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Polyextremophilic bacteria can thrive in environments with multiple stressors such as
the Salar de Huasco (SH). Microbial communities in SH are exposed to low atmospheric
pressure, high UV radiation, wide temperature ranges, salinity gradient and the presence
of toxic compounds such as arsenic (As). In this work we focus on arsenic stress as one
of the main adverse factors in SH and bacteria that belong to the Exiguobacterium
genus due to their plasticity and ubiquity. Therefore, our aim was to shed light on
the effect of niche conditions pressure (particularly arsenic), on the adaptation and
divergence (at genotypic and phenotypic levels) of Exiguobacterium strains from five
different SH sites. Also, to capture greater diversity in this genus, we use as outgroup
five As(lll) sensitive strains isolated from Easter Island (Chile) and The Great Salt Lake
(United States). For this, samples were obtained from five different SH sites under an
arsenic gradient (9 to 321 mg/kg: sediment) and isolated and sequenced the genomes
of 14 Exiguobacterium strains, which had different arsenic tolerance levels. Then, we
used comparative genomic analysis to assess the genomic divergence of these strains
and their association with phenotypic differences such as arsenic tolerance levels and
the ability to resist poly-stress. Phylogenetic analysis showed that SH strains share
a common ancestor. Consequently, populations were separated and structured in
different SH microenvironments, giving rise to multiple coexisting lineages. Hence, this
genotypic variability is also evidenced by the COG (Clusters of Orthologous Groups)
composition and the size of their accessory genomes. Interestingly, these observations
correlate with physiological traits such as growth patterns, gene expression, and enzyme
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activity related to arsenic response and/or tolerance. Therefore, Exiguobacterium
strains from SH are adapted to physiologically overcome the contrasting environmental
conditions, like the arsenic present in their habitat.

Keywords: Exiguobacterium genus, genomics, arsenic, niche, poly-extremophilic

INTRODUCTION

Exiguobacterium is a bacterial genus initially described by Collins
etal. (1983), as Gram positive, pigmented rods, facultative aerobic
with a wide range of temperature and tolerance. These bacteria
have also been characterized as halo-, psychro- and thermo-
tolerant and some even resist highly toxic arsenic (Vishnivetskaya
et al., 2007; Belfiore et al., 2013; Remonsellez et al., 2018; Castro-
Severyn et al., 2019). Different strains from this genus have been
isolated from multiple extreme environments that vary from
marine water, permafrost, deserts, salt flats and even stromatolites
(Rodrigues et al., 2006; Ordoiiez et al., 2013; Tang et al., 2013;
Vishnivetskaya et al., 2014; Zhang et al., 2015). The presence
of these bacteria in various environments and under different
extreme conditions is evidence of their great plasticity and
adaptability, which correlates with the great genetic diversity
shown (Vishnivetskaya et al., 2009; Castro-Severyn et al., 2017;
da Costa et al., 2018).

The Salar de Huasco is a poly-extreme ecosystem located on
the Chilean Altiplano (Northern Region) where cultivable
members of the Exiguobacterium genus are ubiquitous
(Remonsellez et al, 2018). This area is subjected to major
climatic oscillations (Cortés-Albayay et al, 2019), namely:
temperature, salinity, high levels of solar radiation, negative
water balance and the presence of arsenic (Dorador et al., 2008;
Herrera et al., 2009; Hernandez et al., 2016; Pérez et al., 2017;
Remonsellez et al., 2018; Castro-Severyn et al., 2019). Another
relevant aspect of the Salar de Huasco is the great microbial
diversity that has been little explored (Dorador et al., 2010,
2013; Molina et al, 2016; Castro-Severyn et al., 2017). The
co-occurrence of stress factors throughout the whole Chilean
Altiplano and the great diversity of microorganisms able to
prosper under these extreme conditions have promoted these
ecosystems as models for extra planetary life to test the limits
of life, as well as reservoirs for new/unknown metabolism
pathways/molecular mechanism (Cabrol et al., 2009a,b, 2018).

Arsenic is a toxic metalloid mainly found as arsenate:
As(V) or arsenite: As(III) in the environment, which easily
enters to the cells causing severe damages (Xiao et al., 2016).
Hence, As(V) replaces phosphate inhibiting all the reactions
in which this participates and As(III) reacts with thiol groups,
inhibiting enzymes function and promoting the generation
Reactive Oxygen Species (ROS), thus interfering with the cell
redox state maintenance (Slyemi and Bonnefoy, 2012). The main
arsenic tolerance mechanism (for both arsenic species) used
by Exiguobacterium is the expulsion from the cell (Ordofez
et al, 2015; Castro-Severyn et al, 2017). Since, As(III) has
several ways to be expelled from the cell, As(V) is reduced to
As(III) to be linked and detoxified through the same mechanism
(Andres and Bertin, 2016). Also, the main difference is that

As(III) generates a much higher toxicity, therefore a cell tolerates
this species better if has a broader response repertoire to quickly
expel the toxic, repair damage and restore redox imbalance
(Mateos et al., 2017).

In recent years, genomic analyses have aided to determine
the degree of genetic divergence and the evolutionary origin
of interesting adaptability markers. On the other hand, these
approaches also allowed the discovery of new bacterial species
and proposed the regrouping or separation of those previously
classified (Whitman, 2015; Chun et al, 2018; Pérez-Losada
et al., 2018). The reevaluation of the methodologies for bacterial
classification is a current problem, especially when databases are
being enriched with new sequences of unknown microorganisms
that cannot be cultivated under laboratory conditions or studied
under classical methodologies (Rossello-Moéra and Amann,
2015; Thompson et al., 2015). Considering arsenic metabolism,
new markers related to its resistance have been identified,
demonstrating that the classic/known mechanisms are not as
rigid as initially proposed. Furthermore, these can coexist and be
interconnected by accessory proteins depending on the bacteria
and probably their surroundings (Zhao, 2016; Chang et al., 2018;
Fekih et al., 2018; Shi et al., 2018).

Previously, we carried out a study of three Exiguobacterium
strains focusing on the high levels of arsenic tolerance presented
by isolates from the Salar de Huasco sediments. Through
sequencing, genomic and proteomic analyzes of these strains, we
found several markers directly related tolerance arsenic, as well
as the response to oxidative and overall stress (Castro-Severyn
et al., 2017, 2019; Remonsellez et al., 2018). In this study, we
tested whether genotypic variability of Exiguobacterium isolates
correlates with their capacity to tolerate arsenic and with specific
properties of their habitat, which could drive genus divergence.
Furthermore, these findings were compared with an outgroup of
five Exiguobacterium strains isolated from Easter Island — Chile
and the Great Salt Lake — United States environments.

MATERIALS AND METHODS

Study Area and Sampling

In January of 2017 during a field work in the Salar de
Huasco National Park (Chilean Altiplano), water and sediment
samples were taken from five different sites (previously described
by Dorador et al, 2008). The Salar area is known for its
heterogeneity, considering spatially as well as biodiversity
and physicochemical characteristics. This ecosystem is mostly
composed of streams, salt crusts, peatlands and shallow
(permanent and non-permanent) lakes with a salinity gradient
from north to south (HO to H5; Dorador et al, 2008).
Physicochemical parameters like temperature, salinity and pH
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were recorded in situ (HI 98192 and HI 2211 - HANNA
Instruments). Total arsenic concentration was determined by the
INQUISAL-CONICET service (San Luis, Argentina), through
an ELAN DRC-e ICP-MS (PerkinElmer®) following the ASTM
“American Society for Testing and Materials” standard methods
(TMECC: 04.12-B and 04.14).

