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Salt stress threatens the achievement of sustainable global food security goals by
inducing secondary stresses, such as osmotic, ionic, and oxidative stress, that are
detrimental to plant growth and productivity. Various studies have reported the beneficial
roles of microbes in ameliorating salt stress in plants. This review emphasizes salt
tolerance and endurance mechanisms (STEM) in microbially inoculated (MI) plants that
ensure plant growth and survival. Well-established STEM have been documented in MI
plants and include conglomeration of osmolytes, antioxidant barricading, recuperating
nutritional status, and ionic homeostasis. This is achieved via involvement of P
solubilization, siderophore production, nitrogen fixation, selective ion absorption, volatile
organic compound production, exopolysaccharide production, modifications to plant
physiological processes (photosynthesis, transpiration, and stomatal conductance),
and molecular alterations to alter various biochemical and physiological processes.
Salt tolerance and endurance mechanism in MI plants ensures plant growth by
improving nutrient uptake and maintaining ionic homeostasis, promoting superior water
use efficiency and osmoprotection, enhancing photosynthetic efficiency, preserving
cell ultrastructure, and reinforcing antioxidant metabolism. Molecular research in MI
plants under salt stress conditions has found variations in the expression profiles of
genes such as HKT1, NHX, and SOS1 (ion transporters), PIPs and TIPs (aquaporins),
RBCS, RBCL (RuBisCo subunits), Lipoxygenase2 [jasmonic acid (JA) signaling], ABA
(abscisic acid)-responsive gene, and APX, CAT, and POD (involved in antioxidant
defense). Proteomic analysis in arbuscular mycorrhizal fungi-inoculated plants revealed
upregulated expression of signal transduction proteins, including Ca2+ transporter
ATPase, calcium-dependent protein kinase, calmodulin, and energy-related proteins
(NADH dehydrogenase, iron-sulfur protein NADH dehydrogenase, cytochrome C
oxidase, and ATP synthase). Future research should focus on the role of stress
hormones, such as JA, salicylic acid, and brassinosteroids, in salt-stressed MI plants
and how MI affects the cell wall, secondary metabolism, and signal transduction in
host plants.
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INTRODUCTION

Salinity or salt stress is a major threat to agricultural productivity
and global food security. It can affect plant growth and
development and thus reduce the biomass productivity of plants
in arid and semiarid regions. Salt stress is detrimental to plant
growth because it induces osmotic and ionic stress in plants,
leading to reduced water uptake, transpiration, photosynthesis,
and disrupted ionic homeostasis. Moreover, increased levels
of reactive oxygen species (ROS) cause oxidative stress, which
damages DNA, proteins, and membranes (Liu et al., 2016).
Recent studies have confirmed that microbes can induce salt
tolerance and endurance mechanisms (STEM) in plants (Table 1)
to enable growth and development under harsh stress conditions
(Porcel et al., 2016; Barnawal et al., 2017; Chen et al., 2017;
Sapre et al., 2018; Yasin et al., 2018; Jia et al., 2019). The various
functions of STEM mediating this process can be summarized as
follows: (i) conglomeration of osmolytes to abate osmotic stress
(Hajiboland et al., 2010; Talaat and Shawky, 2011; Evelin and
Kapoor, 2014; Elhindi et al., 2017; Wu et al., 2017; Garg and
Bharti, 2018; Hashem et al., 2018); (ii) antioxidant barricading
to block oxidative stress (Bharti et al., 2016; Qin et al., 2016;
Chang et al., 2018; Chu et al., 2019; Ye et al., 2019); (iii)
recuperating nutritional status and ionic homeostasis through
P solubilization, siderophore production, nitrogen fixation, ion
transporter activity, and exopolysaccharide (EPS) production
(Porcel et al., 2016; Elhindi et al., 2017; Zhou et al., 2017;
Chang et al., 2018); (iv) physiological modifications in the
plant (Barnawal et al., 2017; Chen et al., 2017; Elhindi et al.,
2017; Hashem et al., 2018; Ren et al., 2018); and (v) molecular
modification of stress-responsive gene expression (Barnawal
et al., 2017; Yasin et al., 2018; El-Esawi et al., 2019; Jia et al.,
2019). Plant growth-promoting rhizobacteria (PGPR) have been
reported to have mitigative effects on the growth of pepper
(Yasin et al., 2018), wheat (Bharti et al., 2016; Barnawal et al.,
2017), soybean (Khan et al., 2019), oat (Sapre et al., 2018),
Panax (Sukweenadhi et al., 2018), and maize (Chen et al., 2016)
under salt stress conditions. Similarly, colonization by arbuscular
mycorrhizal fungi (AMF) also ameliorated the effects of salt
stress in wheat (Fileccia et al., 2017), rice (Porcel et al., 2016),
watermelon (Ye et al., 2019), and cucumber (Hashem et al.,
2018). The STEM exhibited by PGPR and AMF are illustrated
in Figure 1.

CONGLOMERATION OF OSMOLYTES
AND WATER HOMEOSTASIS TO ABATE
OSMOTIC STRESS

In its initial phase, salt stress can be referred to as physiological
drought because elevated ion levels during salt stress change the
soil texture to reduce soil porosity and decrease water uptake.
Osmolyte conglomeration is a major STEM that improves water
uptake in microbially inoculated (MI) plants. This reduces the
water potential by accumulating osmolytes, such as amino acids
(proline), amines (e.g., glycinebetaine, polyamines), sugars, and
organic acids (e.g., oxalate, malate). In addition to osmotic

