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Over the last few years, an increasing number of studies have reported the existence of
an association between the budding yeast Saccharomyces cerevisiae and insects. The
discovery of this relationship has called into question the hypothesis that S. cerevisiae
is unable to survive in nature and that the presence of S. cerevisiae strains in
natural specimens is the result of contamination from human-related environments.
S. cerevisiae cells benefit from this association as they find in the insect intestine a
shelter, but also a place where they can reproduce themselves through mating, the
latter being an event otherwise rarely observed in natural environments. On the other
hand, insects also take advantage in hosting S. cerevisiae as they rely on yeasts as
nutriment to properly develop, to localize suitable food, and to enhance their immune
system. Despite the relevance of this relationship on both yeast and insect ecology, we
are still far from completely appreciating its extent and effects. It has been shown that
other yeasts are able to colonize only one or a few insect species. Is it the same for
S. cerevisiae cells or is this yeast able to associate with any insect? Similarly, is this
association geographically or topographically limited in areas characterized by specific
physical features? With this review, we recapitulate the nature of the S. cerevisiae-
insect association, disclose its extent in terms of geographical distribution and species
involved, and present YeastFinder, a cured online database providing a collection of
information on this topic.

Keywords: Saccharomyces cerevisiae, insect, yeast-insect association, biogeography, Saccharomyces
cerevisiae evolution, Saccharomyces cerevisiae yeast ecology

SACCHAROMYCES CEREVISIAE IN NATURAL
ENVIRONMENTS

Saccharomyces cerevisiae is widely used in the industry for winemaking, brewery, and bakery, as
animal and human food supplement or probiotic (Palma et al., 2015), and for biofuel, flavorings,
pharmaceuticals, and enzymes production (e.g., invertases, lactases) (Parapouli et al., 2020). The
physiology and genetics of this yeast have been studied in depth, as well as molecular mechanisms
shared with other eukaryotes (Resnick and Cox, 2000). Despite this broad range of applications,
the natural diffusion and evolution of this yeast remained unexplored until recently. The ability to
overgrow other microorganisms in fermentable substrates and the widespread use of S. cerevisiae
in the industry of fermented products lead to the hypothesis that this yeast has been domesticated
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and is confined to human activities (Gallone et al., 2016).
However, over the last few decades, this hypothesis was
compromised by the isolation of strains from natural
environments (e.g., soil, barks, and water) and by the observation
of the existence of strains genetically different from those used
in the industry (Liti, 2015). A new hypothesis was proposed: a
neutral model in which S. cerevisiae is functionally adapted to
a range of different environments (Goddard and Greig, 2015).
Despite improving our understanding of the natural spread of
the budding yeast, these new findings did not clarify (i) how the
yeast can survive when nutrient sources are lacking, (ii) where
it was before humans started using it to ferment food, and (iii)
how can this not airborne microorganism move among different
environmental sources. The identification of the association
between the budding yeast and social wasps helped fill in several
of the gaps in our knowledge on S. cerevisiae natural cycle.
Previous studies have already shown some aspects of yeast-insect
associations (e.g., Stefanini, 2018 and Blackwell, 2017). This
review recapitulates the current knowledge exclusively on
associations involving S. cerevisiae also addressing new aspects:
the extent and geographical distribution.