Culture, Isolation and Identification of

Exiguobacterium Strains

All samples were inoculated for enrichment and isolation of
halophilic/halotolerant bacteria into YP medium (2 g/l yeast
extract, 5 g/l Peptone, 25 g/l NaCl and pH 7.8) supplemented
with 1 mM of NaAsO, [As(III)] and incubated at 25°C for
24 h only for culture enrichments. Then, bacteria were then
plated in the same medium (including 12 g/l of agar) to isolate
different bacterial morphotypes by dilution method. The plates
were incubated at 25°C until the appearance of colonies. We
set up to pick the characteristic orange pigmented colonies and
also through microscopy we selected the Gram-positive rods.
Besides, we also included seven other previously isolated strains,
five from Easter island (Chile) (Cumsille et al., 2017), which
were provided by Dra. Beatriz Camara from Universidad Técnica
Federico Santa Maria (Valparaiso, Chile). Along with, two more
strains isolated from the north shore of the Great Salt Lake
(Utah - United States) sediment, which were supplied by David
Garcia from Brigham Young University (Hawaii — United States).
Taxonomic classification for all the strains was carried out
by 16S rRNA amplicon sequencing using the 27F and 1525R
primers (Rainey et al.,, 1996) through the Sanger method (ABI
PRISM 3500xl Applied Biosystems — Centro de Secuenciacion
Automatica de ADN, Pontificia Universidad Cat6lica de Chile).
For classification, sequences were assembled and queried against
GenBank (Benson et al., 2000) and SILVA v132 (Quast et al.,
2012) 16S rRNA databases.

Arsenic Tolerance

Minimal inhibitory concentration (MIC) assays for As(III) and
As(V) were performed for all isolated Exiguobacterium strains.
Briefly, bacterial cultures in Luria-Bertani broth (LB) were grown
at 25°C with constant agitation (150 rpm) until 0.4 of ODggo.
Following, we set up a micro plate with dilutions of As(III):
NaAsO; and As(V): Na3AsOy4 to final concentrations from 0.1
to 25 mM and 10 to 300 mM, respectively. Controls were made
by adding fresh medium to the corresponding well instead of
arsenic. Each well was inoculated with the grown culture in 1:20
ratio in LB medium. Finally, the plates were incubated at 25°C for
48 h with constant agitation, and ODggp values were read with a
TECAN Infinite 200 PRO Nanoquant.

Genomes Sequencing, Assembly and

Annotation

Total DNA was extracted from each selected strain using
the GeneJET Genomic DNA Purification Kit (Thermo Fisher
Scientific) according to manufacturers instructions. DNA
integrity, quality, and quantity were verified using 1% agarose
gel electrophoresis, ODj60/280 ratio and fluorescence using a

Qubit® 3.0 Fluorometer along with the Qubit dsDNA HS Assay
Kit (Thermo Fisher Scientific). Then, the samples were sent to
MicrobesNG (University of Birmingham, United Kingdom) for
library construction and sequencing. Briefly, genomic DNA of
each strain was used to construct paired-end (250 bp reads)
libraries using the Nextera XT Library Prep Kit (Illumina®)
following the manufacturer’s protocol and sequencing was
performed through Illumina HiSeq platform. An average on
9.1 million reads per sample were obtained, representing an
average depth of 78X. Output reads were adapter trimmed using
Trimmomatic v0.30 (Bolger et al., 2014). Quality control was
performed using FastQC v0.11.8 (Andrews, 2010) for evaluation
and PRINSEQ v0.20.4 (Schmieder and Edwards, 2011) for
filtering and trimming (thresholds: Ns = 0, read length > 150
bp and Q > 20). De novo assembly was carried out with
SPAdes v3.7 (Bankevich et al., 2012), and resulting contigs were
annotated with Prokka v1.13.3 (Seemann, 2014) and eggNOG-
mapper v1.0.3 (Huerta-Cepas et al., 2017). Genome assemblies
were evaluated by statistical values calculation with QUAST
v5.0.2 (Gurevich et al., 2013) and completeness analysis through
the search of bacterial ortholog genes (OrthoDB v9 database:
Zdobnov et al., 2016), using BUSCO v3 (Waterhouse et al.,
2017). The Whole Genome Shotgun Project (assemblies and
biosamples) has been deposited at DDBJ/ENA/GenBank under
the Bioproject: PRINA319980.

Exiguobacterium Genomic Data Sets

Three different genomic data sets were used for the following
analyzes: first we included the genomes of the 14 strains isolated
from the five Salar de Huasco sites, including the previously
described SH31 strain (Castro-Severyn et al, 2017). In the
second set, we included the five outgroup strains (three from
Easter Island and two from the Great Salt Lake). Finally, for
the third set we include all available Exiguobacterium genome
sequences deposited in GenBank as of March 2019, for a total of
90 genomes. Among these there were 23 MAGs (Metagenome
assembled genomes) of which, 16 were left out because of
completeness problems (< 90%), resulting on 74 genomes total
(Supplementary Table S1). All the genome assemblies were
re-annotated using Prokka v1.10 (Seemann, 2014), to make
them comparable.

Phylogenetic Relationships

Thirty-one phylogenetic gene markers (implemented in
AMPHORA, Wu and Eisen, 2008), were extracted from each
genome in both data sets. All nucleotide sequences were
translation aligned using MAFFT (Katoh and Standley, 2013) as
implemented in Geneious® v7.1.9 software (Kearse et al., 2012).
The alignments were then concatenated using Seqotron v1.0.1
(Fourment and Holmes, 2016). The best partitioning scheme was
identified, using the program PartitionFinder v2.1.1 (Lanfear
et al.,, 2016). A distribution of probable trees was obtained by
Bayesian Inference with MrBayes v3.2.6 (Ronquist et al., 2012).
Two separate runs of 20 million generations were executed
(four chains each run; sampling every 1,000 generations).
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The resulting tree was visualized using FigTree v1.4.4'. The
average nucleotide identity (ANI) was calculated using the
pYANI Python3 module (Pritchard et al, 2019) and average
amino-acid identity (AAI) was calculated using the CompareM
toolkit®. R package pheatmap was used for results visualization
(Kolde, 2015).

Pan Genome Analysis

Pan genome was defined clustering the proteins families into
ortholog groups based on their sequence similarity using the
algorithm orthoMCL v1.4 (Li et al,, 2003) as implemented in
GET_HOMOLOGUES (Contreras-Moreira and Vinuesa, 2013).
This analysis was carried out with the 14 Salar de Huasco
genomes and the core genome is defined by the protein clusters
that are present in > 13 of the 14 genomes. On the other hand,
accessory genome is defined by the protein clusters that are
present in < 2 of the 14 genomes, leaving all those clusters
present in 3 to 12 genomes on the disposable genome category.
To highlight the differences between the strain’s accessory
genomes, composition of COG (Clusters of Orthologous Groups)
categories was analyzed and compared. All visualizations were
generated in the ggplot2 R package (Wickham, 2016).