adjustment, these osmolytes are responsible for conserving
membrane integrity, protein stability, and ROS scavenging to
ultimately promote their positive effects on plant physiological
functions, such as growth, photosynthesis, and crop yield, during
salt stress (Zou et al., 2013). Proline and glycinebetaine enhance
protein and membrane stabilization to impart osmoprotection
to salt-stressed plants. However, contrasting results regarding
proline production have been reported in MI and non-inoculated
(NI) plants. Increased proline content in NI plants compared to
AMF-inoculated (AI) plants can indicate higher stress conditions.
AI plants show decreased proline content because microbial
colonization helps the plant mitigate the stress. Some studies have
suggested that proline accumulation is a salinity stress indicator
rather than a consequence of mycorrhizal colonization (Sheng
et al., 2011; Echeverria et al., 2013; Evelin et al., 2013; Evelin and
Kapoor, 2014); however, other studies have found higher proline
accumulations caused by AM colonization (Hajiboland et al.,
2010; Talaat and Shawky, 2011; Garg and Baher, 2013; Elhindi
et al., 2017; Hashem et al., 2018). Higher proline levels have been
observed in PGPR-inoculated maize (Ullah and Bano, 2015),
Gladiolus (Damodaran et al., 2014), Mentha (Bharti et al., 2014),
Chrysanthemum (Wang et al., 2018), and Panax (Sukweenadhi
et al., 2018). Increased proline levels in MI plants can be due
to (i) upregulated expression P5CS, a gene involved in proline
synthesis; (ii) increased efficiency of the enzymes P5CS and
glutamate dehydrogenase (involved in glutamate synthesis) given
that proline is synthesized from glutamate; and (iii) arrest of
proline dehydrogenase (responsible for proline degradation)
(Abo-Doma et al., 2016). In the nodules of AI-inoculated pigeon
pea plants, reduced activity of trehalase (trehalose degrading
enzyme) and increased activity of trehalose-6-P synthase and
trehalose-6-phosphatase (enzymes involved in the biosynthesis
of trehalose) led to higher trehalose levels (Garg and Pandey,
2016). Higher concentrations of acetic, malic, citric, oxalic, and
fumaric acids were observed in AI maize plants compared to
NI plants and led to enhanced salinity tolerance (Sheng et al.,
2011). Arbuscular mycorrhizal fungi treatment alters polyamine
levels in plants to impart stress tolerance (Evelin et al., 2013;
Talaat and Shawky, 2013). Evelin et al. (2013) observed increased
spermidine and spermine (Spd + Spm)/putrescine (Put) ratios
in AI fenugreek plants compared to NI plants. Salinity tolerance
in MI plants is advantageous and can correlate with their
ability to join DNA, proteins, and phospholipids. Polyamine
levels were modulated in response to mycorrhizal colonization
in two cultivars of wheat (Sids 1 and Giza 168) under saline
conditions. AM colonization led to higher putrescine but lower
spermidine and spermine levels in Giza 168; however, in Sid
1, a reduction in putrescine and an increase in spermidine and
spermine levels were reported (Talaat and Shawky, 2013). The
accumulation of total soluble sugars (TSS), such as glucose,
sucrose, and maltose, during salt stress in MI plants is another
mode of STEM via osmotic adjustment. Conversion of starch
into dextrins and maltose is accompanied by a- and b-amylases,
respectively. Researchers have confirmed that enhanced salt stress
tolerance in MI plants is due to higher TSS accumulation (Talaat
and Shawky, 2011; Liu et al., 2016; Garg and Bharti, 2018; Zhu
et al., 2018). Arbuscular mycorrhizal fungi inoculation modifies
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TABLE 1 | STEM in various plant species under salt stress.

Microbial species Plant STEM in host plants References

Enterobacter spp. EJ01 Arabidopsis thaliana IAA, increased expression of APX, salt stress-responsive genes such as DREB2b,
RD29A, RD29B, and RAB18 in Arabidopsis

Kim et al., 2014

Claroideoglomus etunicatum Oryza sativa Increased net photosynthetic rate, stomatal conductance, and transpiration rate Porcel et al., 2015

Bacillus spp. and Arthrobacter pascens Zea mays L. P solubilization, siderophore production, osmolyte accumulation, and higher antioxidant
enzyme activity

Ullah and Bano, 2015

Klebsiella, Pseudomonas, Agrobacterium, and
Ochrobactrum

Groundnut IAA production, N2 fixation, phosphate solubilization, ACC deaminase activity, and HCN
production

Sharma et al., 2016

Dietzia natronolimnaea Triticum aestivum Altered ABA signaling cascade upregulated TaABARE and TaOPR1, which upregulated
and increased expression of TaST (a salt stress-induced gene) and proline content

Bharti et al., 2016

Variovorax spp. Pisum sativum Improved plant water relations, ion homeostasis, and photosynthesis Wang et al., 2016

Pantoea dispersa PSB3 Cicer arietinum Decreased Na+ uptake and elevated chlorophyll and K+ uptake as well as relative leaf
water levels

Panwar et al., 2016

Bacillus amyloliquefaciens SQR9 Zea mays Higher chlorophyll and antioxidant production, Na+ exclusion from roots; increased
expression of RBCS, RBCL (RuBisCo subunits), ion transporters (HKT1, NHX1, and
NHX2), and H(C)-Ppase (encoding HC pumping pyrophosphatase)

Chen et al., 2016

Enterobacter spp. UPMR18 Abelmoschus esculentus Increase antioxidant enzyme activities and upregulation of antioxidant pathway genes
(CAT, APX, and GR)

Habib et al., 2016

Bacillus, Marinobacterium, Enterobacter, Pantoea,
Pseudomonas, Acinetobacter, Rhizobium, and
Sinorhizobium

Triticum aestivum L. IAA and siderophore production Sorty et al., 2016

Claroideoglomus etunicatum Oryza sativa Reduced Na+ root-to-shoot distribution, upregulation of OsNHX3, OsSOS1,
OsHKT2;1, and OsHKT1;5 genes

Porcel et al., 2016

Funneliformis Mosseae Cicer arietinum Improved nutrient uptake, reduced chlorophyll pigment damage, and higher RUBISCO
activity

Garg and Bhandari, 2016b

Bacillus subtilis NUU4 and Mesorhizobium ciceri IC53 Cicer arietinum L. Increased proline content and P solubilization and improved nutrient acquisition and
symbiotic performance of rhizobia

Egamberdieva et al., 2017

Bacillus amyloliquefaciens Oryza sativa L. Reduced ABA and higher SA, upregulated production of glutamic acid and proline Shahzad et al., 2017

F. mosseae and R. irregularis Cajanus cajan Higher GR, APX, and SOD activity Pandey and Garg, 2017

Micrococcus yunnanensis, Planococcus rifietoensi, and
Variovorax paradoxus

Beta vulgaris L. N2 fixation, IAA and siderophore production, P solubilization, and ACCd activity Zhou et al., 2017

Microbacterium oleivorans KNUC7074, Brevibacterium
iodinum KNUC7183 and Rhizobium massiliae KNUC7586

Capsicum annum L. High total soluble sugar, proline contents, Chl contents, and activity of several
antioxidant enzymes

Hahm et al., 2017

(Continued)
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TABLE 1 | Continued

Microbial species Plant STEM in host plants References

Rhizophagus Irregularis and Funneliformis mosseae Triticum durum Desf. Improved nutrient use efficiency Fileccia et al., 2017

Bacillus amyloliquefaciens FZB42 Arabidopsis thaliana Upregulated expression of genes correlated to photosynthesis, ROS scavenging, auxin,
Na+ translocation, and JA signaling

Liu et al., 2017

Rhizophagus irregularis Robinia pseudoacacia L. Improved photosynthesis due to higher expression of three chloroplast genes (RppsbA,
RppsbD, and RprbcL) in leaves upregulated expression of three genes (RpSOS1,
RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+

homeostasis in roots

Chen et al., 2017

P. fluorescens SA8 with kinetin (10 mM) Black gram Improvement in water use efficiency, gas exchange, and photosynthetic content Yasin et al., 2018

Funneliformis mosseae and Diversispora versiformis Chrysanthemum morifolium Enhanced uptake root N Wang et al., 2018

Arthrobacter nitroguajacolicus Triticum aestivum L. Higher expression of genes such as Cytochrome P450s, APX, Oligopeptide
transporters (OPTs), ATP binding cassette (ABC) transporters, Sugar/inositol
transporter, ATPase, and ion transporter

Safdarian et al., 2019

C. etunicatum, Rhizoglomus intraradices, and G. mosseae Cucumis sativus Elevated K, Ca, Mg, Fe, Zn, Mn, and Cu content Reduced Na content, higher total
phenol as well as activities of SOD, CAT, APX, and GR

Hashem et al., 2018

Paenibacillus yonginensis DCY84T Panax ginseng Higher nutrient availability and expression of salt-defense-related genes viz. ABA
synthesis genes, ROS scavenging genes, and ion-pump-related genes

