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The antilisterial class lla bacteriocins, plantaricin 423 and mundticin ST4SA, have
previously been purified from the cell-free supernatants of Lactobacillus plantarum
423 and Enterococcus mundtii ST4ASA, respectively. Here, we present the fusions of
mature plantaricin 423 and mundticin ST4SA to His-tagged green fluorescent protein
(GFP) for respective heterologous expression in Escherichia coli. Fusion of plantaricin
423 and mundticin ST4SA to His-tagged GFP produced the fusion proteins GFP-PlaX
and GFP-MunX, respectively. Both fusion proteins were autofluorescent, circumvented
inclusion body formation and lowered the toxicity of class lla bacteriocins during
heterologous expression. Not only did GFP-class lla fusion stabilize heterologous
expression and boost yields, the fluorescent intensity of GFP-PlaX and GFP-MunX could
be monitored quantitatively and qualitatively throughout expression and purification. This
robust fluorometric property allowed rapid optimization of conditions for expression
and bacteriocin liberation from GFP via the incorporated WELQut protease cleavage
sequence. Incubation temperature and IPTG concentration had a significant effect
on bacteriocin yield, and was optimal at 18°C and 0.1-0.2 mM, respectively. GFP-
MunX was approximately produced at a yield of 153.30 mg/L culture which resulted
in 12.4 mg/L active mundticin ST4SA after liberation and HPLC purification. While GFP-
PlaX was produced at a yield of 121.29 mg/L culture, evidence suggests heterologous
expression resulted in conformation isomers of WELQut liberated plantaricin 423.

Keywords: green fluorescent protein, plantaricin 423, mundticin ST4SA, heterologous expression, lactic acid
bacteria, class lla bacteriocins, fluorescent optimization, antilisterial activity

INTRODUCTION

Peptides are ubiquitous in physiological systems where they fulfill functions which are fundamental
to life. Within human physiology alone, peptides function as hormones, neurotransmitters, growth
factors, ion channel ligands or antimicrobials which makes them an attractive therapeutic resource
(Otvos and Wade, 2014; Recio et al., 2017; Pfalzgraff et al., 2018; Kumar, 2019). In terms of
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bioactivity, peptides generally show high selectivity, high efficacy
and are normally well tolerated therapeutics due to their
proteinaceous nature (Fosgerau and Hoffmann, 2015). However,
peptides comprised of natural amino acids are not always ideal
drug candidates due to their low oral bioavailability, poor stability
and short plasma half-life (Otvos and Wade, 2014; Fosgerau
and Hoffmann, 2015). Therefore, many challenges surround the
use of antimicrobial peptides (AMP) as direct alternatives to
classical antibiotic therapies. Fortunately, AMP producers are
found throughout all kingdoms of life, which provides a wealth
of chemical diversity and variable mechanisms of action over a
wide range of environments (Brogden, 2005; Kumar et al., 2018).
Using AMPs to combat resistance is more a task of elucidating
peptides which provide a specific function within a specific
environment and understanding the mechanisms which drive
their activity. Therefore, any technique to improve the yield or
spectrum of producible peptides is highly valuable, especially for
uncharacterized AMPs identified through genome mining.

Bacteriocins are defined as AMPs that are ribosomally
synthesized by bacteria and secreted into their environment
to modulate the growth of other closely related bacterial
species (Ennahar et al, 2000; Kotel'nikova and Gelfand,
2002). Due to their proteinaceous nature, bacteriocins may
not always be suitable antibiotic therapies, but have proven to
be viable counterparts when microbial control is required in
an environmental application. For example, fermented foods
specifically produced by lactic acid bacteria (LAB), are examples
of how bacteriocins can be used to help control unfavorable
microbial contamination.

Species in the LAB phylum are Gram-positive, catalase
negative, microaerophilic to anaerobic, asporogenous and low
in GC content (Klein et al, 1998). Bacteriocin production
is an important characteristic for LAB, which is evident in
the wide range of bacteriocins produced from various classes
and levels of complexity (Alvarez-Sieiro et al, 2016). The
expression of multiple bacteriocin types or classes by a single
LAB strain is common. This makes LAB metagenomes/genomes
a fruitful mining ground for novel bacteriocins. Furthermore,
LAB are native inhabitants of the gastrointestinal tract (GIT) and
during GIT colonization bacteriocins produced by probiotic LAB
undoubtedly play a role in shaping the local microbiome (Klein
et al.,, 1998; Dicks and Botes, 2010; Brown, 2011; van Reenen and
Dicks, 2011; Rupa and Mine, 2012).

Lactobacillus  plantarum 423 and Enterococcus mundtii
ST4SA are LAB which produce the class IIa bacteriocins

plantaricin = 423 and mundticin  ST4SA, respectively
(Figure 1). Lactobacillus plantarum 423 was isolated
from sorghum beer and harbors the plantaricin 423

precursor peptide gene, plaA, on the pPLA4 plasmid
(Supplementary Table S1). Plantaricin 423 inhibits a number
of food-borne pathogens such as Bacillus cereus, Clostridium
sporogenes, E. faecalis, Listeria spp. and Staphylococcus spp.
(van Reenen et al., 1998; Maré et al., 2006). Enterococcus
mundtii ST4SA was isolated from soybeans and harbors
the mundticin ST4SA  pre-bacteriocin gene munST4SA
within the munST4 operon (Supplementary Table S1).
Mundticin ST4SA is active against E. faecalis, Streptococcus

pneumoniae, Staphylococcus aureus, and L. monocytogenes
(Granger et al., 2008).

