a). However, viruses might
also be recognized as invasive compounds of the cytoplasmatic
entities limiting their transfer to another species. While vic and
mating systems serve as antiviral defense mechanisms at the
population level, RNA silencing or RNA interference (RNAi)
provides a fungal antiviral defense response at the cellular level
(Nuss, 2011). Antiviral RNA silencing has been demonstrated
in different types of fungi including the chestnut pathogen
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Cryphonectria parasitica (Segers et al., 2007) or the arbuscular
mycorrhizal fungus Gigaspora margarita (Silvestri et al., 2020)
but also in oomycetes (Fahlgren et al., 2013). Since the RNAi
machinery targets possible detrimental non-self-nucleic acids,
virus-infected host organisms are normally enriched with viral
small interfering (si) RNA. For instance, in an analysis of the
virus-derived small RNAs following high-throughput sequencing
of the Halophytophthora isolate BD647 small RNA reads were
mapped to HRV6 (unpublished data).

CONCLUSION

A combination of traditional and new technologies has been
used to identify and sequence eight bunya-like mycoviruses
that coinfect isolates belonging to the same species of
Halophytophthora from southern Portuguese estuaries. However,
any relationships between the different viruses and any effects of
the viruses on the phenotype, virulence and host range of their
oomycete host remain unknown.
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