Sukweenadhi et al., 2018

Klebsiella spp. Avena sativa rbcL and WRKY1 altered expression levels Sapre et al., 2018

Rhizophagus irregularis Elaeagnus angustifolia L. Higher activities of SOD, CAT, and APX, increased uptake of K+, Ca2+, and Mg2+ Chang et al., 2018

Glomus tortuosum Zea mays Increased Chl content, RuBisCO activity, and net photosynthetic rate Xu et al., 2018

Funneliformis mosseae Citrullus lanatus L. Reduced expression level of PPH (chlorophyll degradation), higher net photosynthesis
rate and increased expression of antioxidant response-related genes Cu-Zn SOD, CAT,
APX, and GR

Ye et al., 2019

Azospirillum lipoferum FK1 Cicer arietinum L. Improved nutrient acquisition, photosynthetic pigment synthesis, and osmolyte content,
and higher antioxidant defense

El-Esawi et al., 2019

Pseudomonas spp. Arabidopsis thaliana Upregulation in LOX2 Chu et al., 2019

Rhizophagus intraradices and Funneliformis mosseae Arundo donax L. Improved nutrient use efficiency Romero-Munar et al., 2019

Rhizophagus irregularis E. angustifolia Improved efficiency of photosystem II and enhanced expression of proteins involved in
secondary metabolism, antioxidant defense, and signal transduction

Jia et al., 2019
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FIGURE 1 | STEM exhibited by PGPR and AMF under salt stress.

leaf sucrose and proline metabolism by regulating the enzymatic
activities responsible for sucrose and proline metabolism to
enhance osmotic tolerance in the host plant (Wu et al., 2017).
Elevated TSS content can be caused by increased photosynthesis,
amylase activity, and increased organic acid levels (Yu et al.,
2015; Garg and Bharti, 2018; Zhu et al., 2018). Studies in MI
chickpea plants have demonstrated that increased salt tolerance
can be achieved by the synthesis of proline, glycinebetaine,
and increasing TSS (Qurashi and Sabri, 2012; Upadhyay and
Singh, 2015). Elevated glycinebetaine levels enhance salinity
tolerance in rhizobacterially primed rice plants (Jha et al., 2011),
AI wheat (Talaat and Shawky, 2011), and maize (Sheng et al.,
2011). According to Rangel (2011), bacteria grown under glucose
concentration have low cAMP levels, but when grown under
carbon starvation, bacteria show higher cAMP levels. However,
the converse is true for eukaryotes. This aspect needs to be
addressed in relation to plant microbial crosstalk under salt
stress conditions. Future research should focus on unraveling
the molecular mechanisms underlying the role of microbes in
promoting osmotic adjustment during salt stress.

ANTIOXIDANT BARRICADING TO
CAULK THE OXIDATIVE STRESS

The hyperosmotic and hyperionic conditions present during
salt stress disrupt cellular redox homeostasis by disrupting the
equilibrium between the generation and elimination of ROS,
leading to oxidative stress as a secondary stress. Reactive oxygen
species target various biomolecules, including nucleic acids,

proteins and fatty acids, to alter cellular function, cause DNA
damage, reduce membrane fluidity, cause lipid peroxidation, and
affect enzymatic activity. It is evident that ROS create oxidative
stress; however, they are also involved in ethylene accumulation,
auxin biosynthesis, and many signaling events (Kaushal, 2019).
Thus, it is essential that an equilibrium is maintained between
ROS generation and ROS scavenging systems to balance oxidative
damage while managing endogenous signaling events. Plants
are equipped with a robust antioxidant system consisting
of enzymatic [superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDHAR), and glutathione reductase (GR)] and non-enzymatic
(cysteine, carotenoids, glutathione, tocopherols, and ascorbate)
constituents. The induction of the antioxidative defense system
has been shown to be another STEM activated in MI plants
to abate salt stress (Talaat and Shawky, 2011; Li et al., 2012;
Bharti et al., 2016; Chang et al., 2018). Higher antioxidant
activities have been observed in AI tomato (Hajiboland et al.,
2010; Latef and Chaoxing, 2011), Sesbania (Abd Allah et al.,
2015), pigeon pea (Pandey and Garg, 2017), and Cucumis
(Hashem et al., 2018) plants during salt stress. Wu et al.
(2016), while investigating the impact of AMF colonization and
salt stress on male and female Populus cathayana seedlings,
observed significant increases in the activities of SOD and
CAT in the roots of AI-colonized plants compared to those
of NI plants; however, CAT activity was similar in the leaves
of AI and NI plants. Three-way ANOVA revealed that the
activities of SOD, POD, and CAT in roots were influenced by
AMF × salt × sex, salt × sex, and AMF × sex, AMF × sex,
and AMF × sex × salt, respectively. This demonstrated that
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the activities of different antioxidant enzymes were variably
affected by the interactions between salt stress, gender, and
AMF. A significant increase in the expression levels of genes
related to the antioxidant response, such as Cu-Zn SOD, CAT,
APX, and GR, was reported during salinity alkalinity stress and
was further enhanced by AMF inoculation, thereby enabling
host watermelon plants to cope with the stress (Ye et al.,
2019). Higher root, stem, and leaf biomass was observed in AI
seedlings of Elaeagnus angustifolia L. during salt stress, which
was attributed to the increased activities of SOD, CAT, and
APX in the leaves relative to those of NI plants (Chang et al.,
2018). In addition to increased activity and expression levels of
CAT, GPOX, APX, SOD, MDHAR, DHAR, and GR, AI Cicer
arietinum plants also demonstrated enhanced levels of GSG,
GSSH, and total glutathione (Garg and Bhandari, 2016a). Similar
observations of STEM involving higher antioxidant barricading
have been reported in rhizobacterially inoculated (RI) plants
(Gururani et al., 2013; Kim et al., 2014; Tewari and Arora,
2014; Ullah and Bano, 2015; Bharti et al., 2016; Kaushal and
Wani, 2016a; Singh and Jha, 2017). A significant increase in
the specific activities of APX (1.4 times), SOD (2.4 times), and
CAT (1.8 times) was observed in RI Solanum plants under salt
stress, and antioxidant enzyme activity was positively correlated
with the mRNA expression levels of the corresponding genes
encoding these enzymes (Gururani et al., 2013). In a similar
study, higher activities of APX and CAT and upregulation of
antioxidant pathway genes (CAT, APX, and GR) were observed
in Enterobacter spp. UPMR18-colonized okra plants, improving
the physiological performance and salt tolerance of the plants
(Habib et al., 2016). In Arabidopsis thaliana roots colonized
with Burkholderia phytofirmans PsJNA, genes involved in ROS
quenching (APX2) were significantly more transcribed, helping
the plant to abate oxidative stress (Pinedo et al., 2015). In PGPR
Dietzia natronolimnaea STR1-colonized wheat plants, the gene
expression of certain antioxidant enzymes (APX, MnSOD, CAT,
POD, GPX, and GR) was enhanced to alleviate salt stress (Bharti
et al., 2016). Higher activities of antioxidant enzymes in MI
plants can correlate with improved nutritional status (Cu, Mn,
and Fe) because these enzymes are in fact metalloenzymes, and
their activities are therefore governed by the presence of these
nutrients (Kohler et al., 2009). Moreover, the activity of these
enzymes also depends on the plant species, microbes, and stress
timing. AI plants were able to abate the effect of salt stress
by enhancing the activity of antioxidant enzymes, including
SOD, CAT, and APX, and increasing ascorbic acid levels, which
correlates with lower lipid peroxidation and electrolyte leakage.
Zn, Cu, Mn, and Fe serve as co-factors for SOD isozymes, and
their increased uptake in AI plants was able to boost SOD activity
(Hashem et al., 2018).