Protein Searches

Bi-directional best hit searches using Blast (Altschul et al., 1990)
were performed to infer homology between reference proteins
from UniProt (UniProt Consortium, 2019) and the predicted
genes from the Exiguobacterium datasets (a minimum e-value
of 1E7% and filters of 80% for query coverage and 70% for
identity were applied). This strategy was used to identify and
compare arsenic tolerance and metabolism proteins and those
involved with stress-response. Genetic context was visualized
using Geneious® v7.1.9 software (Kearse et al., 2012) and protein
functions were verified using several tools as Pfam (El-Gebali
et al., 2019), GOFeat (Araujo et al.,, 2018) and InterPro (Jones
et al., 2014); also, String v11.0 (Szklarczyk et al., 2014) was used
for co-occurrence and neighborhood analyzes.

Effect of Arsenic on Growth

Growth kinetics selected Exiguobacterium strains under different
As(III) and As(V) concentrations (Supplementary Table S2)
were monitored for 24 h at 25°C with continuous orbital agitation
(150 rpm). ODgpp measures were recorded every hour. The
control condition was equally prepared but without the addition
of arsenic. Each assayed condition was performed in three
independent experiments with three technical replicates each and
visualized using R package ggplot2 (Wickham, 2016).

Biochemical Reactive Oxygen Species
Indicators and Antioxidant Activity

Since oxidative stress has been described as a consequence of
arsenic toxicity, we measured on the three selected strains some
indicators of this process. For this, bacteria were grown on LB

'http://tree.bio.ed.ac.uk/software/figtree/
Zhttps://github.com/dparks1134/CompareM

medium at 25°C with continuous orbital agitation (150 rpm),
up to 0.4 of ODggo. Three different experimental conditions
(Control without arsenic and half of strain specific MIC for
As(III) and As(V) were tested; Supplementary Table S2). The
intracellular accumulation of reactive oxygen species (ROS)
was determined using 10 pM of the fluorescent probe 2',7'-
dichlorodihydrofluorescein diacetate (HDCFDA), as described
by Echave et al. (2003). Briefly, bacteria were washed and
re-suspended in Tris buffer (Tris-HCl 50 mM, pH 7.8)
and fluorescent probe was added just prior measuring, and
fluorescence (excitation 480 nm; emission 520 nm) was recorded
on a microplate reader (Infinite® 200 Pro, Tecan) every 5 min
for a total period of 100 min. For the calculation, emission
values for each measurement point were first blanked against
the background fluorescence of bacteria without the probe and
then normalized with the corresponding (blanked) ODggo of
bacteria measured at the same time as the fluorescence was read.
The difference in fluorescence was calculated and divided by
the elapsed time, this value was normalized by the difference in
growth during the respective time.

For enzymatic assays, protein extracts were obtained by
sonic disruption of bacteria grown under the same conditions
described above. Bacterial cells were harvested by centrifugation
(3,000 g, 10 min), washed twice with Tris buffer and pellets
were re-suspended in 1 ml of the same buffer supplemented
with 1 mM of PMSF. Sonication was carried out with 40%
amplitude, 130 watts, 20 kHz, during 5 min (10 s on and
10 s off cycles) in an Ultrasonic Processor VCX-130 (Sonics,
Inc.). The lysates were centrifuged at 24,000 g for 40 min
at 4°C to recover the supernatants and protein concentration
was measured using the Coomassie (Bradford) Protein Assay
(Thermo Scientific).

Catalase activity was determined spectrophotometrically
following the protocol previously described by Chen et al. (2003).
Briefly, a solution with 20 mM of H,O, in 250 mL of Tris buffer
was prepared, followed by the addition of 10 pL of protein extract
in a 96 well UV-plate, the H,O, hydrolysis was measured and
monitored at 240 nm every 30 s for 3 min, using a microplate
reader (Infinite® 200 Pro, Tecan). Superoxide dismutase (SOD)
activity was assessed by measuring the inhibition of the
photochemical reduction of nitro blue tretrazolium (NBT) from
the protein extracts previously described (Jakubowski et al.,
2000; Guerrero et al., 2013). ODs50 was measured after 15 min
illumination. A SOD unit was defined as the amount of enzyme
causing 50% inhibition of NBT reduction.

All the assays were performed in at least three independent
experiments with three technical replicates each. One-way
ANOVA with post hoc Tukey HSD test was used for all
comparisons and a P-value < 0.05 was considered statistically
significant. All the statistics were performed using GraphPad
Prism v5.0 (Prism®) and visualizations were made using R
package ggplot2 (Wickham, 2016).

Transcriptional Response to Arsenic

The relative expression/transcripts levels of genes involved direct
and indirectly on arsenic tolerance were quantified by RT-
qPCR. Selected strains were grown in the same previously
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mentioned conditions (control without arsenic, half of specific
MIC, for both As(III) and As(V): Supplementary Table S2).
After, cultures were pelleted, and RNA extractions were
carried out using the GeneJET RNA Purification Kit (Thermo
Fisher Scientific) according to manufacturer’s instructions. RNA
integrity, quality, and quantity were verified using 1% agarose
electrophoresis, ODj60/280 ratio and the QuantiFluor RNA
System (Promega®). cDNA was synthesized using the M-MLV
Reverse Transcriptase kit (Promega®) and Random Primer
oligonucleotides hexamers (InvitrogenTM). The PCR reaction
was carried out as follows: 10 min at 95°C followed by 40
amplification cycles (95°C x 30 s, 58°C x 30 s, 72°C x 30 s),
and a final step of 95°C x 15 s; 25°C x 1 s; 70°C x 15 s and
95°C x 1 s) using specific primers for each gene (Supplementary
Table S3). Transcript levels were quantified using the Brilliant
IT SYBR Green qPCR Master mix kit (Agilent Technologies) on
a Stratagene Mx3000P thermal cycler (Agilent Technologies).
Gene expression levels were calculated according to Pfaffl (2001)
using 16S rRNA gene as normalizator. One-way ANOVA with
post hoc Tukey HSD test was used for all comparisons and a
P-value < 0.05 was considered statistically significant (GraphPad
5.0: Prism®) and visualizations were made using R package
ggplot2 (Wickham, 2016).

RESULTS

Salar de Huasco (SH) Sampling and

Environmental Characteristics

The spatial variation between the five sampled sites span a
distance of 5.9 km (Figure 1: Map), in particular the distances
between sites are: HO-HI1: 1.59; H1-H3: 1.03; H3-H4: 1.31
and H4-H5: 2.01 Km. The environmental variables recorded
(Figure 1 and Table 1) presented wide range of variations, in
particular arsenic concentration in sediment (9 - 321 mg/kg),
salinity (2.2 - 84.5 %), conductivity (1.1 - 42.1 mS) and
suspended soils (0.56 - 21.12 g/L). As it has been reported
before, salinity increases in a gradient from north to south
(Dorador et al., 2010). It also appears to be the case for arsenic
concentration in sediments, which was reported recently for the
first time by our group in three of these five sites (Castro-Severyn
et al., 2019). Here we added two more sites, which fit perfectly
with the proposed gradient.