SACCHAROMYCES
CEREVISIAE-INSECTS ASSOCIATION:
THE YEAST SIDE OF THE COIN

Social wasps and hornets are omnivorous insects that move
around a broad foraging area and visit substrates that can be
colonized by S. cerevisiae strains. Among the substrates visited
by wasps, grape skin is the main source of environmental
S. cerevisiae strains, even if this yeast represents only a minor
component of the residing microbial communities. Polistes
dominula (social wasps) and Vespa crabro (hornets) host in
their intestines S. cerevisiae cells all year long, thus providing
an environment in which yeasts can reside and survive in the
seasonal period with less access to sugary sources (Stefanini et al.,
2012). Insects can spread S. cerevisiae cells among environmental
substrates and, also, share them within the colony, passing it
among adults and to larvae (Stefanini et al., 2012). Thus, the
capability of spreading yeast cells increases exponentially with the
increase of the insect colony. This has pivotal importance for the
diffusion of S. cerevisiae cells in the wild, especially considering
that the increase in the demographic rate of the wasp colony
occurs at the same time of grape ripening (Stefanini et al., 2012).
Hence, the high frequency of S. cerevisiae cells isolated after
the ripening period correlates these insects to the dispersion of
yeasts in the vineyard (Stefanini et al., 2012). In addition to social
wasps and hornets, other insects bear and spread S. cerevisiae
cells, as proven in laboratory conditions for Drosophila spp.
(Christiaens et al., 2014) and confirmed in the wild for bees. In
fact, S. cerevisiae strains isolated from vineyard specimens are
highly similar to strains isolated from bees caught in the same
geographic region, suggesting that insects are responsible for the
local dispersion of yeast cells (Goddard et al., 2010). Interestingly,
the genetic and phenotypic diversity of S. cerevisiae does not
affect the capability of different yeast strains to survive in the

insect intestines (Dapporto et al., 2016; Ramazzotti et al., 2019)
or to produce volatile metabolites attracting insects (Palanca
et al., 2013). Hence, the whole genetic and phenotypic variability
of S. cerevisiae can potentially attract and be vectored among
natural specimens thanks to insects (Stefanini et al., 2012;
Dapporto et al., 2016).

Saccharomyces cerevisiae mating is infrequent in nature,
possibly because wild yeast cells are mainly diploid and hence
need to face sporulation and germination to be able to mate with
other strains, conditions that rarely occur in nature (Cubillos
et al., 2009). Contrarily, yeast mating does occur within insect
intestines (Stefanini et al., 2016; Figure 1). S. cerevisiae spores can
survive in the intestinal tract of Drosophila melanogaster, and, by
passing through the insect intestines, the sporal ascus is broken
and hence the mating among yeast strains is facilitated (Reuter
et al., 2007). The differences among chemical and physiological
characteristics of different tracts of the insect intestine could
offer a series of environmental changes (Engel and Moran,
2013) promoting yeast sporulation and germination, and hence
mating, as shown by experiments carried out in the laboratory
(Stefanini et al., 2016). Hence, the intestine not only promotes
the yeast ascus break, but also diploid yeast cells sporulation and
yeast spores germination, and thus allowing the mating among
potentially any yeast strain and ploidy (Stefanini et al., 2016).

SACCHAROMYCES
CEREVISIAE-INSECTS ASSOCIATION:
THE INSECT SIDE OF THE COIN

The S. cerevisiae-insect association has beneficial effects not only
on the yeast, but also on its counterpart: insects (Figure 1).

The capability to detect food is fundamental for insect
survival to obtain the nourishment and find an environment
suitable for oviposition. S. cerevisiae attracts various insect
species including D. melanogaster (Becher et al., 2012), Vespula
germanica, and V. vulgaris (Babcock et al., 2017) to food, which
is otherwise less appealing. The main features making this
yeast capable of enticing insects are the presence of functional
mitochondria (Schiabor et al., 2014) and the capability of
producing volatile compounds, such as isoamyl acetate and
ethyl acetate (Christiaens et al., 2014), which are produced at
high levels by yeasts isolated from wasp intestines (Dapporto
et al., 2016). Overall, these findings show that the presence of
fermenting S. cerevisiae cells is a strong cue used by insects
to detect sugary substrates. It is fair to consider that, besides
S. cerevisiae, other microorganisms present on sugary substrates,
such as Hanseniaspora spp. and Gluconobacter spp. (Bueno
et al., 2019), and vectored by insects (Palanca et al., 2013;
Quan and Eisen, 2018) could produce aromas attracting insects.
Interestingly, species-specific attractions have been observed.
While D. melanogaster is attracted by S. cerevisiae, D. simulans
is indifferent to this yeast species (Gunther et al., 2019). At
the same time, D. melanogaster and the subgenus Sophophora
are preferentially attracted to baits seeded with Hanseniaspora
uvarum than to S. cerevisiae and forest-dwelling Drosophila
species (e.g., D. tripunctata and the guarani group) are more
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FIGURE 1 | Schematic representation of the impacts of the S. cerevisiae-insects association on the yeast and on the insect. Red arrows indicate the impacts of the
association on yeasts, blue arrows indicate the impacts of the association on insects. The gray box indicates effects of the association occurring within the insect
intestines, both on S. cerevisiae and on the insects. VOCs = Volatile Organic Compounds.