Class IlIa, or pediocin-like bacteriocins, are heat stable
with post-translational modifications limited to disulfide bond
formation (Ennahar et al., 2000; Cui et al., 2012). These peptides
have high anti-listeria activity and a conserved N-terminal
YGNGYV motif, or pediocin box (Eijsink et al., 2002; Kjos et al.,
2011; Cui et al, 2012; Lohans and Vederas, 2012; Alvarez-
Sieiro et al., 2016). Peptides in this subclass are normally
25 to 48 amino acids in length which results in peptide
masses less than 10 kDa. These peptides have a broad range
of antimicrobial activity, predominantly targeting related LAB
species and different strains of Staphylococcus and Listeria.
Operons encoding class Ila bacteriocins are found natively
in producer genomes, as introduced transposable elements or
associated to small and large plasmids. While operon locations
and organizations vary, they must always encode for proteins
or elements which ensure bacteriocin regulation, immunity,
maturation and extracellular translocation (Drider et al., 2006;
Cui et al., 2012).

The precursor peptides of class Ila bacteriocins are made
up of three domains; a leader peptide, N-terminal pediocin
box and pore-forming C-terminus (Figure 1). Each domain is
responsible for a different step in achieving antimicrobial activity
via membrane poration. Most leader peptides in class IIa have a
characteristic double glycine cleavage signal, however, some have
a sec translocase secretion signal sequence. The double-glycine-
type leader fused to the N-terminus of the core peptide produces
an inert precursor peptide and functions as a secretory signal
which is recognized by the operon-encoded ABC transporter.
Cleavage of the leader peptide during bacteriocin transmembrane
translocation from the producer cell is mediated by the ABC
transporter and produces a mature, unstructured, extracellular
bacteriocin (Ennahar et al., 2000; Drider et al., 2006; Nissen-
Meyer et al., 2009; Cui et al., 2012; Bédard et al., 2018). Only
upon interaction with a target membrane does the N-terminal
pediocin box form a cationic three-stranded anti-parallel B-sheet-
like structure, stabilized by a conserved disulfide bond (Fregeau
Gallagher et al, 1997; Wang et al., 1999; Uteng et al., 2003;
Haugen et al., 2005; Nissen-Meyer et al., 2009; Oppegard et al.,
2015). The N-terminus of the core peptide mediates bacteriocin
binding to target cell walls via docking to an extracellular loop
of the IIC protein (MptC) from the sugar transporter mannose
phosphotransferase system (Man-PTS) (Ramnath et al., 2000;
Gravesen et al., 2002; Kjos et al., 2010). While the N-terminus
associates with the MptC, a flexible hinge allows the C-terminal
hairpin-like domain to transverse and penetrate the hydrophobic
core of the target cell membrane (Figure 1; Ennahar et al., 2000;
Eijsink et al., 2002; Drider et al., 2006; Nissen-Meyer et al., 2009;
Kjos et al., 2011; Cui et al., 2012). Accumulation of the class IIa
bacteriocin within a target cell wall results in pore formation
and leakage of essential metabolites, protons and charged ions
which dissipates the target cell’s transmembrane potential and pH
gradient (Chikindas et al., 1993; Bennik et al., 1998; Montville and
Chen, 1998). In addition, pediocin PA-1 was shown to cause the
efflux of 2-a-aminoisobutyric acid a nonmetabolizable analog of
alanine, and L-glutamate (Chikindas et al., 1993).
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FIGURE 1 | Precursor bacteriocin amino acid sequences for Plantaricin 423 and mundticin ST4SA. Indicated domains: double glycine leader (green), N-terminus
(red), conserved YGNGV motif or pediocin Box (light Blue), Flexible hinge (light green) and the pore forming C-terminus (orange).
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Like many other class IIa bacteriocins, plantaricin 423 and
mundticin ST4SA have previously been purified from the native
producer’s supernatant via an extensive purification process
(van Reenen et al, 1998). For many bacteriocin classes like
class Ila, peptides are usually chromatographically purified by
taking advantage of their cationic and hydrophobic properties
or smaller size (Lohans and Vederas, 2012). Not only is this
process laborious with specific growth requirements, it can often
result in poor or variable yields due to the inducible nature
of bacteriocins, thus limiting their application (Carolissen-
Mackay et al, 1997; Guyonnet et al., 2000; Lohans and
Vederas, 2012). Furthermore, co-purification of active peptides
is a possibility that can have a major downstream impact.
Studies elucidating the mode of a bacteriocin’s regulation are
inherently complex but may be doomed to fail when bacteriocins
are chromatographically co-purified with contaminants such
as autoinducing peptides or pheromones produced by the
wild type strain.

Advances in chemically synthesizing peptides, including
bacteriocins, has become a readily available option and solves
these types of purification problems. Chemical synthesis has
undoubtedly increased the application of bacteriocins in many
areas but has limitations and may not work for every peptide.
This is especially applicable for peptides which have only been
observed in silico meaning their correct tertiary structures
remain elusive (Henninot et al, 2018). Therefore, it may be
prudent to continue the development of robust heterologous
bacteriocin expression systems for research and high scale
production applications.

Many class IIa bacteriocins have been produced using
heterologous expression systems in Escherichia coli. The main
objective of these expression systems has been to improve
the large-scale production and rapid purification of class Ila
bacteriocins. Purification of N-terminal His-tagged pediocin
PA-1 expressed in E. coli resulted in low concentrations of
biologically active bacteriocin (Moon et al., 2005). The majority
of heterologously expressed His-tagged pediocin PA-1 was found
in the insoluble fraction, most likely due to the bacteriocin’s
solubility, size and the toxic effect on the E. coli host (Moon
et al., 2005). The yields of heterologously expressed class Ila

bacteriocins have been significantly improved when the mature
peptide was fused to a larger, more soluble protein (Miller et al.,
1998; Klocke et al., 2005; Moon et al., 2006; Beaulieu et al.,
2007; Jasniewski et al., 2008; Liu et al., 2011). Although class IIa
bacteriocins fused to thioredoxin are not secreted, this system
produces the highest recorded yields ranging from 20 to 320 mg
pure bacteriocin per liter of culture (Jasniewski et al., 2008;
Liu et al, 2011). Thioredoxin is an 11.675 kDa highly soluble
protein, which has a rigid solvent-accessible a-helix and can
accumulate up to 40% of the total cellular protein in E. coli
(LaVallie et al., 1993; Bell et al., 2013). Due to its size, solubility
and cellular localization, thioredoxin aids in the expression and
purification of class Ila bacteriocins by lowering toxicity and
circumventing inclusion body packaging (LaVallie et al., 1993;
Jasniewski et al., 2008; Liu et al., 2011; Bell et al., 2013; Kimple
etal., 2013).