SALINITY TOLERANCE THROUGH
RECUPERATION OF NUTRITIONAL
STATUS AND IONIC HOMEOSTASIS

Salinity can lead to altered nutritional status and ionic
homeostasis in plants, hampering the plant’s productivity.

Microbial colonization during stress improves the physiological
performance of plants with an additional STEM involving
enhanced nutrient uptake and selective ion absorption and
translocation (Evelin et al., 2012; Bharti et al., 2014; Kang et al.,
2014b; Tewari and Arora, 2014; Porcel et al., 2016; Hashem
et al., 2018). The availability of nutrients such as P, N, Mn, and
Fe is restricted in saline soils. Microbial inoculation simplifies
the process of acquiring these nutrients for plants under salt
stress conditions to promote plant health and productivity.
Plant growth-promoting rhizobacteria strains act as phosphate-
solubilizing rhizobacteria to increase the uptake and availability
of P to plants (Prasad et al., 2015; Etesami, 2018). Salt tolerance
was enhanced in PGPR-colonized Mentha (Bharti et al., 2014),
wheat (Upadhyay and Singh, 2015), Chrysanthemum (Zhou
et al., 2017), and groundnut (Shukla et al., 2012) plants due to
enhanced phosphate nutrition. Improved phosphorus absorption
was found in AI plants under mycorrhizal inoculation, even
under salt stress conditions (Sharifi et al., 2007; Al-Khaliel,
2010; Bowles et al., 2016). It is postulated that phosphate is
absorbed and converted to polyphosphate by the extraradical
mycelium. Recent studies have demonstrated the involvement
of AM aquaporins in the translocation of polyphosphate via
mycorrhizal hyphae. Thus, adequate P uptake in AI plants
helps selective ion absorption, limits toxic ions in vacuoles, and
preserves membrane integrity (Evelin et al., 2012) to reverse the
effects of salt stress. However, it has been suggested that enhanced
growth in MI plants was caused by improved photosynthesis
and WUE (water use efficiency) rather than by the increased
mineral uptake (Ruiz-Lozano et al., 1996; Garg and Bhandari,
2016b; Chen et al., 2017). Moreover, Feng et al. (2002) reported
that salt tolerance in AMF plants was conferred by increased
soluble sugar accumulation rather than P levels. Rhizobacterial
strains often secrete siderophores to cope with iron deficiency
in plants surrounded by saline soil. Siderophores are high
affinity low molecular weight Fe (III) chelators that scavenge
Fe3+ to form an iron–siderophore complex that can be readily
solubilized to increase iron availability to plants. Recent studies
have reported enhanced salinity tolerance in rhizobacterially
colonized plants resulting from siderophore production (Shukla
et al., 2012; Sorty et al., 2016; Navarro-Torre et al., 2017; Zhou
et al., 2017). Rhizobacterial strains that produce EPSs improve
plant growth under salt stress through rhizosheath development
around the plant roots, which limits the Na+ influx inside the
stele (Ashraf et al., 2004). In wheat plants, EPS production by
PGPR ameliorated salt stress via fusion of Na+ ions to EPS,
leading to enhanced plant nutrition and growth. EPS adheres to
soil particles to build macro aggregates that stabilize soil structure
and ultimately improve its hydraulic water holding and cation
exchange capacity (Upadhyay et al., 2011a,b).

Salt stress impedes plant growth through elevated levels of
Na+ and a lower K+/Na+ ratio. Bacillus-colonized Gladiolus
plants displayed increased K+ uptake relative to Na+, reducing
the Na+/K+ ratio under saline conditions (Damodaran et al.,
2014). Rhizobacterially inoculated maize plants improved ionic
balance by enhancing root K+ uptake and Na+ exclusion to
confer salt tolerance (Rojas-Tapias et al., 2012). In an interesting
study by Pinedo et al. (2015), PGPR B. phytofirmans PsJN-primed
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Arabidopsis plants were found to sustain salt stress conditions,
and this correlated with altered expression of genes involved in
ionic equilibrium, such as Arabidopsis K+ Transporter1 (KT1),
High-Affinity K+ Transporter1 (HKT1), Sodium Hydrogen
Exchanger2 (NHX2), and Arabidopsis Salt Overly Sensitive 1
(SOS1). Bacillus subtilis GB03-colonized Puccinellia tenuiflora
displayed increased expression of PtHKT1 and PtSOS1 and
downregulated expression of PtHKT2 genes in plant roots.
Thus, limiting Na+ ion uptake in roots and their subsequent
translocation reduced Na+ ion accumulation (Niu et al., 2016).
Higher Na+ concentrations in rhizospheres provide strong
competition against K+ ions, elevating the Na+/K+ ratio and
causing higher stress by disrupting metabolic and physiological
processes. Higher K+/Na+ ratios in AI plants is caused by the
controlled translocation of Na+ ions to aboveground tissues of
host plants and their accumulation in vacuoles. Salinity caused an
escalation in the Na+ shoot to root ratio levels; however, this ratio
was reduced in AMF seedlings (Evelin et al., 2012; Porcel et al.,
2016). Additionally, it has been confirmed that enhanced K+
absorption and reduced Na+ transportation to shoot tissues lead
to higher K+/Na+ ratios in AI plants during salt stress (Sharifi
et al., 2007; Talaat and Shawky, 2011; Estrada et al., 2013a), which
serve to preserve enzymatic processes and protein synthesis.

AMF acts as a primary barrier for absorption of ions during
fungal nutrient uptake from soil or their transportation to host
plants. This is attributed to the capability of AMF to retain
these minerals in intraradical mycelium and vesicles via ionic
accumulation in vacuoles (Mardukhi et al., 2011). This type of
selective ion absorption (higher K+, Mg2+, and Ca2+ uptake;
reduced Na+ uptake) leads to higher K+/Na+, Ca2+/Na+, and
Mg2+/Na+ ratios in Rhizophagus intraradices. In addition, AI
plants have increased Na+ content, up to a certain limit, which
is then reduced at higher salinity levels, suggesting an AMF-
induced buffering effect on Na+ uptake (Hammer and Rillig,
2011). AI-colonized wheat plants showed a significant increase
in yield at various salinity levels that correlated to higher levels
of N, P, and K, and reduced levels of Na+ in the leaves (Talaat
and Shawky, 2013). Arbuscular mycorrhizal fungi improved
K+ ion retention in maize plant tissues following upregulated
expression of ZmAKT2 and ZmSKOR (Estrada et al., 2013b).
A significant increase in K+ levels and decrease in Na+ levels
were observed in AMF plants, suggesting selective uptake of K+
but not Na+ into the xylem of plant roots, which thus increases
the K+/Na+ ratio under salt stress conditions to improve plant
growth (Elhindi et al., 2017). Nitrogen assimilation in AI host
plants is more efficient due to nitrate assimilation and higher
enzyme production in the extraradical mycelia (Evelin et al., 2009;
Kapoor et al., 2013). Enzymatic activities and protein synthesis
were preserved in AI plants by increased nitrate reductase
activity (caused by the elevated nitrate assimilation), increased
K+ accumulation, and an improved K+/Na+ ratio (Talaat and
Shawky, 2014). Wang et al. (2018) reported enhanced N uptake
by plant roots in AI plants, which increased root length and
root and shoot weight, to be the major mechanism underlying
enhanced salt tolerance in Diversispora versiformis-colonized
Chrysanthemum morifolium. Increased absorption of nutrients
including Fe, K, Ca, Fe, Zn, and Mg, but restricted Na and Cl