Bacterial Culture, Isolation and

Exiguobacterium ldentification

Different bacterial morphotypes were isolated from sample
enriched cultures and 16S rRNA molecular identification yielded
16 new Exiguobacterium strains from the SH sites. The taxonomic
affiliation of the other 7 outgroup strains (5 from Easter
Island and 2 from the Great Salt Lake) was also molecularly
checked. All the rRNA 16S sequences were classified with
confidence values for identity (> 95%) and coverage (> 95%)
(Table 1). It should be noted that the strains from the three
environments showed similarity with different Exiguobacterium
strains from the databases.

Arsenic Tolerance and Selected Strains

Genome Sequences
Arsenic tolerance levels among all the strains showed great
diversity, especially for As(III) in the SH strains. This could
be due to the contrasting arsenic concentrations found in
each environment (Table 2). Particularly, As(V) tolerance
was relatively homogeneous spanning from 100 to 200 mM.
Moreover, As(III) tolerance was very heterogeneous spanning
from 1 to 20 mM among the strains. Interestingly, the
distribution of the tolerance levels among the strains do not
follow the arsenic gradient, not a logical organization by site.
However, the three strains from the H1 site were those who
showed the lowest tolerance to As(III). On the other hand, EI
strains tolerance was comparable to the SH ones for As(V) but
displayed complete sensitivity for As(III). While, GSL isolates
showed complete sensibility for As(III) and a very low for As(V).
From the complete strains set, 18 were selected for whole
genome sequencing (including 13 of our SH isolates), according
to their origin and arsenic tolerance, trying to cover the
whole set diversity. Hence, the resulting assembled genomes
yielded high quality values, meaning N50 as proxie for genome
fragmentation level and the completeness percentage (> 99%).
Furthermore, other features such as contigs number, size, GC%
and predicted open reading frames spans between 15-74, 2.69-
3.05 Mb, 51.30-52.20% and 2775-3179, respectively (Table 2).
Showing the important degree of genotypic diversity existing
among the strains.

Genomic Relationships

Phylogeny, ANI and AAI were analyzed for all the sequenced
genomes set and also within the complete set of 74 strains to
consider their placement among the whole available diversity.
The phylogenetic tree of the 74 strains display the same
previously reported pattern as they were separated into two
big groups (Supplementary Figure S1; Castro-Severyn et al,
2017). Our 19 strains belong to the group II being coherent with
their isolation environments, as it was reported before which
include the strains from marine, saline, temperate and alkaline
environments (Vishnivetskaya et al., 2009).

All the SH strains appear to be monophyletic and those
from EI and GSL belong to different clades. Notably, the
E. aurantiacum PN47 strain is included in this branch, as it was
isolated from sediment of another SH site (at 3.15 km south-
east from H5 site), which explains why it is within our group
(Strahsburger et al., 2018). Hence, our results suggest that the
E. aurantiacum PN47 strain is nor correctly classified, being more
related to those isolates from the SH. Thus, is much closer to
our SH strains, regarding the aurantiacum species (ANI: 82.8%
against other aurantiacum vs. 98.4 — 98.6% against de SH strains;
AAL: 87.4% against other aurantiacum vs. 97.2 - 98.6% against
the SH strains) (Supplementary Figures S2, S3).

Analyzing separately the clade containing the 14 SH genomes,
we observed that there is an important degree of diversity
(Figure 2A). The phylogenetic relationships do not reflect the
strains isolation origin nor arsenic tolerance level. The whole
genome nucleotide identity of all the 74 genomes display the same
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FIGURE 1 | Salar de Huasco sampling sites and characteristics. Above: Salar de Huasco localization and map indicating the five sampled sites from which the
studied strains were isolated. Source: Google-Earth. Below: table of the five sites environmental and physicochemical measured characteristics.

clustering showed by the phylogenetic tree with ANI values that
range from 72% to 99.999% (Supplementary Figure S2). The low
values are mostly intergroup and thus support their separation.
Considering only the SH strains the ANI values are > 96%
which imply a high level of similarity (Figure 2B). As previously
discussed, we determined that the clusters are not grouped
by origin or arsenic tolerance. Interestingly, SH31, SHOS7 and
SH1S21 strains do group together although having different
origins and they cover the broadest arsenic tolerance levels.
The AAI analysis replicates precisely the results and topology
observed in the ANI and phylogenetic analysis. Moreover, the
identity values within the 74 genomes set ranked from 62.7%.
Notably, this value is lower than the one presented by the ANI
(72%) which goes against what would be expected since the
AATI considers only proteins which should be more conserved
(Supplementary Figure S3). This could be due to the great
divergence shown between the two groups, whereas, within the
SH set the values were much higher (> 96,8%) corresponding to
strain similarity (Figure 2C).

Huasco Pan-Genome

To determine the genotypic diversity among the SH strains as
well as the differences that could be attributed to their specific
niche we performed a Pan-genome analysis with only these 14
strains (Figure 3). This pan-genome is composed of 4,648 protein
clusters, of which 2,364 represents the core compartment ranging
from 74.95 to 86.66% (average of 80%) among the genomes and

a 50% of the whole pan-genome (Figure 3A). Additionally, the
size of accessory and disposable compartments was variable for
each strain, with a representation ranging between 0.03 - 5.54%
and 11.11 - 20.12 %, respectively (Figure 3B and Table 3). This
variation is consistent with the observed phylogenetic placement
of these strains, supporting the idea that SH isolates are diverse
even in the face of common origin.

Moreover, to determine if this variability results in functional
convergence or divergence, we performed a COG composition
analysis. This was accomplished for all the predicted proteins
(Figure 3C) and considering only those from the accessory
compartment (Figure 3D) of each genome. The COG
composition for the full set of proteins evidenced a homogeneous
pattern between the strains. Moreover, slight variations in the
proportions of some categories can be seen in SH31 and SH554
strains. On the other hand, accessory compartments are very
different from each other, considering number of proteins, as
well as COG composition. Unfortunately, most of the clusters
in the accessory genome compartments are unclassified ones or
with unknown function, thus more investigation is needed.

Arsenic and Stress Tolerance Markers

The presence of arsenic and stress tolerance genes among the
19 Exiguobacterium genomes revealed that most of those related
to global (pdxS, dnaK, hpf, uspA, fur and luxS) and oxidative
stress (cdr, katA, katE, sodA, gshAB, cysK, cysM, trxA, trxB, ydbD,
ytpB, ahpE, bsaA, garB, tpx, bcp and resA) were homogeneously
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TABLE 1 | Identification of all selected isolates through 16S rRNA sequencing.