The Green Fluorescent Protein (GFP) gene, mgfp5, encodes
a 26.908 kDa protein that forms a f-can cylindrical structure
made up of 11 B-sheets surrounding a central axial-like
a-helix producing fluorophore (Tsien, 1998; Zimmer,
2002). Posttranslational folding of GFP and chromophore
formation is autocatalytic and does not require any cofactors
except oxygen (Tsien, 1998; Zimmer, 2002). The folded
protein is stable, soluble, non-toxic to E. coli, and has an
excitation-emission autofluorescence at 488 and 509 nm,
respectively. These characteristics make GFP applicable in
molecular biology as a fluorescent cell marker, reporter
gene or fusion tag (Tsien, 1998; Zimmer, 2002). The GFP
gene mgfp5 can be fused to class Ila bacteriocins in the
same manner as the thioredoxin gene. Therefore, coupling
sub-class IIa bacteriocins to GFP may provide many of the
same benefits as thioredoxin but with the additional benefit
of monitoring protein expression fluorometrically in vivo
and in real time.

Presented here is the development of a fluorescent expression
system to produce active plantaricin 423 and mundticin
ST4SA using GFP as a fusion partner in E. coli BL21
(DE3). Furthermore, optimization approaches for expression,
purification and cleavage using the fluorescent property of
GFP is described.
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RESULTS

GFP-Bacteriocin Fusion Constructs

In order to take advantage of GFP as a fusion partner, the
genes encoding mature plantaricin 423 and mundticin ST4SA
were fused to the C-terminus of His-tagged GFP in the
pRSF-GFP-PlaX and pRSF-GFP-MunX plasmid constructs,
respectively (Supplementary Figures S5a,b). The newly
generated GFP-fusion proteins, GFP-PlaX and GFP-MunX
were successfully expressed in E. coli while retaining the
autofluorescent properties of GFP. Furthermore, the inclusion
of the WELQut protease cleavage site (WELQ), between GFP
and the respective bacteriocins, allowed for liberation of active
bacteriocin (Supplementary Figures S5a,b). After initial success,
we further optimized expression using GFP-MunX.

Optimization of GFP-MunX Expression in
E. coli BL21

The fluorescent properties of GFP was used to evaluate the
optimal expression conditions for increased yield production in
terms of fluorescent output. This included different temperatures,
expression times and IPTG concentrations, respectively.

Incubation Temperature Optimization for GFP-MunX
Expression

Significantly higher fluorescent intensity was measured in vivo at
18 and 26°C compared to 37°C after 24 and 48 h of expression,
respectively (Figure 2A). However, these in vivo measurements
do not consider total wet cell weight and do not accurately
represent total target protein expression at each temperature.
For measurement of total target protein expression in terms of
relative fluorescence units (RFUs), the formula in Eq. 1 was used
(Raw data found in Supplementary Table S2).

RFUs of Ni — NTA purified eluent

Total RFU =
o wet cell weight used for purification

x total cell weight (1)

Total RFU production for GFP-MunX is represented in
Figure 2B, where significantly higher RFUs were produced at
18°C. This fluorescent intensity was correlated to the presence
of antimicrobial activity after cleavage using SDS-PAGE analysis
(Supplementary Figure S2).

Fluorometric Optimization of IPTG Induction

The effect of IPTG concentration on heterologous protein
expression was monitored in vivo and in real time using the Tecan
Spark M10™ (Tecan Group Ltd., Austria) kinetic incubation
program and humidity cassette (Figure 3). Fluorometric
output of induced samples increased with time and were
significantly affected by the IPTG concentration used for
induction (Figure 3A). IPTG concentrations of 0.1 and 0.2 mM
induced significantly higher fluorescence after 18 h incubation at
26°C compared to other IPTG concentrations (Figure 3B).

A 504104
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18 °C
=) 3.0x104 4 £ 26 °C
('
08 37°C
& 2.0:104-
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°
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FIGURE 2 | Fluorometric intensity of £. coli pRSF-GFP-MunEx expressing
GFP-MunEx at 18, 26, and 37°C. (A) In vivo fluorometric measurements after
0, 24, and 48 h. (B) The total relative amounts of GFP-MunEx calculated after
protein extraction and Ni-NTA purification of the 48 h expression. Fluorometric
intensity measured in Relative fluorescent units (RFU). Dissimilar letters on
bars indicates means which are significantly different from one another
according to Bonferroni post-test (P < 0.05).

Upscaled Production of GFP-PlaX and
GFP-MunX With Yield Approximation

In order to determine the effect of larger scale expressions
on the yield of our GFP-fusion system we performed
experiments under, respectively, optimized conditions using the
Minifors 5L fermenter.

The E. coli pRSF-GFP-PlaX and pRSF-GFP-MunX
fermentations were incubated at 18°C after 0.1 mM IPTG
induction for 48 h in a 3 L fermentation volume. After extraction,
Ni-NTA purification and buffer exchange of the GFP-PlaX
and GFP-MunX proteins, 39 mL of GFP-PlaX and 42 mL of
GFP-MunX eluent was obtained. After lyophilization of 1 mL
GFP-PlaX and GFP-MunX, 12.96 mg and 17.96 mg residual
mass was measured, respectively. From SDS-PAGE analysis
the purity of GFP-PlaX and GFP-MunX are approximately 72
and 61%, producing approximate concentrations of 9.33 and
10.95 mg/mL, respectively (Supplementary Figure S§3). At these
purities, the approximate yield of GFP-PlaX and GFP-MunX was
121.29 mg/L of culture and 153.30 mg/L of culture, respectively.