attracted by S. cerevisiae than by H. uvarum (Batista et al., 2017).
The differential preferences of Drosophila spp. towards different
yeast species may mirror what happens in the yeast–insect–
morning glory ecosystem, where beetles and yeasts (mostly
Metschnikowia spp. and Candida spp.) reciprocally influence the
occupancy of associations-specific niches (Stefanini, 2018).

In the laboratory, insect rearing is based on the use of
media providing the full range of nutrients to support larval
development but also appealing to female adults and promoting
egg deposition (Piper, 2017). To this aim, it is a common
practice to use media including S. cerevisiae (Becher et al.,
2012; Grangeteau et al., 2018). In fact, the yeast supports larval
development mostly by providing nicotinic acid, vitamin B,
pantothenic acid, inositol, choline, beta-alanine, and pimelic acid
(Tatum, 1941). The presence of S. cerevisiae in the larval diet
also defines the fitness and behavior of juvenile and adult insects
(Grangeteau et al., 2018). Providing live S. cerevisiae cells to
Drosophila larvae improves the copulation rate, increases the
cuticular hydrocarbon content, extends the insect life, and makes
adults preferring food supplemented with the yeast, compared to
a diet based on yeast extracts or lacking the yeast (Grangeteau
et al., 2018; Murgier et al., 2019). Transcriptional analyses
carried out on D. melanogaster adults developed from germ-
free larvae showed the over-expression of genes involved in
several metabolic pathways, if the insect diet was supplemented
with live S. cerevisiae compared to single or multiple bacterial

species (Elya et al., 2016). Despite this effect being observed
only in intestinal cells and not at the whole-body level, hence
suggesting the impact of yeast on insects is only local, it has
to be considered that over the developmental process genes
expression is rapidly regulated by multiple factors. Thus, time-
course transcriptional analyses would be required to appreciate
at the molecular level the impact of S. cerevisiae on insect
development. The impact of S. cerevisiae on development
and related traits varies according to the yeast species. For
instance, even if a substrate supplemented with the budding
yeast improves the survival of adult mosquitoes (Culex pipiens)
compared to substrates supplemented with other yeast species,
it is not preferred for oviposition by gravid C. pipiens females
(Díaz-Nieto et al., 2016).

As in bigger animals, even in insects the fate and impact
of the encountered microorganisms are often determined by
the host immune system. The insect immune system includes a
cellular and a humoural component (Lemaitre and Hoffmann,
2007). Although several receptors on immune cells have been
described as responsible for the recognition of microorganisms,
their role in the response to S. cerevisiae and yeasts in general
is still unclear (Lu and St Leger, 2016). Conversely, an entire
pathway of the humoral response is responsible for the insect’s
reaction to yeasts: the Toll signaling pathway (Roh et al., 2009).
When triggered by yeast cell wall β-glucans and proteases, this
pathway induces the expression of Drosomycin, an antimicrobial
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FIGURE 2 | Biogeography and extent of the S. cerevisiae-insect association. For each geographical location, the outer ring of the pie chart shows the percentages
of insects in which S. cerevisiae has been (gray) or has not been (black) identified. The inner parts of pie charts show the types of insects investigated in the
corresponding area and the relative proportions; colors are indicated for each insect group at the bottom of the figure. The group “others” refers to insects poorly
represented: ants, lacewings, termites, mites, and mosquitoes.