Site Strain % ldentity % Query Cover BLAST Hit
SH-HO SHOS2 95 99 Exiguobacterium sp. AC-CS-C2
SHOS3 96 99 Exiguobacterium sp. AC-CS-C2
SHOS7 98 99 Exiguobacterium sp. AC-CS-C2
SHOS1 99 98 Exiguobacterium sp. AC-CS-C2
SH-H1 SH1S4 98 95 Exiguobacterium sp. AC-CS-C2
SH1S1 99 97 Exiguobacterium sp. AC-CS-C2
SH1S21 98 97 Exiguobacterium sp. SH31
SH-H3 SH3S1 99 98 Exiguobacterium sp. AC-CS-C2
SH3S2 96 98 Exiguobacterium sp. AC-CS-C2
SH3S3 99 97 Exiguobacterium sp. AC-CS-C2
SH-H4 SH4S7 98 98 Exiguobacterium sp. SH31
*SH31 99 929 Exiguobacterium sp. AC-CS-C2
SH-H5 SH5S7 95 98 Exiguobacterium sp. AC-CS-C2
SH5S13 96 99 Exiguobacterium sp. SH31
SH5832 98 98 Exiguobacterium mexicanum HUD
SH554 99 99 Exiguobacterium sp. AC-CS-C2
SH5S20 98 99 Exiguobacterium sp. AC-CS-C2
GSL SL-9 95 99 Exiguobacterium sp. BAB-5887
SL-10 95 98 Exiguobacterium sp. BAB-5887
El IPBC4 98 98 Exiguobacterium aurantiacum Q3-11
IPCI3 96 98 Exiguobacterium aurantiacum Q3-11
IPCH1 99 99 Exiguobacterium aurantiacum 104NE
IPBC7 95 99 Exiguobacterium aurantiacum 104NE
IPCG2 97 97 Exiguobacterium aurantiacum Q3-11

SH, Salar de Huasco sites, Chile; GSL, Great Salt Lake; Salt Lake City — Utah, United States, El, Easter Island, Motu Nui Islet, Chile. *Previously reported strain

(Castro-Severyn et al., 2017).

present in all the strains (Supplementary Figure S4). However,
there are differences regarding the copy number of genes such
as fnr and uspA. Also, a pattern regarding isolation origin
(environment) is evidenced in uspA, dnaK and ydbP. Regarding
arsenic markers, ars operon genes were found in the 19 strains
genomes. Interestingly, acr3, arsC, arsP and a second copy of arsR
genes were exclusively detected in the SH (Figure 4). Moreover,
the GSL it was the only environment where arsK gene was not
detected. Even though the phylogenetic distribution does not
correlate with the five SH sites nor with the arsenic resistance
level presented by the strains. However, a group of clade specific
genes (narK, nasC, moaE and a second copy of fur) was detected.

As it could have happened before, the miss-annotation of arsP
caused it to be undetected in previous works. This could be a
problem of database shortage, due the low identity percentage of
this sequence with those available made unlikely to detect it. We
used eggNOG, Pfam, InterPro and STRING (neighboring) tools
to sum evidence and correctly annotate this protein (Figure 5A).
The same strategy was used to identify arsK, which was recently
reported to provide multi-resistance to different arsenic species
like As(IIT), Rox(IIT), and MAs(III) (Shi et al., 2018). Here,
we reported for the first time the presence of arsK for the
Exiguobacterium genus. Notably, this gene is present in all but
one SH strain (SH5S4) and on those from GSL. The genetic
organization of arsK is neighboring with acr3 efflux pump when
both of them co-occurs (Figure 5B). Even though, acr3 is only
present in the SH strains with the exception of those isolated from

the H1 site, which shockingly do not have it, which could account
for their As(III) sensitivity (Table 2) (Ordofiez et al., 2015).

Another interesting exclusive feature found in half of SH
strains, was the presence of what seems to be an assimilatory
nitrate reductase (nasC) cluster of genes (Figure 5C), detected
due to incorrect annotation a protein as an arsenite oxidase
(aioB) which is actually a non-characterized 2Fe-2S protein that is
within this gene cluster. There are also two MES transporters, one
uncharacterized and one that we annotated as the nitrate/nitrite
transporter NarK. In addition, FdnH is a formate dehydrogenase
that acts during anaerobic respiration, when nitrate is the
electron acceptor (Kelley, 2017). This gene cluster had not been
previously reported for Exiguobacterium genus and could be of
high relevance in terms of physiological capabilities and niche
adaptation that needs further investigation.

Physiological Response to Arsenic
Aiming to cover the most diversity considering arsenic tolerance
and geographic origin among the studied bacteria, we selected
three strains for experimental analyzes. Specifically, the SH1S21,
SHOS7 and SH31 strains were used for presenting the lowest,
highest and mid-arsenic resistance, also for belonging from three
different sites (Table 2). Additionally, it is of interest that the
SH1S21 strain does not present the acr3 gene.

Bacterial growth capacity was monitored for the three selected
strains in the presence of different sublethal (up to half of the
corresponding MIC value) As(V) and As(III) concentrations
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TABLE 2 | Minimal inhibitory concentration of both As species for all the isolated strains; Accession number and assembly evaluation of the selected strains genomes.

Site Strain [mM] As(llI) [mM] As(V) Selected for sequencing
GenBank assembly Size (mb) GC % # contigs N50 % completitude
SH-HO SHOS2 10 200 GCA_004337185.1 2,94 52.00 18 758317 100
SHOS3 2.5 200
SHOS7 20 150 GCA_004337195.1 2.93 51.80 35 256028 100
SHOS1 7.5 200 GCA_004337165.1 2.91 51.70 18 474352 100
SH-H1 SH1S4 1 200 GCA_004337095.1 2.91 52.10 22 439798 100
SH1S1 1 200 GCA_004337245.1 2.91 52.10 24 257075 100
SH1S21 1 150 GCA_004337175.1 2.92 51.80 27 236663 100
SH-H3 SH3S1 15 200 GCA_004337105.1 2.76 52.20 32 214817 100
SH3S2 25 200 GCA_004337285.1 2.70 52.20 36 202019 100
SH3S3 7.5 200 GCA_004337115.1 2.69 52.20 33 202019 100
SH-H4 SH4S7 10 200 GCA_004336795.1 2.94 52.00 23 428140 100
*SH31 10 100 GCA _001816105.1 3.02 51.70 120 44068 98
SH-H5 SH5S87 10 200
SH5S13 15 100 GCA_004337085.1 2.92 51.90 74 84368 100
SH5532 15 100 GCA_004336775.1 2.91 52.10 24 257075 100
SH5S84 15 200 GCA_004337045.1 3.05 51.60 64 83702 100
SH5S520 10 200
GSL SL-9 0 10 GCA_004336985.1 2.98 51.30 15 815925 100
SL-10 0 10 GCA_004337025.1 2.93 51.50 33 216935 100
El IPBC4 0 100 GCA_004337065.1 2.97 52.00 39 156917 99.4
IPCI3 0 100 GCA_004337275.1 2.97 52.00 38 156123 100
IPCH1 0 100 GCA_004337295.1 2.97 52.00 40 156123 99.3
IPBC7 0 100
IPCG2 0 100

SH, Salar de Huasco sites; GSL, Great Salt Lake; El, Easter Island. * Previously reported strain (Castro-Severyn et al., 2017).