WELQut Cleavage Optimization

The WELQut cleavage reactions was optimized according to
the stock concentrations of GFP-PlaX and GFP-MunX which
were approximatly 9.33 mg/mL (12.96 mg/mL total protein)
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(A) In vivo RFU measurements captured every 25 min, were n = 3 (biological triplicates measured in technical triplicate), each point represents the mean with SEM
indicated by error bars. (B) Mean RFU output comparison for GFP-MunX expression after 19 h incubation over the indicated range of IPTG concentrations. Arrows
indicate Tukey’s multiple comparison test results identifying that 0.1 and 0.2 mM produce significantly higher RFU outputs from all other tests (P < 0.05).
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and 10.95 mg/mL (17.96 mg/mL total protein), respectively. The
GFP-PlaX and GFP-MunX cleavage reactions were incubated at
28°C and sampled at time intervals of 2, 4, 8, and 16 h for a
range of sample to WELQut ratios (Supplementary Figure S4).
From these results, the cleavage ratios which produced maximal
antilisterial activity for GFP-PlaX and GFP-MunX cleavage after
16 h was confirmed at a WELQut to sample ratio of 1:10 and 1:25
(WL:pL), respectively (Figure 4 and Supplementary Table S5b).

An important advantage of using GFP as a fusion partner is
the ability to evaluate protease cleavage by visualizing migration
patterns of fluorescent bands after electrophoretic separation.
Determining optimal cleavage conditions in terms of activity
of heterologously produced bacteriocin fusions is dependent on
many variables. As such we confirmed the results for optimal
cleavage by utilizing the maintained fluorescent properties of
GFP after SDS-PAGE electrophoresis. Fluorescent bands were
observed for GFP-PlaX, GFP-MunX, and GFP before and
after cleavage, respectively (Figures 5a-c). These bands were
then correlated to stained bands on the same SDS-PAGE gels
(Figures 5b-d). An unexpected observation was the increase
in size of GFP fluorescent bands of GFP-PlaX (band I) and
GFP-MunX (band IV) after WELQut cleavage (band II and V,
respectively). The fluorescent intensity of these larger bands (II
and V) increases as increasing amounts of WELQut protease
was added (columns 3 to 6 of Figure 5). This size increase
of approximately 20 kDa might indicate the formation of
a WELQut-GFP-bacteriocin complex forming upon WELQut
liberation of plantaricin 423 and mundticin ST4SA, respectively.

The intensity of the uncleaved GFP-PlaX and GFP-MunX
fluorescent bands decreases as the WELQut : sample ratio
increases (Figures 6a—c). Complete cleavage could be observed
for GFP-PlaX (lane 6, Figure 5a) and corresponds to the highest
spot activity observed (Figure 4A). Complete cleavage was not
achieved for GFP-MunX, with a slight fluorescent band observed
at the location of uncleaved GFP-MunX (lane 6, Figure 5c).

Interestingly, the maximal spotted activity of GFP-MunX was
equal for ratios 1:25 and 1:10 (Figure 4B) despite apparent
difference in cleavage efficiency observed in SDS-PAGE (lanes
5-6, Figure 5c¢).

Antimicrobial Activity Validation

While the respective bacteriocins were fused to GFP and
produced a fluorescent complex, it was important to determine
that antimicrobial activity was due to the liberated bacteriocin.
The antimicrobial activity of plantaricin 423 and mundticin
ST4SA post WELQut cleavage from GFP-PlaX and GFP-MunX
proteins was investigated using SDS-PAGE under semi-native
conditions (Figure 6). Using this method, the location of
fluorescent GFP fusion proteins on the separated gel could be
photographed and superimposed on the stained- and antilisterial
gel overlay (Figures 6a-c). Antilisterial activity was observed
as clear zones for the WELQut cleaved GFP-PlaX and GFP-
MunX samples (Figures 6a,b). Antilisterial zones III and IV
in Figure 6b correspond to the locations of mundticin ST4SA
(4285 Da) and plantaricin 423 (3928 Da), respectively, indicating
liberation of the core peptides from their respective GFP fusion
partners. However, two additional zones of antilisterial activity
(I and II in Figure 6b) were observed, which correspond to
the approximate size and location of fluorescent GFP-MunX (31
874 Da) and GFP-PlaX (31 520 Da) (lane 5 and 6 of Figure 6c).
From analysis of minimum inhibitory concentrations of cleaved
GFP-MunX and -PlaX the BU/mL (bacteriocin units/mL)
was determined to be 1600 and 83.33 BU/mL, respectively
(Supplementary Figures S5, S6).

Peptide Yields and LC-MS

Mundticin ST4SA and plantaricin 423 were cleaved from
one milliliter of His-tag purified GFP-MunX and GFP-PlaX,
respectively, under optimal cleavage conditions. Cleavage
reactions were purified using high performance liquid
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Increasing concentration of WELQut

1:50

1:25

FIGURE 4 | Antimicrobial activity of plantaricin 423 and mundticin ST4SA at various WELQut : sample ratios. Antimicrobial activity of plantaricin 423 (A) and
mundticin ST4SA (B) cleaved from Ni-NTA purified GFP-PlaX and GFP-MunX proteins, respectively. Cleavage assessed using the spot plate technique against
L. monocytogenes. Cleavage ratios of WELQut : sample (wL:pL) indicated on top of panel. Cleavage was performed at 28°C for 16 h. Post cleavage, 100 pL of
GFP-PlaX (A) and 10 pL GFP-MunX (B) was spotted from each cleavage reaction. Uncleaved GFP-PlaX (A) and GFP-MunX (B) did not show antilisterial activity.

Uncleaved

1 2 3 4 5 6
(Uncleaved) (1:100)  (1:50) (1:25) (1:10)

FIGURE 5 | SDS-PAGE analysis of WELQut cleaved GFP-PlaX (a,b) and GFP-MunX (c,d). (a,c) represent unstained SDS-PAGE gels fluorometrically photographed.
(b,d) represent stained gels of (a,c). Lane: 1 — Ladder, 2 — uncleaved sample, 3 to 6 WELQut cleavage samples, sample ratios indicated. Band | — Uncleaved
GFP-PlantEx, Il - putative WELQut and GFP complex, Il - WELQut, IV — Uncleaved GFP-MunX, V — putative WELQut and GFP complex, VI - WELQut.