uptake in AI-colonized plants has been reported as a STEM
to maintain ionic equilibrium and mitigate the effects of salt
stress (Evelin et al., 2012; Kapoor et al., 2013). During salt stress,
increased rhizospheric Na+ levels obstruct Ca2+ absorption and
therefore disrupt the Ca2+:Na+ ratio of host plants, ultimately
decreasing their hydraulic conductivity and disturbing Ca2+

signaling. Improving nutritional status is essential for conserving
membrane integrity in AI plants. Mycorrhizal association
increased Ca2+ and Mg2+ absorption by plant roots, even under
soil salinity (Giri and Mukerji, 2004; Sharifi et al., 2007). Ca2+

levels were increased in Piriformospora indica -colonized barley
plants, leading to the activation of signal transduction pathways
to enhance stress tolerance in host plants (Alikhani et al.,
2013). Given that Mg2+ is centrally located in the chlorophyll
molecule, deceases in its uptake can reduce chlorophyll content
and photosynthesis and eventually hamper plant growth. In AI
host plants, an increase in Mg2+ uptake increases chlorophyll
concentration to boost photosynthesis and plant performance
while under stress conditions (Abdel Latef and Chaoxing, 2014).
Enhanced salt tolerance in Rhizophagus irregularis-colonized
E. angustifolia seedlings was correlated with increased K+, Ca2+,
and Mg2+ uptake. Additionally, AM symbioses altered root
architecture, and extraradical mycelia improved mineral uptake.
K+ accumulation was increased in the roots and leaves of AI
seedlings, leading to an enhanced K+/Na+ ratio in the plants and
suggesting a STEM in plants (Chang et al., 2018).

MODIFICATIONS IN PLANT
PHYSIOLOGICAL STATUS

Microbially induced STEM includes phytohormonal
modifications and alterations in other physiological processes,
such as gas exchange, photosynthesis, and nutrient and water
uptake. Various studies have established the role of microbes in
alleviating the negative effects induced by salt stress on plant
physiological performance (Porcel et al., 2015; Chen et al., 2017).

Phytohormonal Modulations
Microbes can promote plant growth during salt stress by altering
the hormonal status of NI plants. Various phytohormones,
including auxins, gibberellins, cytokinin, ethylene, ABA, JA,
and SA, are involved in signaling events during plant–
microbe interactions that can rescue plants under stress
conditions. Numerous studies have reported roles for bacteria
in phytohormonal modulations in response to salt stress,
but there are relatively few studies related to AMF-mediated
phytohormonal salt stress tolerance in host plants. Production
of auxins, such as indole acetic acid (IAA), by PGPR strains
has been well documented in RI plants and ensures plant
survival during salt stress (Egamberdieva, 2009; Jha et al.,
2012; Sharma et al., 2016; Sorty et al., 2016; Navarro-Torre
et al., 2017). Rhizobacterially inoculated wheat plants showed
elevated IAA levels in their rhizospheres compared to NI
plants, which led to improved plant growth and survival under
stress conditions (Tiwari et al., 2011). Higher root growth was
reported in Pseudomonas chlororaphis TSAU13-primed wheat
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seedlings, tomato, and cucumber plants. IAA production by
PGPR P. chlororaphis TSAU13 altered phytohormonal levels in
plants and consequently enhanced stress tolerance compared to
NI plants (Egamberdieva and Kucharova, 2009; Egamberdieva,
2012). Higher IAA levels in wheat plants inoculated with PGPR
strains Arthrobacter protophormiae and D. natronolimnaea
enabled host plants to survive salt stress (Barnawal et al.,
2017). Chickpea plants co-inoculated with IAA-synthesizing
rhizobacterial strains (B. subtilis NUU4 and Mesorhizobium ciceri
IC53) exhibited increased root and shoot biomass, along with
enhanced nodule formation relative to untreated plants and
plants treated solely with M. ciceri IC53 (Egamberdieva et al.,
2017). Similar observations of increased IAA levels have been
reported in PGPR inoculated peanut (Sharma et al., 2016),
barley (Cardinale et al., 2015), and wheat (Singh and Jha, 2016;
Sorty et al., 2016). Plant growth-promoting rhizobacteria can
modulate GA levels in RI plants (Kang et al., 2014a,b). Increased
endogenous levels of gibberellins in Pseudomonas putida H-2-3
primed soybean plants (Kang et al., 2014b) and improved plant
growth in salt stress conditions. Although cytokinin production
is common in microbial strains and imparts stress tolerance to
inoculated plants (Liu et al., 2013), very few studies have reported
the role of cytokinin in MI plants. Higher proline content, in
addition to increased shoot and root biomass, has been reported
during salt stress in soybean plants inoculated with the cytokinin
synthesizing rhizobacterial strains Arthrobacter, Azospirillum,
and Bacillus (Naz et al., 2009). Accelerated ethylene synthesis
above threshold values while under stress conditions restricts
plant growth by negatively affecting root development and seed
germination. However, rhizobacterial strains possessing ACCd
can limit ethylene levels by cleaving the ethylene precursor, 1-
aminocyclopropane-1-carboxylate (ACC), to produce ammonia
and a-ketobutyrate. Various studies have reported plant growth
promoted by ACCd-producing PGPR strains that also alleviates
salt stress (Ali et al., 2014; Bharti et al., 2014). Nadeem et al. (2009)
reported that ACCd-producing PGPR strains (Pseudomonas
fluorescens, and Enterobacter spp.) improved the mineral status
of maize plants, thereby helping them to counteract salt stress.
Priming chickpea plants with ACCd-producing Pantoea dispersa
PSB3 led to decreased Na+ uptake and elevated chlorophyll
levels and relative leaf water levels, resulting in increased pod
number and weight, biomass, and seed weight during salt
stress (Panwar et al., 2016). Pea plants primed with ACCd-
producing Variovorax paradoxus 5C-2 displayed root to shoot
K+ ionic flow and Na+ ion root deposition, which led to
elevated K+/Na+ ratios in the shoots. Moreover, a higher
photosynthesis rate and decreased stomatal resistance caused the
plant biomass to increase, thus enhancing stress tolerance (Wang
et al., 2016). Enterobacter spp. UPMR18-treated okra plants
displayed higher antioxidant enzyme activities and increased
transcription of ROS pathway genes (Habib et al., 2016). Abscisic
acid is a major stress phytohormone capable of alleviating abiotic
stress by mediating the important physiological processes of
stomatal opening and photosynthesis. Enhanced root and shoot
growth were observed in rice plants treated with ABA-producing
endophytic bacteria (Shahzad et al., 2017). D. natronolimnaea
STR1-treated wheat plants showed enhanced salt tolerance via