agent (Gottar et al., 2006). Insects can also fight potential yeast
pathogens through the Duox response pathway, which induces
the production of not-specific antimicrobial reactive oxygen
species (Hoang et al., 2015). To note, the vast majority of
information on the insect immune response to S. cerevisiae
has been obtained by using the Drosophila spp. model that
presents perturbations in the Toll pathway (Alarco et al., 2004),
making this insect susceptible to the budding yeast (Lionakis,
2011). Alternatively, the use of Galleria mellonella, naturally
susceptible to S. cerevisiae, yielded fundamental information
that could not be gathered with fruit flies. For instance,
G. mellonella provided the first insights on the capability of
a pre-exposure to S. cerevisiae cells or glucans to protect the
insect against a subsequent infection with a lethal dose of
Candida albicans (Bergin et al., 2006). This immune-enhancing
elicited by S. cerevisiae has been recently confirmed in the
social wasps Polistes dominula, which become more resistant to
Escherichia coli infections upon pre-immunization with the yeast
(Meriggi et al., 2019).

BIOGEOGRAPHY AND DIFFUSION

Insects can colonize habitats with extremely different
characteristics and are considered, as defined by E.O. Wilson,
“the little things that run the world” (Wilson, 1987). The large
number of insect species makes it impossible to comprehensively
analyze their biodiversity. Of the estimated 6 million species,
only 1 million are known (Larsen et al., 2017). For a matter
of clarity, we will report here information on insects broadly
grouped. We have, however, created a detailed on-line database

that can be browsed by the reader (YeastFinder,1). S. cerevisiae
has been identified, through isolation or metabarcoding, in the
intestine or on the body of several insects all over the World
(Figure 2). Notably, studies carried out so far lack consistency
in the methods adopted for yeast isolation, and this may greatly
impact the capability of identifying S. cerevisiae associated with
insects. However, in this review we will neglect the heterogeneity
of the adopted methods, leaving the exploration of this topic to
dedicated future studies. Interestingly, S. cerevisiae has not been
found in insects caught in South Africa (SAf), Ecuador, Thailand,
Indonesia, Nigeria (the only study on termites), Iran, Japan (J),
Malaysia, and Central America (CA: Panama, Costa Rica, and
Guatemala). It is worth to consider that the investigations carried
out in Ecuador and Malaysia (Freitas et al., 2013), Thailand
(Saksinchai et al., 2015), Indonesia (Basukriadi et al., 2010),
Nigeria (Adelabu et al., 2019), and Iran (Siavoshi et al., 2018)
are related to individual studies, hence the lack of identification
of S. cerevisiae could be ascribed to the procedure adopted for
yeast isolation. On the other hand, multiple studies failed in
identifying S. cerevisiae in association with beetles, honeybees
and mosquitoes, butterflies, mites, and moths collected in J (Toki
et al., 2012; Ninomiya et al., 2013), SAf (de Vega et al., 2012; Steyn
et al., 2016), and CA (Lachance et al., 2001a,b, 2006, Suh and
Blackwell, 2006; Suh et al., 2006, 2007; Rivera et al., 2009; Urbina
et al., 2013; Ravenscraft et al., 2018). The lack of identification of
S. cerevisiae in insects of these areas could indicate an unusual
situation that is worth to be further investigated. All the insects
investigated in New Zealand, Taiwan, and Seychelles Islands bore
S. cerevisiae (Figure 2). However, the number of cases studied

1www.stefaninilab.com/tools/
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in these areas is low (n = 6), and hence this observation may be
poorly representative of the real situation.