1 2 3 4 5 6
(Uncleaved) (1:100) (1:50) (1:25) (1:10)

chromatography (HPLC), single peaks were spot tested for
antilisterial activity. Mundticin ST4SA activity was observed
from a single peak while plantaricin 423 produced multiple
active peaks with low levels of activity. The mundticin ST4SA
fraction was lyophilized and the residual mass was weighed
off. Optimal cleavage of GFP-MunX yielded 0.88 mg of active

mundticin ST4SA, indicating that approximately 37.3 mg
could be obtained from the 3 L fermentation corresponding
to 12.4 mg/L mundticin ST4SA. The production yield of
plantaricin 423 was not estimated due to multiple active peaks,
showing weak activity, which is likely a result of different
conformational isomers.
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FIGURE 6 | Observed post cleavage antilisterial activity of liberated mundticin ST4SA and plantaricin 423 separated by SDS-PAGE. (a) Superimposition of duplicate
SDS-PAGE separations which indicates the size of bands showing antilisterial activity. (b) Antilisterial SDS-PAGE overlay showing activity post WELQut cleavage at
locations correlating to | - GFP-PlaX, Il - GFP-MunX, Il - mundticin ST4SA and IV - plantaricin 423. (¢) Location of fluorescent bands in (a).
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Electrospray ionization-MS performed on HPLC-purified
mundticin ST4SA confirmed the presence of a peptide with a
mass corresponding to mature mundticin ST4SA (Figure 7).
While an accurate mass of 4285.1355 Da was determined
for mundticin ST4SA from the isotopic envelope of the
[M+5H]*> species, the abundance of this charged species
within the raw spectrum was low (Figure 7). However, the
accurate mass measurement is in close agreement with the
theoretical monoisotopic mass of 4285.0796 Da (equivalent to
the formation of one disulfide bridge). Multiple attempts were
made to determine the accurate mass of plantaricin 423, however,
convincing data was not obtained.

DISCUSSION

Although expressing class IIa bacteriocins with a fusion partner
redirects a portion of the metabolic flux away from bacteriocin
synthesis, fusion increases overall yields by quenching the
bacteriocin’s toxicity to E. coli (Liu et al., 2011). Thioredoxin

has been a popular fusion partner for the heterologous
expression of many subclass Ila bacteriocins. In an attempt
to increase the usefulness of a bacteriocin fusion partner,
we evaluated GFP as a fluorescent fusion partner for the
heterologous expression of plantaricin 423 and mundticin
ST4SA. Plantaricin 423 and mundticin ST4SA were purified
from the soluble fraction due to the increased size and solubility
when fused to GFP, as seen with thioredoxin fusion to other
subclass Ila bacteriocins (Beaulieu et al., 2007; Jasniewski
et al., 2008; Liu et al., 2011). The stabilizing effects provided
by thioredoxin fusion in E. coli for class Ila bacteriocin
expression is also provided by GFP, without disrupting its
autofluorescent property.

Maintained fluorescence provided the advantage of clear
visualization of the target proteins, GFP-PlaX and GFP-MunX,
throughout the expression, extraction, purification, and analysis
processes which allowed for rapid optimization and trouble
shooting. Fluorescent intensity could function as a proxy to
guide optimizations because it correlated to the amount of
GFP fusion protein.
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FIGURE 7 | HPLC purification and accurate mass determination of mundticin ST4SA liberated from GFP-MunX. (A) HPLC fractionation of WELQut cleaved
GFP-MunX mixture with antilisterial activity identified in fractions 13 and 14. (B) Segment of raw mass spectrum showing the observed m/z isotopic envelopes of
munditicin ST4SA carrying +5 charges ((M+5H]° expected m/z 858.0232). The monoisotopic peak in (B) is indicated with an arrow and corresponds to an accurate
mass measurement of 4258.1355 Da, which is in agreement with the exact mass of mundticin ST4SA with one disulfide bond (4285.0796 Da).

While previous studies have demonstrated that incubation
temperature influences heterologous protein expression levels, to
our knowledge, no study has considered this for the heterologous
expression of class Ila bacteriocins (Sivashanmugam et al,
2009). Bacteriocins which have been expressed as fusion partners
with thioredoxin include pediocin PA-1, carnobacteriocins
BMI1, and B2, divercin V41, enterocin P and piscicolin
124, with pediocin PA-1 also fused to mouse dihydrofolate
reductase and enterocin A fused to cellulose-binding domain
(Gibbs et al., 2004; Richard et al., 2004; Klocke et al., 2005;
Cuozzo et al., 2006; Moon et al., 2006; Beaulieu et al., 2007;

Jasniewski et al., 2008; Liu et al.,, 2011; Lohans and Vederas,
2012). These studies performed their expressions at 37°C or
did not specify a temperature. While this study found that
expression temperature significantly influenced the final GFP-
bacteriocin yield in terms of RFU output. From this data it
can be recommended that expression temperature is one of
the first variables to be optimized for GFP-bacteriocin fusion
expression. The ease of fluorometric optimization was also
observed during IPTG treatments were real time in vivo results
indicated that changes in IPTG concentrations significantly
affected expression.
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Evaluating what effect these variables will have on specific
production rates would be a challenging and time-consuming
task for non-fluorescent fusion partners. The GFP-bacteriocin
fusion system boasts a great sense of confidence during
heterologous expression of subclass Ila bacteriocins due to
the high-quality data its convenient autofluorescent property
provides. However, certain factors need to be taken into
consideration. During expression temperature optimization, it
was observed that the total wet cell weight must be taken into
account when calculating total yield in terms of RFUs. In vivo
measurements of GFP-MunX production indicate that there is
no significant difference between the fermentations at 18 and
26°C. However, when the total RFUs produced were calculated
after extraction and NI-NTA purification, nearly two times higher
yields were obtained at 18°C as compared to 26°C. Without
taking biomass into account, in vivo fluorescent intensities can
only be used to compare expression levels in real time as a means
of coarse optimization. Therefore, In vitro (post purification)
fluorescent intensities more accurately represent total target
protein expression and are required for estimating yield.