(Supplementary Figure S5). We found that all of them were
able to grow under all tested conditions, as we reported before
(Castro-Severyn et al., 2019). Notably, there was no significant
difference between control and As(V) conditions, which has been
reported previously (Ordorfiez et al., 2015). On the other hand,
As(III) causes a great effect on the growth pattern for the three
strains, observing a delay in the time it takes to reach 0.4 of ODggg
and a premature stationary phase. This is because the cell needs
to alter its physiology to resist As(III) high toxicity, to maintain
homeostasis and energy demand, thus the growth rate decreases
(Cleiss-Arnold et al., 2010).

The accumulation of ROS are indicators of cellular stress and
oxidative damage has been described as the main mechanism
of arsenic toxicity, mainly due thiol depletion (Imlay, 2003;
Slyemi and Bonnefoy, 2012). In this sense, ROS intracellular
accumulation in the three strains show a significant increase
when arsenic is present (Figure 6A). It can be noted that
As(V) causes significantly higher ROS accumulation on the three
strains, this could be related to the use of reduction mechanism
to detoxify arsenic by the bacteria (Mukhopadhyay et al., 2002).

The mentioned ROS accumulation by the arsenic presence
could trigger the expression and activity of antioxidant enzymes.
Our results show only a significant increase in catalase activity
in response to As(V) (Figure 6B). As it was mentioned before,
this is coherent with the redox imbalance caused by the As(V)
reduction. Unlike As(III), that triggers a tolerance mechanism

based only on expulsion. On the other hand, superoxide
dismutase activity remained mostly unchanged for both arsenic
conditions (Figure 6C). A small increase in SOD activity was only
significant in SH1S21 strain against As(V).

Arsenic Response Gene Expression
Our results show an active response to arsenic stress on the
three strains, despite of different gene expression magnitudes
among the strains. We measured genes representing the following
functions: direct response to arsenic (arsRDAB, arsC, arsB, arsK
and acr3); arsenic uptake (gIpF and pstA); oxidative stress
response (gshAB, katA and sodA) and finally, we also wanted to
test if this nitrate reductase (nasC) could be responding to arsenic
(Figure 7). As expected, the genes from the first group showed
induction for both species of arsenic on the three strains. The
only exceptions were acr3 that is not present in the genome of
strain SH1S21 and arsC that only have a role in the presence
of As(V). As a consequence of the reduction, the arsRDAB
operon, [which responds to As(IIl)], is also activated in the
presence of As(V). On the other hand, arsP also appears to
be responding, but in a smaller magnitude compared to the
other transporters. It is worth mentioning that the As-methylase
enzyme necessary for ArsP transporter activity is yet to be found
in the Exiguobacterium genus.

With respect to arsenic importers, we measured the expression
of glpF and pstA and found that there is a change in their
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FIGURE 2 | Genomic relationships among Exiguobacterium strains.

(A) Mid-point rooted Phylogenetic tree inferred from an alignment of 31
conserved genes. Strains in the tree are color coded by isolation site (Great
Salt Lake are turquoise; Easter Island are yellow and Salar de Huasco: HO site
- blue; H1 site - pink, H3 site - red, H4 site - gray and H5 site - green.

(B) Average nucleotide identity (ANI) heatmap. (C) Average amino-acid
identity (AAl) heatmap. Hierarchical clustering of the Exiguobacterium
genomes based on their average nucleotide/amino-acid identity values. The
color gradients show the percentage of identity, from lowest to highest, that
each pair of genomes shares.

regulation due to the arsenic presence, aiming to block the influx.
Moreover, among the genes related to oxidative stress response,
gshAB encodes for the main glutathione biosynthesis enzyme
which is highly induced on the three strains in both arsenic
conditions. This is consistent with an active response to face the
arsenic induced oxidative stress. Although, there is no significant
change in katA and sodA expression, that correlates with SOD
enzymatic activity, but not with KatA activity that did show

induction by As(V). Finally, the nasC expression (present in the
SH1S21 strain) showed no significate change in response to any
arsenic treatment. This could be supporting the assertion of this
cluster working under anoxic conditions, in any case its specific
role or function remains unknown.

DISCUSSION

Altiplanic environments have extreme and variating conditions,
even between geographically close areas (Cabrol et al., 2009a;
Herndndez et al., 2016; Cortés-Albayay et al., 2019). Particularly,
a previous work in SH showed highly different values of
conductivity, dissolved nitrogen and dissolved organic carbon,
between two ponds just a few meters apart (Aguilar et al., 2016).
In our study, arsenic concentration and salinity are the two
most prominent factors with the greatest variation (Figure 1).
Moreover, salinity variation correlates with previous reports for
HO, H1 and H4 sites (Dorador et al., 2008; Remonsellez et al.,
2018), even they found that HO and H1 sites exhibited more
similarities, contrasting with the remaining sites. Hence, the
effects of the five SH niche conditions (arsenic specifically),
over the micro-diversity of inhabitant Exiguobacterium strains is
of great interest.

The great variability in the water and sediment chemical
composition is due to the salar hydrogeography (Acosta
and Custodio, 2008). Season percolation mobilizes minerals
and the high evaporation rate causes their concentration
and stratification. Additionally, flow from the underground
sources bring the minerals to the streams that feeds the
water bodies (Hernandez et al, 2016). This could explain
the arsenic and salinity gradient from north to south
(Castro-Severyn et al., 2019). Furthermore, biotic processes
like metabolism and primary producers activity from the
highly variable microbial communities, can also contribute
with changes in water and sediment properties (Oren, 2013;
Aguilar et al., 2016).

Our genomic results showed that phylogenetic relationships
further confirm the segregation of this genus into two
large groups (Figure 2 and Supplementary Figures S1-S3),
organized according isolation environments in most cases
(Konstantinidis and Tiedje, 2005; Richter and Rossell6-Mora,
2009). Hence, as the SH strains come from a common
ancestor, we can suggest that their current observed diversity
is product of evolutionary adaptation, caused by the separation
of different lineages within the microenvironments of SH.
Implying that the plasticity and divergence presented by strains
of this genus could be due to shaping effect of key niche
variables. On the other hand, we cannot discard the effect
of mutations accumulation between strains that diverged from
a common ancestor and do not exchange genetic material
(Pérez-Losada et al., 2018).

Besides, here we found more evidence of the relatedness
between the E. sp. S17 strain isolated from the Argentinian
altiplano and the Huasco strains (Ordofiez et al, 2013;
Castro-Severyn et al., 2017). Strikingly this is not the case
for E. chirighucha N139 which was also isolated from the
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FIGURE 3 | Pan-genomic analysis of SH Exiguobacterium genomes set. (A) Pan-genome compartments proportion representation for the whole set.
(B) Compartments proportion for each genome. (C) Composition of COG categories for each whole genome and (D) For the accessory compartment.

TABLE 3 | Proteins Classification for each genome in the pangenome compartments.