alteration of the ABA signaling cascade, which was confirmed by
upregulation of TaABARE (ABA-responsive gene) and TaOPR1
(12-oxophytodienoate reductase 1) genes (Bharti et al., 2016).
Treatment of maize plants with Bacillus amyloliquefaciens SQR9
conferred salt stress tolerance; treated plants counteracted
increased ABA levels and exhibited enhanced chlorophyll levels,
glutathione content, and K+/Na+ ratios (Chen et al., 2016).
A significant increase in JA content and decrease in SA were
recorded during salt stress in soybean plants (Kang et al., 2014b).
Increased nutrient acquisition and salt stress tolerance were
observed in maize plants upon inoculation with SA-synthesizing
Serratia marcescens (Lavania and Nautiyal, 2013). Rice plants
treated with B. amyloliquefaciens RWL-1 have been shown to
have elevated endogenous SA levels and lower endogenous JA
and ABA levels compared to plants treated with GA3 and water
(Shahzad et al., 2016). Treatment with B. megaterium highlighted
the role of JA-Ile turnover in the recovery of Arabidopsis plants
from salt stress (Erice et al., 2017). Elevation of photosynthetic
pigments and shoot biomass was reported in soybean plants
under salt stress conditions in response to gibberellins produced
by Aspergillus fumigatus (Khan et al., 2011). Decreased ABA
production was found to regulate transpiration rate in cucumber
plants colonized by AMF. However, JA and SA synthesis was
increased upon AMF inoculation, which decreased oxidative
damage to enhance salt stress tolerance (Hashem et al., 2018). In
another study, higher levels of JA and its precursor, OPDA, were
found in Digitaria eriantha colonized by R. irregularis under salt
stress conditions, demonstrating the key role of JA in conferring
salt tolerance to plants (Pedranzani et al., 2016). Strigolactones
are the latest class of phytohormones found to be involved
in adventitious root formation, reproductive development, and
stress responses. A positive correlation was found between ABA
and strigolactones in AMF-colonized Sesbania. Raised ABA levels
caused higher H2O2 production, which led to increased SA
synthesis and subsequently protected mycorrhizal plants from
salt stress (Ren et al., 2018). Aroca et al. (2013) reported that
strigolactone production was induced in AM-colonized lettuce
plants under salt stress conditions and was correlated to ABA.
More research studies targeting the role of AMF in altering
phytohormonal levels in plants during salt stress are needed.

Improved Photosynthesis and Other
Physiological Changes
Arbuscular mycorrhizal fungi-inoculated plants sustain higher
chlorophyll and carotenoid levels through enhanced Mg2+

ion uptake (Evelin et al., 2012; Hashem et al., 2015), which is
otherwise restricted by salt stress. Physiological changes of AI
and RI plants also included a higher quantum yield of PSII and
increased net photosynthetic rate (Talaat and Shawky, 2014;
Chen et al., 2016, 2017; Hidri et al., 2016; Wang et al., 2016;
Yasin et al., 2018) relative to NI or control plants. Glycinebetaine
preserves the activities of RuBisCO and rubisco activase involved
in CO2 fixation and secures PSII pigment-protein complexes
(Talaat and Shawky, 2014) to confer salt stress tolerance to plants
(Porcel et al., 2016; Hu et al., 2017). Higher RuBisCO activity
has been reported in AMF plants (Garg and Bhandari, 2016b;

Frontiers in Microbiology | www.frontiersin.org 8 August 2020 | Volume 11 | Article 1518

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01518 August 24, 2020 Time: 17:25 # 9

Kaushal Microbial Induced STEM

Chen et al., 2017) and is correlated with increased RprbcL gene
expression (Chen et al., 2017). AM symbiosis alleviates the
physiological drought effects on photosynthesis by improving
the water status of colonized plants through increases in their leaf
area and stomatal conductance (Chen et al., 2017). Arbuscular
mycorrhizal fungi can protect the photosystems by reducing
non-photochemical quenching in inoculated plants relative
to uninoculated ones and thus enhance their photosynthetic
efficiency under salt stress conditions (Hu et al., 2017). Higher
stomatal conductance and strong photosystem efficiency in
AMF-colonized plants reduced photorespiration and lowered
ROS production, which subsequently conferred salt stress
tolerance (Ruiz-Sánchez et al., 2010). In AM rice plants under salt
stress conditions, the enhanced quantum yield of photosystem
II and reduced non-photochemical quenching-maintained
photosynthesis, transpiration, and stomatal conductance led to
increased biomass (Porcel et al., 2015). Ye et al. (2019) reported
that AMF alleviated the decrease in the maximum photochemical
efficiency of Photosystem II (Fv/Fm), photochemical quenching
and increase in non-photochemical quenching (NPQ) observed
in salt-stressed watermelon plants. Numerous studies have
reported higher WUE, stomatal conductance, transpiration rate,
and photosynthesis in AI plants exposed to salt stress compared
to non-colonized plants (Sheng et al., 2008; Evelin et al., 2012;
Elhindi et al., 2017). Wu et al. (2015) investigated the role of AMF
in different sexes of P. cathayana during salt stress. Fv/Fm was
elevated in males compared to females. Moreover, the improved
efficiency of photosystem II and the antioxidant machinery
in mycorrhizal seedlings alleviated the effects of salt stress.
Increases in Fv/Fm, NPQ, and ETR were observed in the leaves
of AI E. angustifolia compared to non-mycorrhizal plants under
salt stress (Jia et al., 2019). Increased electrical conductivity
was noticed in AMF-colonized plants and is caused by the
reduced electrolyte permeability of root plasma membranes
relative to non-mycorrhizal plant roots (Garg and Manchanda,
2008). Increased hydraulic conductance (Aroca et al., 2007),
root system modifications (Campanelli et al., 2013; Alqarawi
et al., 2014), and an improved water status were observed
in AI plants under salt stress (Chen et al., 2017). Improved
water status in AMF plants correlates with the expression of
aquaporin genes (RpPIP1;1, RpPIP1;3, RpPIP2;1, RpTIP1;1,
RpTIP1;3, RpTIP2;1) in leaves and roots of plants under salt
stress; however, expression levels vary according to plant species,
salinity levels, and location or tissue of expression (Chen et al.,
2017). Higher WUE was observed in sweet basil plants colonized
with Glomus deserticola compared to control plants under salt
stress (Elhindi et al., 2017).