Multiple studies investigating various insects in other
locations (shown in Figure 2) indicated an even geographical
distribution of S. cerevisiae. The budding yeast has not been
isolated from ants, lacewings, termites, mites, and mosquitoes
(the group “others” in Figure 2), which were, however, poorly
investigated (two species in different locations at most) (Carreiro
et al., 1997; Lachance et al., 2003; Suh et al., 2005; Nguyen
et al., 2006; Steyn et al., 2016; Siavoshi et al., 2018). Similarly,
S. cerevisiae has not been found in butterflies (n = 11 species in
different locations) and moths (n = 4) (Suh et al., 2006; Witzgall
et al., 2012; Ravenscraft et al., 2018). Interestingly, only the
0.03% of beetles, which have been widely investigated (n = 236),
bear S. cerevisiae (Kurtzman and Robnett, 1998; Lachance et al.,
2001a,b, 2006; Six, 2003; Suh and Blackwell, 2004, Suh et al., 2005,
2006, 2007, 2013; Delalibera et al., 2005; Nguyen et al., 2006; Rosa
et al., 2007; Rivera et al., 2009; de Vega et al., 2012; Hui et al.,
2012; Toki et al., 2012; Freitas et al., 2013; Kaltenpoth and Steiger,
2013; Ninomiya et al., 2013; Urbina et al., 2013; Cline et al., 2014;
Ren et al., 2014, 2015; Liu et al., 2016; Tanahashi and Hawes,
2016; Wang et al., 2016; Briones-Roblero et al., 2017; Chai et al.,
2019). Similarly, bees only accidentally bear S. cerevisiae, with
only 1 occurrence over 21 reported cases (Sandhu and Waraich,
1985; Lachance et al., 2003; Rosa et al., 2003; Daniel et al.,
2013; Charron et al., 2014; Saksinchai et al., 2015). Conversely,
S. cerevisiae has been found in a large portion of investigated
flies, fruit flies, honey-bees, and wasps (29, 57, 20, and 71%,
respectively) (Phaff and Knapp, 1956; Batra et al., 1973; Sandhu
and Waraich, 1985; Morais et al., 1993, 1994; Rosa et al., 1994;
Lachance et al., 1995, 2003, 2006; Suh et al., 2005; Nguyen et al.,
2006, 2007; Basukriadi et al., 2010; Goddard et al., 2010; Chandler
et al., 2012; de Vega et al., 2012; Hamby et al., 2012; Stefanini
et al., 2012; Freitas et al., 2013; Buser et al., 2014; Charron et al.,
2014; Lam and Howell, 2015; Saksinchai et al., 2015; Batista et al.,
2017; Deutscher et al., 2017; Jimenez et al., 2017; Piper et al.,
2017; Quan and Eisen, 2018; Siavoshi et al., 2018; dos Santos
et al., 2019; Meriggi et al., 2019; Park et al., 2019). A few possible
scenarios could explain the higher occurrence of S. cerevisiae
in these groups of insects: (i) they are more prone to visit
human-related environments, such as wineries and vineyards,
that are likely to host higher amounts of S. cerevisiae cells, (ii)
they are more attracted by substrates inhabited by the budding
yeast compared to other insects, (iii) diet and physical-chemical
intestine conditions facilitate the housing of S. cerevisiae.

CONCLUSION AND PERSPECTIVES

According to the reports gathered for this review, it appears that
every group of insects can bear S. cerevisiae, but only further

and more detailed studies investigating a higher number of a
broader range of insect species, as well as the standardization
of isolation and identification methodologies, will consolidate
this observation. Also, further studies on the geographical extent
of this phenomenon would allow evaluating the existence of
different physiological characteristics among insect species that
favor or prevent the instauration of the association with the
budding yeast. Aiming at this, it will be fundamental to also
include groups neglected so far. For instance, planthoppers,
mosquitoes, and spiders have not or have only poorly been
investigated, albeit they could represent an unprecedented source
of information as they visit and forage on a broad range of
environmental sources. In addition, S. cerevisiae has been shown
to have an impact on spiders’ behavior and health (Tietjen et al.,
1987; Patt et al., 2012), and, especially considering that spiders
are mostly carnivores, exploring this association would provide
insightful information on the role of this yeast in prey hunting
and interactions among species.

Overall, the reports published so far depict a tangled
relationship between insect and yeast, in which various factors
define the insect attraction to yeasts and the impact of this
yeast on insect health. Understanding the factors responsible for
the attraction of insects by yeasts, also by further exploring the
differences among insect species has also important applications.
A better understanding of the factors regulating this complex
field will provide relevant information potentially useful to ideate
approaches to use S. cerevisiae as a promoter of insect health or as
a pest control. For instance, dissecting the capability of enhancing
the host immune reaction against pathogenic microorganisms
would be very useful in the fight against the worldwide decline
of honeybees and pollinators (Wagner, 2020).

Only further studies will allow us to fully unravel the influence
of S. cerevisiae on insects, and the potential applications of strains
isolated from this natural source.
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