Strain Number of proteins Compartment (%)

Total Accessory Disposable Core Accessory Disposable Core
SHOSH 2966 156 446 2364 5.26 15.04 79.70
SHOS2 3000 92 544 2364 3.07 18.13 78.80
SHOS7 3014 167 483 2364 5.54 16.03 78.43
SH181 2958 1 593 2364 0.03 20.05 79.92
SH1821 2984 12 508 2364 3.75 17.02 79.22
SH184 2962 2 596 2364 0.07 20.12 79.81
SH31 3080 165 551 2364 5.36 17.89 76.75
SH3S1 2782 61 357 2364 2.19 12.83 84.97
SH3S82 2728 61 303 2364 2.24 1.1 86.66
SH3S3 2728 3 361 2364 0.11 13.23 86.66
SH4S7 3007 78 565 2364 2.59 18.79 78.62
SH5813 2944 116 464 2364 3.94 15.76 80.30
SH5832 29568 2 592 2364 0.07 20.01 79.92
SH5S4 3154 354 436 2364 11.22 13.82 74.95
Argentinian altiplano (Gutiérrez-Preciado et al., 2017), it might Establishing the pan-genome of a bacterium sheds light on its

be explained because this strain was isolated from the water biology, lifestyle and has implications for the species definition
column. Moreover, 67.6% of the analyzed genomes (50/74) are  (Tettelin et al., 2008). The data reported previously seems to
not classified according to species level, which also correspond  support the idea that Exiguobacterium genus has an open pan-
with the great diversity within the Exiguobacterium genus. genome, thus confirming high level of intra-species diversity
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(Castro-Severyn et al., 2017). Which is coherent with the small
number of available sequenced genomes for this specie (77 until
May 2019) and isolated of very diverse environments. In this
work we focused on the degree of diversity that could exist
between strains of different niches of the same environment
(SH). Our results showed a large pan-genome size (4,648 genes)
with respect to that of individual genomes (average of 2,947
genes) (Figure 3). The phylogenetic relatedness and the ANI
values (~96.9%) among the SH strains evidence a common
origin, so they would have diverged to adapt to niche particular
conditions. Therefore, the origin of the divergence processes for
the Exiguobacterium strains could be an allopathic diversification
caused by ecosystem fragmentation, forming different and
relatively isolated niches in the SH (Rouli et al., 2015).

Altiplano environments fragmentation has been occurring at
different time scales and by multiple phenomena. An important

example that generates changes in geography is the water cycle
or balance (“El Nifio” phenomenon, amount of precipitation and
the high evaporation rate in this area) during the climate change
cycle (Placzek et al., 2006). Also, the great volcanic activity and
tectonic movements in this area not only physically fragment
the environments, but also generate changes in the flows
and physicochemical properties of soils and waters, promoting
heterogeneity (Risacher and Fritz, 2009). Even human activities,
such as mining and water extraction from aquifers, cause a great
impact, that has been demonstrated on a small scale within the
Salar de Huasco (Acosta and Custodio, 2008).

The results lead us to suggest that these geographical
and physicochemical changes that have occurred in the
SH area since its origin are reflected by the organisms that
inhabit it. Consequently, these were progressively being
separated, isolated and faced with changing conditions,
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SHO0S7

leading to the selection of those who managed to adapt.
In this sense, open pan-genomes can be indicators of
species that live in multiple environments and are part of
highly variable microbial communities such as the ones
found in SH (Dorador et al., 2010, 2013). Thus, increasing
the probability of gene transfer phenomena between the
community members and the pan-genome would keep growing
(McInerney et al., 2017). This presents the opportunity for
Exiguobacterium strains to obtain niche or community exclusive

genes, contributing to their diversity and to the species
pan-genome size.

As we stated that the strains could have isolated and diverged
over time, we cannot rule out the effect of other forces which
could be causing bacteria from diverse niches to interchange or
mix. In fact, the effect of wind, water flow and even animals (e.g.,
Llamas), on microorganism’s mobilization and dissemination is
very well documented (Augspurger et al., 2010; Smith et al., 2013;
Alm et al., 2018). Although there is no information on this subject
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for the SH, there are studies describing flow models and ground nucleotide identity among the SH strains. Nevertheless, the
water networks (Acosta and Custodio, 2008). variability among the SH strains is indeed evidenced by the

All these factors could explain or contribute to the discrepancy  differential COG pattern of each strain accessory genome and
observed when contrasting the size and composition of the the number of genes. We were expecting that the specific
pan-genome with the phylogenetic positioning and average niche adaptations and differential physiological capacities among
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these strains emerged from the accessory genes. However,
with our results we cannot clarify this, because most of our
identified genes are mainly part of the core or disposable genome
compartments and the majority of the accessory compartment
genes are unclassified or with unknown function. Hence, to solve
this, further analyzes are needed. Although, some approaches
have currently been developed to solve this, as discussed in:
da Costa et al, 2018; and Antczak et al., 2019. Briefly, they
use combinations of many predictive tools to gather and add
evidence, assigning possible functions with a good confidence
level to those unclassified or unknown proteins.

In a broad sense, most of the studied markers (related to
arsenic tolerance, oxidative and global stress) are present in all
strains (Supplementary Figure S4). However, there is also a clear
differential pattern between the strains of the three environments
(SH, GSL and EI), which is consistent with their particular
arsenic tolerance levels. For example, uspA, and several arsenic
related ones like arsR, arsC, arsB arsK and acr3 (Figure 4).
Although our results imply that the presence of arsenic response
genes such as arsC, acr3 and perhaps arsK and arsP indeed
increases the resistance level (SH strains regarding those from
GSl and EI), this does not explain its heterogeneity among the
SH strains. Moreover, an explanation could be the regulation and
expression impact on arsenic response, which has been discussed
in other published works (Cleiss-Arnold et al., 2010; Castro-
Severyn et al., 2019). Also, we support the participation of global
and oxidative stress response systems role in strengthens this
resistance capacity.

Moreover, enrichment in genes directly related to arsenic
tolerance on SH strains is evidence of the selective pressure
exerted by the presence of this toxic compound (Slyemi and
Bonnefoy, 2012; Andres and Bertin, 2016). Particularly, arsC,
arsP and acr3 are only found in SH strains, additionally a second
copy of arsR (to regulate arsP) is also present. However, acr3 gene
is missing in the three most sensitive SH strains (from H1 site),
which could be evidence of the important role of ACR3 expelling
function in the arsenic resistance, which has been reported before
(Fu et al., 2009; Ordofiez et al., 2015). ArsP is known to be an
organoarsenical permease (Shen et al.,, 2014), with a potential
role in Exiguobacterium tolerance that had not previously been
avowed. On the other hand, arsK gene is present in the GSL and
most SH strains, but not in those from EI. Hence, resulting in
the logical pattern observed, regarding the arsenic concentration
between the three environments and the enrichment of genes
displayed by these strains to face it. Since arsenic has been
detected on the GSL basin in lower concentrations (0.4 - 95 pg/L
for water) regarding the SH (Waddell, 2004; Adams et al., 2015).
Conversely, there are no reports for arsenic in EI.