Significant increases in fresh and dry weight, plant height, and
chlorophyll content were observed in PGPR-inoculated pepper
plants relative to NI plants (Hahm et al., 2017). An increase in
chlorophyll levels in PGPR-inoculated plants (Shukla et al., 2012;
Bharti et al., 2014) and higher WUE of inoculated capsicum
plants enabled them to survive under salt stress conditions (Yasin
et al., 2018). Higher chlorophyll production, Na+ exclusion
from roots, and antioxidant production enhanced salt stress
tolerance in maize plants inoculated with B. amyloliquefaciens
(Chen et al., 2016). Increased photosynthetic rates and decreased

stomatal resistance enhanced the plant biomass of PGPR-
inoculated pea plants (Wang et al., 2016). An interesting
study by Chatterjee et al. (2018) found that treatment of
rice plants with ACC deaminase-containing Brevibacterium
linens RS16B decreased volatile organic compound (VOC)
emissions and enhanced photosynthesis by reducing the
availability of ACC and ACC oxidase activity, suggesting that
research on volatile emissions during salt stress can reveal
new insights related to stress severity and the initiation of
secondary metabolism with stress progression. Ansari et al.
(2019) demonstrated that PGPR inoculation increased root
length, chlorophyll pigments, leaf number, relative water
content (RWC), stomatal conductance (gs), and photosynthesis
rate (Pn) in alfalfa plants under salt stress. Pseudomonas
inoculation improved leaf number, chlorophyll pigments,
nodule number, Na+ levels, and K+/Na+ ratios; however,
Hartmannibacter inoculation improved carotenoid content,
RWC, and K+ levels. Higher gs and chlorophyll pigments
enhanced Pn in RI alfalfa plants. Inoculation with Bacillus
megaterium strain A12 ameliorated salt stress in tomato plants
by restoring redox homeostasis and photosynthesis to improve
plant growth. Higher expression levels of the PBGD gene
(encodes the enzyme needed for chlorophyll biosynthesis)
enhanced chlorophyll content in tomato plants. In addition,
reduction of ROS levels upregulated expression of the PsbA gene
(encodes D1 protein that repairs stress damaged photosystem).
Increased cytokinin production diminished the degradation
of photosynthetic proteins and elevated the expression levels
of genes related to photosystems under stress conditions
(Akram et al., 2019).

MOLECULAR ALTERATIONS

Multi-omics approaches, such as metagenomics,
metatranscriptomics, and metaproteomics, can be utilized
to enhance our understanding of plant behavior under stress
conditions. However, it remains a challenge to integrate data
from various “omics” tools, although this would be a step
toward understanding the complex crosstalk between plants
and microbes (Meena et al., 2017). STEM affecting various
physiological and biochemical processes under salt stress
involve variations in expression levels of genes, including
ion transporters, aquaporins, and 11-pyrroline-5-carboxylate
synthetase (P5CS), and variable levels of antioxidant defense
enzymes, late embryogenesis abundant protein photosynthesis,
antioxidant defense ionic homeostasis, and other signaling
events. However, molecular alterations are categorized
as a separate STEM to provide a better understanding, at
transcriptional and proteomic levels, of how the plant response
to salt stress is influenced.

Transcriptional Studies
Upregulation of SOS1, NADP-Me2 (NADP-malic enzyme),
EREBP (ethylene-responsive element binding proteins), and
SERK1 (somatic embryogenesis receptor-like kinase) and
downregulation of GIG (glucose-insensitive growth) and
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SNF1 (serinethreonine protein kinase SAPK4) expression were
observed in B. amyloliquefaciens SN13-inoculated rice plants
exposed to salt stress. Modulated gene expression mitigated
osmotic and ionic stress in plants to improve plant performance
under stress conditions (Nautiyal et al., 2013). A significant
increase in the transcriptional levels of AtRSA1 and AtWRKY8
and decrease in the expression of AtVQ9 (AtWRKY8 antagonist)
in PGPR-treated Arabidopsis plants suggested enhanced plant
performance under stress conditions resulting from microbial
colonization. AtRSA1 forms a complex with the AtRITF1
transcription factor to regulate Na+ ion homeostasis and ROS
detoxification during salt stress; AtWRKY8 and AtVQ9 are also
involved in preserving ion homeostasis at reduced Na+/K+
ratios in the cytosol (Sukweenadhi et al., 2015). Upregulated
expression of genes involved in stress responses [e.g., RAB18
(LEA), RD29B regulons of ABA-responsive elements], proline
biosynthesis (e.g., P5CS1 and P5CS2), and MPK3 and MPK6
stress responses have also been reported (Kim et al., 2014).
Upregulated expression of the TaCTR1 (Serine/Threonine
protein kinase–ethylene responsive) and TaDREB2 (encodes
a transcription factor enhancing abiotic stress tolerance in
plants) genes was reported in wheat plants inoculated with
PGPR strains (Kaushal and Wani, 2016b; Barnawal et al., 2017).
B. subtilis GB03-inoculated P. tenuiflora plants showed less Na+
accumulation in response to upregulated expression of PtHKT1;5
(involved in the acquisition of Na+ from xylem) and SOS1 (role
in Na+ efflux) and downregulation of PtHKT2;1 (involved in
Na+ absorption in roots) to ameliorate salt stress in host plants
(Niu et al., 2016). Improved physiological performance led
to salt tolerance in B. amyloliquefaciens SQR9-treated maize
plants and correlated to significant increases in the expression of
RBCS and RBCL (RuBisCo subunits), ion transporters (HKT1,
NHX1, and NHX2), and H(C)-Ppase (encoding HC pumping
pyrophosphatase). However, the expression of NCED (encoding
9-cisepoxycarotenoid dioxygenase) was downregulated in RI
seedlings (Chen et al., 2016). Increased expression of ionic
transporters, such as TaNHX and TaHKT1, and the salt-induced
stress gene TaST (reduces intracellular Na+ level, raises K+
content) was observed in PGPR-primed plants relative to
NI plants. In addition, upregulated expression of the ABA-
responsive gene (TaABARE), 12-oxophytodienoate reductase, or
TaOPR1 (enhances antioxidant response) induced expression of
TaMYB and TaWRKY, which led to expression of stress-related
genes, including TaST. Plant tolerance to salt stress correlated
with higher gene expression levels of CAT, APX, MnSOD,
POD, GPX, and GR, which together modulated the antioxidant
defense system to ultimately confer salt tolerance on inoculated
host plants (Bharti et al., 2016). Volatile organic compounds
generated by B. subtilis reduced gene expression of the high-
affinity K+ transporter (HKT1) in the roots of inoculated
Arabidopsis plants to limit Na+ uptake by the roots (Zhang
et al., 2008). Higher transcriptional levels of genes involved in
ABA signaling (RD29A and RD29B), ROS quenching (APX2),
and detoxification (GLYI7) were reported in Burkholderia
phytofirmans PsJN-colonized Arabidopsis plants. Additionally,
expression of (LOX2) or Lipoxygenase2 (involved in JA
biosynthesis) was downregulated; however, expression patterns