Another major advantage of using GFP as a fusion partner is
the ability to visualize fluorescence during SDS-PAGE analysis.
Visualization indicated not only the location of the GFP fusion
protein but also trends that occur during cleavage and liberation
of the bacteriocin using WELQut protease. Therefore, loss of the
GFP fusion protein at any stage of the extraction or purification
process is immediately noticed. This robust fluorometric
property of GFP can be attributed to the isolation of its
fluorescent chromophore within the compact “B-can” cylindrical
structure (Zimmer, 2002; Remington, 2011). The cylindrical
structure provides resistance to sodium dodecyl sulfate (SDS),
urea, beta-mercaptoethanol (BME) and dithiothreitol (DTT),
however, its integrity is sensitive to pH and high temperature,
hence the requirement for semi-native SDS-PAGE (Saeed and
Ashraf, 2009; Krasowska et al., 2010).

The yields of most heterologously expressed subclass Ila
bacteriocins, many of which are fused to thioredoxin, are rarely
higher than tens of milligrams bacteriocin per liter of culture
(Moon et al., 2006; Beaulieu et al., 2007; Liu et al., 2011; Lohans
and Vederas, 2012). Under optimized conditions the GFP-PlaX
and GFP-MunX fusion proteins were produced at approximately
121 mg/L of culture and 153 mg/L of culture, respectively.
This would theoretically produce 15.08 and 20.56 mg/L mature
plantaricin 423 and mundticin ST4SA assuming complete
cleavage, respectively. After mature peptide cleavage, HPLC
purification and lyophilization, 14.4 mg/L active mundticin
ST4SA was recovered. Loss of sample during the purification
process is expected and explains the difference between
theoretical and observed mundticin ST4SA yields. Despite our
promising yields, the highest yields for heterologous expression
of class Ila bacteriocin were reported for carnobacteriocin
B2 and BMI1 fused to thioredoxin at 320 mg/L of culture
(Jasniewski et al., 2008). Carnobacteriocin B2 and BM1 fusions
were heterologously expressed in E. coli cultured in a fed-batch
fermentation where pH, temperature and oxygen regulation
were controlled. Jasniewski et al. (2008) reported that using
a continuous supply of lactose for induction in the fed batch

fermentation had a marked increase in heterologous expression.
Future studies should consider expressing GFP as the fusion
partner under such fed batch conditions at 18°C to assess whether
GFP-subclass IIa fusion can improve on these yields. The yield
of GFP-MunX and GFP-PlaX may also be improved by using
alternative mechanisms of cell disruption such as alternative lysis
buffers or mechanical methods.

A limiting factor observed in the current study was the
liberation of active bacteriocin using WELQut protease. Cleavage
at such an ineflicient rate would be time consuming and costly,
and therefore a major limiting factor for high scale production.
An interesting observation was the apparent association of
the WELQut protease with the respective fluorescent proteins
post-cleavage causing an approximate 20 kDa size increase.
Formation of a WELQut-GFP-bacteriocin complex is further
supported by the presence of two unexpected zones of antilisterial
activity observed post-cleavage at the location of fluorescent
GFP-MunX and GFP-PlaX fusion protein bands. This WELQut-
GFP-bacteriocin association might be indicative of a problematic
cleavage as this phenomenon is unreported in the WELQut
documentation or literature (Pustelny et al., 2014).

The WELQut protease is derived from the SpIB protease
of Staphylococcus aureus which is activated by proteolytic
cleavage of an N-terminus signal peptide. Removal of the
signal peptide allows subsequent formation of a characteristic
hydrogen bond network (Pustelny et al., 2014). Pustelny et al.
(2014) reports that signal peptide cleavage does not change
the disposition of catalytic machinery nor does it perturb the
hydrogen bond network in the vicinity of the catalytic site.
The crucial elements within the active site are in place whether
or not a signal peptide is attached, and does not depend
on the signal peptide sequence (Pustelny et al, 2014). For
this reason, Pustelny et al. (2014) postulates that interactions
at the N-terminus affects the dynamics of SpIB as a whole
which subsequently impacts substrate recognition and hydrolysis.
Liberated plantaricin 423 and mundticin ST4SA may be
interacting with SpIB at its N-terminus thus lowering its cleavage
efficiency. Although, without fully understanding the mechanism
of WELQut activation, hypothesizing how plantaricin 423 or
mundticin ST4SA interfere with WELQut cleavage is difficult.

From the observations in the current study, and others,
it is clear that the yields of heterologously expressed class
ITa bacteriocins are not the biggest limiting factor for high
scale production, but rather the liberation of the active core
peptide. Fortunately, the maintained fluorescent property of GFP
under semi-native SDS-PAGE conditions rapidly highlighted
this bottleneck. The high yield of 320 mg/L obtained for
carnobacteriocin B2 liberated from thioredoxin, was achieved
using cyanogen bromide which unfortunately produces toxic
samples that may limit downstream applications (Jasniewski
et al., 2008). While studies like this one, which used a protease to
liberate the subclass Ila bacteriocin from the fusion partner, are
yet to achieve more than tens of milligrams pure bacteriocin per
liter of culture (Moon et al., 2006; Beaulieu et al., 2007; Liu et al.,
2011; Lohans and Vederas, 2012). This lower efficiency paired
with the high cost of commercial proteases renders the approach
unfeasible for high scale production. Using a bacteriocin’s native
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protease for fusion cleavage may lower costs and avoid any
incompatibility issues as seen in this study with a potential
increase in efficiency (Montalbdn-Lopez et al., 2018; Van Staden
et al,, 2019). In this regard the fluorescent property of GFP may
prove a useful tool in identifying novel cleavage approaches or
proteases effective at cleaving hydrophobic peptides containing
disulfide bonds like subclass ITa bacteriocins.