Taken together, most of SH strains have three clusters with
arsenic response markers (arsRDAB, arsP and arsK-acr3), that
could be under different regulations. Previous reports described
strains with more than one arsenic gene cluster, which responds
to different signals such as aerobia/anaerobia (Saltikov et al.,
2005) or As concentration (Zhao et al, 2015). Since it is
known that both ArsP and ArsK expel organic arsenics, it is
necessary to find the missing piece (As-methylase enzyme) to
promote this as a functional mechanism in Exiguobacterium

(Garbinski et al., 2019). On the other hand, ArsK can also expel
As (IIT), so its function could be complementing/increasing the
bacteria resistance. Nonetheless, these genes gave us some hints
supporting the idea of a more varied repertoire that yields higher
resistance. However, we have to consider that arsK is present in
the GSL strains which were the most susceptible ones, so the role
of this gene remains unclear.

Another interesting feature found in some of the studied
genomes was the nitrate reductase gene cluster. Although being
exclusively present in some SH strains, its distribution does not
present a pattern of association by site or arsenic tolerance level,
but it does show a clade specific pattern. On the other hand,
is important to take into consideration, that there could be a
selection pressure that we are not considering, which pushes
Exiguobacterium genomes toward convergence. However, we
could not conclude that its presence has any relation with arsenic
or environmental stress adaptation.

In addition, a poorly characterized anaerobic arsenite oxidase
(arxA; molybdopterin containing enzyme) was identified in
the genome of a Mono Lake (California, United States)
isolated that couples arsenite oxidation with nitrate reduction
(Zargar et al., 2010). Furthermore, we were not able to detect
an arxA sequence in any of the studied Exiguobacterium
genomes, we cannot rule out the presence or function of some
analog. But we did find within this cluster an uncharacterized
2Fe-2S protein that shares some characteristics with arsenite
oxidases. As we know the effects of lacking information and
databases availability for the description of new mechanisms,
we believe that this could be re-addressed when more and new
information is generated.

Another finding that supports that a novel mechanism may
be in play is the presence of eleven genes related to the
molybdopterin biosynthesis are in this same genomic context,
which is a well-known nitrate reductase co-factor (Kelley, 2017).
Also, this molecule is a co-factor for ArxA too (Zargar et al,
2010). Besides, the presence of the transcriptional fumarate and
nitrate reductase regulator fur in this genetic cluster could be
evidence of an anoxic related response (Osorio et al., 2019).
Finally, as most of our studied markers are part of the core
genome compartment, we would imply that differences in
regulation and expression levels among the strains could be the
source of their variable arsenic tolerance levels. On the other
hand, we have to consider that these determining factors may
be among the hypothetical and unknown function markers of
the accessory genomes. Also, all these results further support
the plasticity of the Exiguobacterium genus and suggest that
environmental factors of each niche could shape the species by
driving divergence.

Oxidative stress is an important arsenic toxicity mechanism
and detoxifying enzymes has always been a target of interest
(Harrison et al., 2009). Increase in catalases and superoxide
dismutases expression and activity in response to arsenic, as
well as the loss of this tolerance due to mutations in these
enzymes are evidence of their role (Parvatiyar et al, 2005).
The results show that both arsenic tested conditions were able
to promote intracellular ROS accumulation in the analyzed
strains (Figure 6). Which could be counteracted by catalase and
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superoxide dismutase activity. Detoxification of As(V) comprises
an oxidation-reduction process that contributes to oxidative
stress by depleting the thiols altering the cell redox balance
(Mukhopadhyay et al., 2002; Daware et al., 2012). Generally,
As(III) was not able to generate a significant increase of enzymatic
activity on the three strains. Moreover, the lower increase in
SOD activity was an unexpected result, since it has been reported
that these enzymes respond to arsenic in H. arsenicoxydans
and K. pneumoniae (Cleiss-Arnold et al., 2010; Daware et al.,
2012), suggesting that they might be using another detoxifying
mechanism. Nonetheless, this may be because As(III) induces
less ROS formation and/or accumulation which is effectively
counteracted by the present enzymes (Mateos et al., 2017).
Oxidative stress resistance could cause tolerance against other
stresses, as was demonstrated in Deinoccocus radiodurans, in
which high UV stress resistance is associated with its SOD
efficiency (Markillie et al., 1999).

Most of the arsenic related genes showed a significative
upregulation in response to both arsenic species, on the three
strains (Figure 7). Moreover, all transporters showed different
induction levels, supporting the toxic expulsion as the main
resistance mechanism used by these bacteria. In addition, another
strategy used by bacteria to tolerate the arsenic present in
their environments is to block the influx, which correspond
with gIpF repression by As(III) (Elias et al., 2012). On the
other hand, the genes that code for catalase and superoxide
dismutase did not show significant expression changes in

response to arsenic among the three strains. Whereas, glutathione
synthesis appears to be highly active due to gshAB significate
overexpression, thus helping to restore cell redox balance. Finally,
we think that differential arsenic tolerance presented by these
strains is the result or sum of a set of factors, markers and
particular regulation, combining permeability, detoxification
and homeostasis changes to ensure survival, as we described
previously (Castro-Severyn et al., 2019).

To sum up, the joint efforts and results of all our work led us
to state that the main strategy used by the SH Exiguobacterium
strains against arsenic is based on the toxic expulsion out of
the cell. To this end, these strains have a wide variety of efflux
proteins like ArsB, ArsP, ArsK and ACR3 to cope with any arsenic
species, since arsenic could be reduced, oxidized or methylated.
Figure 8 shows a graphic summary which integrates our genomic,
gene expression, proteomic and physiological findings (This
work; Castro-Severyn et al., 2017, 2019). Arsenic toxicity to the
cell is known to generate oxidative and global stress states. In
order to fight this, several responses are activated, particularly
against oxidative stress, Cdr could be restoring the thiols depleted
during As(V) reduction. Furthermore, PdxS which is known to
be involved in several types of stress resistance, is also a cysteine
synthesis cofactor, aminoacid needed by the GshAB to form
new thiols, counteracting the oxidative stress along with all of
TrxA copies. Also, our results support all the reported evidence
promoting global stress markers such as LuxS, Hpf, DnaK and
UspA as key players in arsenic resistance. Finally, we can suggest
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that the presence of ACR3 increases the level of resistance to
the strains that possess it, such as the SH ones. However, the
variability between the levels of these same strains may be due to
the addition of other factors such as ArsK, ArsP and the global
and oxidative stress markers and its regulation, that would be
contributing to the resistant phenotype.

CONCLUSION

Salar de Huasco, as part of the Chilean altiplano, is indeed a very
extreme and diverse environment in which arsenic appears to
be one of the main communities shaping factors. As a whole,
these results indicate that there are key elements at genome
level that enable those bacteria to respond poly-stress and in
particular As presence. Additionally, phylogenetic relationships
and pan-genome composition found among the Exiguobacterium
strains could imply that these adaptations emerge from their
particular niche. These observations are consistent with the
transcriptional and enzymatic responses against arsenic of these
bacteria. In this sense, the strategies used by the arsenic
tolerant/resistant bacteria and/or communities should be studied
with a multidisciplinary vision to obtain a better understanding
of the occurring phenomena, interconnecting results to establish
correlations applying an ecological perspective to particular
events. Finally, the increase in database information and the
use of omics approaches is currently generating more data that
is shedding light in understanding the evolutionary process of
adaptation, especially on extreme environments.
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