of ion transport genes were varied between roots and shoots.
Arabidopsis K+ Transporter 1 or AKT1 (plasma membrane
transporter responsible for K+ uptake in roots) expression levels
decreased in roots and rosettes after 24 h of salt stress. Sodium
Hydrogen Exchanger 2 or NHX2 (a vacuolar antiporter engaged
in ion compartmentalization) was upregulated in roots at all time
points, but its expression varied at different points depending on
salt stress and bacterial inoculation status. Salt Overly Sensitive
1 or SOS1 is another plasma membrane Na+/H+ antiporter
(involved in Na+ removal from the cytoplasm). Bacterial
inoculation caused upregulation of SOS1 expression in roots
after 2 h, and expression was then downregulated after 24 and
72 h. However, in rosettes, increased expression levels were
detected after 2 and 24 h. Bacterial inoculation downregulated
the expression of High-Affinity K+ Transporter 1 or HKT
1 (sodium transporter) in roots under salt stress. Moreover,
expression of HKT 1 was upregulated in the rosettes of non-
stressed and colonized plants at 24 h but was downregulated at 24
and 72 h regardless of bacterial inoculation status (Pinedo et al.,
2015). Arthrobacter woluwensis AK1-treated soybean plants
exhibited upregulated expression of various genes, including
GmLAX1 (auxin resistant 1), GmAKT2 (potassium channel),
GmST1 (salt tolerance 1), and GmSALT3 (salt tolerance-related
gene on chromosome 3) whereas downregulated expression
of the ion transporter genes GmNHX1 (chloride channel
gene) and GmCLC1 (Na+/H+ antiporter) was observed (Khan
et al., 2019). A significant increase in the expression of stress
related genes, such as CAPIP2 (aquaporin), stress related
CaKR1, CaOSM1 (osmotin), and CAChi2 (Class II chitinase),
was observed in PGPR inoculated capsicum plants, resulting
in the modulation of various biochemical and physiological
mechanisms to alleviate salt stress in plants (Yasin et al., 2018).
In MI wheat plantlets, transcriptional studies found upregulated
expression of P450s genes (CYP98A1, CYP734A5, CYP72A15,
and CYP710A1) involved in redox reactions and stress responses,
APX, and Nicotianamine synthase (NAS), which is responsible
for iron absorption. Moreover, higher expression of oligopeptide
transporters (membrane proteins able to transport different
substrates), ATP binding cassette (ABC) transporters (proteins
mediating energy-driven transport of various substrates), and
HKT and NHX antiporters conferred salt stress resistance on
inoculated plants (Safdarian et al., 2019). Increased expression of
PIP genes was reported in AMF plants compared to non-AMF
plants, which improved root water permeability and ameliorated
the effects of salt stress conditions (Aroca et al., 2007; Jahromi
et al., 2008). Mycorrhizal colonization boosted the expression
levels of three chloroplast genes (RppsbA, RppsbD, and RprbcL)
(encoding the larger subunit of rubisco) in leaves and genes
involved in ion homeostasis (RpSOS1, RpHKT1, and RpSKOR).
Higher expression of RpSOS1 and RpHKT1 decreased Na+
accumulation, while increased RpSKOR expression improved
K+ accumulation in the leaves of mycorrhizal plants, leading
to higher K+/Na+ ratios. Additionally, upregulated expression
of RpPIP1;1 and RpPIP1;3 was observed in both leaves and
roots; however, RpPIP2;1, and RpTIP1;1 were found to be more
highly expressed in the roots of mycorrhizal plants under salt
stress (Chen et al., 2017). Higher nitrogen uptake in salt-stressed
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mycorrhizal colonized wheat plants correlated with increased
expression of NRT1.1 (involved in nitrate uptake in roots);
however, the expression of ammonium transporters (AMT1.1
and AMT1.2) was unaffected. In addition, expression levels of
genes related to drought stress (AQP1, AQP4, PIP1, DREB5,
and DHN15.3) were lower compared to non-mycorrhizal
wheat plants (Fileccia et al., 2017). Mycorrhizal colonization
alleviated the reduced expression levels of RBCL (involved
in photosynthesis) induced by salt stress; however, salinity
raised expression levels of PPH (responsible for chlorophyll
degradation), which was significantly increased after AMF
colonization. Furthermore, genes involved in antioxidant defense
responses (APX, Cu-Zn SOD, CAT, and GR) showed increased
expression levels that were further enhanced by mycorrhizal
treatment (Ye et al., 2019).

Proteomics Studies
Microbial colonization under salt stress leads to up- and
downregulated expression of various proteins. Proteomic analysis
can reveal the protein profile of inoculated plants to decode
the STEM. Detected proteins can be utilized for genetic
transformation to boost salt tolerance in crops. Molecular studies
performed by Alikhani et al. (2013) revealed that proteome trends
in P. indica-inoculated barley plants were different from those
of NI plants under salt stress. The abundance of the protein
peroxiredoxins-2E-2 (component of antioxidant defense system)
was increased in both PGPR-colonized and NI plants in the
presence of 300 mM NaCl; however, the increase in protein
level was greater in P. indica-primed plants. Higher expression
levels of RBCS (small chain of RUBISCO) were reported
in P. indica-colonized plants compared to NI counterparts.
Increased expression levels of xyloglucan endotransglycosylase
or XET (involved in cell wall biosynthesis) and tubulin-folding
cofactor A (involved in cell wall division) were observed in
inoculated plants; however, there was no change in expression
levels in inoculated plants (with 300 mM NaCl). Furthermore,
the expression of papain-like cysteine proteases (cell signaling
pathways) was reduced in NI plants, whereas its expression
levels were increased in inoculated plants, enhancing salt stress
tolerance. Proteomic analysis in AI E. angustifolia seedlings
showed interesting results. Increased expression of a core
protein of PS II (D1 precursor processing PSB27) involved in
stabilizing the PSII reaction center was found in chloroplasts,
and mitochondria showed increased levels of various energy-
related proteins, such as NADH dehydrogenase, iron-sulfur
protein NADH dehydrogenase, cytochrome C oxidase, and ATP
synthase, to provide energy for cellular activities. Phosphoribosyl
transferase or APT (enzyme in tryptophan synthesis) was also

upregulated in response to AMF colonization. Upregulation of
four peptidyl prolyl cis-trans isomerases (peptidyl-prolyl cis-
trans isomerase (FKBP12), peptidyl-prolyl cis-trans isomerase
(CYP18-1), FKBP-type peptidyl-prolyl cis-trans isomerase 5
isoform 1, and peptidyl-prolyl cis-trans isomerase (FKBP62),
along with four molecular chaperones, prefoldin subunit 1,
prefoldin subunit 2, heat shock 70 kDa, and partial and
small hsp 17.3 kDa, was observed in mycorrhizal seedlings
to enable correct protein folding under salt stress. In this
study, upregulated expression of proteins involved in signal
transduction, such as G proteins, plasma membrane Ca2+

transporter ATPase (PMCA), calcium-dependent protein kinases
(CDPKs), and calmodulin (CaM), enhanced Ca2+ signaling.
Thus, AMF colonization enhanced expression of proteins
involved in secondary metabolism, antioxidant defense, and
signal transduction to lead to increased salt tolerance in
E. augustifolia seedlings (Jia et al., 2019).

CONCLUSION AND
RECOMMENDATIONS

Microbially inoculated plants induce STEM to counteract
salt stress and enhance plant productivity. STEM can
promote nutrient uptake, enhanced WUE and photosynthesis,
preservation of ionic homeostasis and osmoprotection, and
efficient antioxidant metabolism. In recent years, various studies
have reported that plant–microbe interactions can develop STEM
in host plants; however, some aspects of this phenomenon remain
poorly understood. Future studies should investigate the role of
phytohormonal crosstalk (e.g., BR, JA, and strigolactones) in MI
plants to understand their role in eliciting stress signals during
salt stress. Metabolomic studies should aim to understand the
STEM underlying the secondary metabolism in salt-stressed
MI plants. There is also a need for studies investigating the
nutritional uptake of sulfur in MI plants under salt stress,
given its involvement with glutathione and cysteine (involved
in ABA synthesis). Moreover, as the cell wall is the first line
of defense during salt stress, subsequent studies should target
biochemical and molecular alterations relating to the cell wall
of MI plants. Insights into the plant immune system triggered
in response to microbial partners while under stress conditions
should also be addressed to harness plant microbial interactions
for agricultural benefits.
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