Accurate mass determination for mundticin ST4SA and
plantaricin 423 liberated from their GFP fusion partners was
challenging. The determined accurate mass of 4285.1335 Da for
mundticin ST4SA is in close agreement with the expected mass
(4285.0796 Da) when one disulfide bond is formed. However,
with the given concentration of mundticin ST4SA a relatively low
abundance was observed during MS analysis.

Plantaricin 423 liberated from GFP-PlaX was not detected
during MS analysis. Plantaricin 423 is similar to pediocin PA-1
as it has four cysteine residues which allows for the formation
of two disulfide bonds. Different arrangements of the two
bonds produce three conformational isomers of pediocin PA-1
with varying specific activities against Listeria (Oppegard et al.,
2015; Bédard et al., 2018). This incorrect folding of pediocin
PA-1 during heterologous expression is the result of an absent
thioredoxin gene (Oppegard et al., 2015; Bédard et al., 2018). The
thioredoxin gene, papC, is encoded by the native pediocin operon
to guide correct disulfide bond formation for optimal specific
activity and is also found in the pla operon (Mesa-Pereira et al.,
2017). The low specific activity observed for liberated plantaricin
423 compared to mundticin ST4SA, in terms of RFUs, provides
more evidence for the presence of conformational isomers.

Dividing the liberated mass of plantaricin 423 into different
conformational isomers is exacerbating the difficulties
experienced during LCMS analysis. These conformational
isomers elute from the HPLC column in different fractions,
which decreases the concentration of plantaricin 423 available
for downstream analysis. Furthermore, activity was used to
determine which fractions are submitted for MS, therefore
fractions containing inactive plantaricin 423 were excluded
altogether. This partitioning of the plantaricin 423 mass coupled
with the potential for low abundance of charged species, may
explain why plantaricin 423 was not detected during MS
analysis. Modifications would need to be made to the current
GFP-PlaX expression system to ensure correct disulfide bond
formation before determining the production yield and accurate
mass of plantaricin 423. In this regard, future studies should
consider the co-expression of accessory proteins, such as the
operon encoded thioredoxin proteins, to direct correct disulfide
bond formation when conformational isomers are possible
(Mesa-Pereira et al., 2017).

CONCLUSION

Fusion to GFP stabilized expression, simplified purification by
reducing peptide hydrophobicity and assigned a fluorometric
tag to the target protein. Not only does this autofluorescent
property make handling the target peptide more intuitive but it
provides a high degree of confidence and reproducibility during

heterologous peptide expression and purification. Furthermore,
because fluorescence correlates to the amount of target protein
and specific activity, optimization of most steps is rapid and
convenient which ultimately accelerates the rate of progress.
Our goal here was to show that fluorescence produced by GFP
can be used to optimize heterologous expression. Future studies
should evaluate the relationship between specific activity and the
fluorescent coeflicient, and its usefulness or implications, and on
what scale this occurs. With the development of inline fluorescent
monitoring technologies, future studies should also identify if
time, temperature and IPTG concentration have compounding
effects to further boost yield. However, the yields for plantaricin
423 and mundticin ST4SA produced with this GFP-fusion system
will benefit greatly by improving both cleavage efficiency and
disulfide bond formation. Finally, novel subclass IIa bacteriocins
can be easily identified by their conserved YGNGV motif and
produced with a high degree of process certainty using the
GFP-fusion approach described here. However, subclass Ila
bacteriocins which contain more than two cysteine residues may
need additional accessory genes and therefore modifications to
the system presented here.

Purifying  hydrophobic ~ peptides  for  bioactivity
characterization is a challenging task especially under the non-
native conditions experienced during heterologous expression.
However, the antilisterial activity of subclass IIa bacteriocins is
easily assayed, which conveniently demonstrated here that GFP
is an effective and readily optimizable peptide-fusion partner.
The extent to which GFP can function as a fusion partner for
heterologous expression of cationic, hydrophobic peptides with
toxic effects to E. coli, should be further explored. Recently, it
has been demonstrated that class I and class II lanthipeptides can
still undergo posttranslational modification while fused to the
C-terminal of GFP (Ongey et al., 2018; Si et al., 2018; Van Staden
et al., 2019). These studies further promote fusion to GFP as
an elegant approach to improve the heterologous expression of
modified or unmodified cationic, hydrophobic peptides in E. coli
while maintaining their bioactivity. Therefore, if GFP-fusion
can provide more confidence during heterologous expression
and purification of various antimicrobial peptides, GFP may
become the fusion partner of choice for peptides with much
broader bioactivities.

MATERIALS AND METHODS

Materials
Detailed information on materials and manufacture details are
listed in the Supplementary Material.

Bacterial Strains and Culture Conditions

All bacterial strains used in this study can be found in
Supplementary Table S8. The LAB, Lactobacillus plantarum
423 and Enterococcus mundtii ST4SA were cultured on De
Man, Rogosa and Sharpe (MRS) media, at 37°C without
agitation. Luria Bertani (LB) medium, supplemented with
1.2% agar for solid medium, was used to culture Escherichia
coli BL21 (DE3) during molecular cloning protocols. Listeria
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monocytogenes EGD-e was cultured on Brain Heart Infusion
(BHI) media supplemented with 7.5 pg/mL Chloramphenicol.
Terrific broth was used for the expression of heterologous
proteins in recombinant E. coli BL21 (DE3) (Shi et al., 2011). For
the selection and maintenance of pRSFDuet-1 (Novagen) derived
plasmids, growth media were supplemented with 50 pg/mL
kanamycin (Sigma).

Molecular Techniques

DNA analysis, manipulation, and plasmid cloning were
performed according to Sambrook et al. (1989). Genomic
DNA and plasmid DNA isolations from L. plantarum 423
and E. mundtii STASA were performed according to Moore
et al. (Ausubel et al., 2003) and O’Sullivan and Klaenhammer
(1993), respectively. Plasmid DNA extractions from E. coli were
performed using the PureYield™ Plasmid Miniprep System
according to the manufacturer’s instructions.

T4 DNA ligase and restriction enzymes (RE) were used
according to the manufacturer’s instructions. Polymerase chain
reaction (PCR) amplifications were performed using Q5 high-
fidelity PCR DNA polymerase according to manufacturer’s
instructions in a GeneAmp PCR system 9700 (ABI, Foster City,
CA, United States).

Oligonucleotides were designed using the CLC main
workbench program (CLC bio, Aarhus, Denmark). DNA
sequencing was performed by the Central Analytical Facilities
(CAF) at the University of Stellenbosch, South Africa.

Agarose gel electrophoresis was used for the analysis and
purification of RE digested DNA fragments in TBE buffer
at 10 V/cm using the Ephortec™ 3000 V (Triad Scientific,
Manasquan United States) power supply (Ausubel et al., 2003).
Excised gel DNA fragments were purified using the Zymoclean™
gel DNA recovery kit.

GFP-Bacteriocin Fusion Plasmid

Construction and Primer Design

The pRSFDuet-1 used for the B-D-1-
thiogalactopyranoside (IPTG) induction of the heterologously
expressed His-tagged GFP-bacteriocin fusions in this study
(Shi et al, 2011). The N-terminal of mgfp5 (GFP) was
fused to a hexahistidine tag in pRSFDuet-1 which was
under the transcriptional control of the T7 promoter
(Supplementary Figure S7). The double-glycine leader
sequences from mundticin ST4SA and plantaricin 423 were
excluded so that the core peptide’s N-terminus was fused to the
C-terminus of GFP. The WELQut protease recognition amino
acid cleavage sequence was introduced between GFP and the
respective core peptide sequences (Supplementary Figure S5).
This site allowed for posttranslational cleavage and liberation of
the core peptides using the WELQut protease.

The GFP_Bam_Fwd forward primer installed a BamHI
site 5’ of mgfp5 (GFP gene) for cloning into pRSFDuet-1
(Supplementary  Table S6). The  GFP_WELQ_Rev
reverse primer extended the mgfp5 sequence with an
Agel restriction site followed by the DNA sequence
encoding the WELQ amino acid sequence (recognition

vector was

sequence for WELQut protease), followed by a PstI site
(Supplementary  Figure S5). The PlaX_ Pst_Fwd/PlaX
_Hind_Rev and MunX_ Pst_ Fwd/MunX_Hind_Rev primer
sets annealed to the mature plantaricin 423 (plaA) and
mundticin ST4SA (munST4SA) gene sequences, respectively,
(Supplementary Table S3). These primer sets added 5’ PstI
and 3’ Hindlll restriction sites for cloning mature plantaricin
423 (plaA) or mundticin ST4SA (munST4SA) genes as GFP
fusions in pRSFDuet-1, represented as the “core peptide” in
Supplementary Figure S5. Detailed cloning procedure for the
construction of pRSF-GFP-PlaX and pRSF-GFP-MunX may be
found in the Supplementary Material.

Overexpression of GFP-Bacteriocin

Fusion Proteins in E. coli BL21 (DE3)

Starter cultures of 30 mL LB broth containing 50 pg/mL
kanamycin were inoculated with respective E. coli BL21 (DE3)
transformants containing pRSF-GFP-PlaX or pRSF-GFP-MunX
constructs. The starter cultures were incubated at 37°C for
12 h with constant agitation. Starter cultures were used as
an inoculum for the expression of GFP-PlaX and GFP-MunX,
respectively, (1% v/v). At an ODggy of 0.6-0.65, expression of
the respective GFP fusion proteins was induced using 0.1 mM
IPTG. Upscaled production in a 5 L fermenter (Minifors, Infors
AG, CH - 4103 Bottmingen/Basel, Switzerland) is detailed in the
Supplementary Material.

Ni-NTA Purification of GFP-MunX and
GFP-PlaX Proteins

Induced cells were harvested by centrifugation at 8 000 g
for 20 min at 4°C. The supernatant was discarded, and the
cell pellet was resuspended in 15 mL/g wet weight SB buffer
supplemented with 1 mg/mL lysozyme and incubated with
agitation at 8°C for 45 min (Buffer compositions can be found
in Supplementary Table S7). After incubation, the lysed cells
were subjected to sonication (50% amplitude, 2 s pulse, 2 s pause,
6 min) using the Omni Ruptor 400 (Ultrasonic Homogenizer,
Omni International). RNasel and DNasel were added to a final
concentration of 10 and 5 pg/mL, respectively, and the lysate
incubated at room temperature for 15 min. The cell lysate was
then centrifuged for 90 min at 20 000 g at 4°C; the cell-free
supernatant was collected. Imidazole was added to the cell-free
supernatant to a final concentration of 10 mM.

The His-tagged GFP-bacteriocin fusion proteins, GFP-PlaX
and GFP-MunX, were purified with immobilized metal affinity
chromatography (IMAC) using the Ni-NTA superflow resin,
according to the Qiagen expressionist handbooK’s instructions
for batch purification. His-tagged proteins were purified using
25 mL of Qiagen Ni-NTA superflow resin in combination with
a 26 mm diameter adjustable length flash column (Glasschem,
Stellenbosch, South Africa). The Ni-NTA superflow resin was
equilibrated in SB10 (SB buffer containing 10 mM imidazole)
buffer and then added directly to the cell-free supernatant. The
slurry was gently agitated for 2 h at 8°C using a shaker, after which
the Ni-NTA superflow resin slurry was packed into the column.
The AKTA purifier system (Amersham, Biosciences) was used for
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IMAC purification according to the following program; 5 column
volumes (CV) SB10 (2% B buffer where A is SB and B is SB500),
washed with 10 CV of SB20 (4% B buffer), elution occurred in
approximately 40 mL of SB500 (100% B buffer). Eluted proteins
were detected at 254 and 280 nm, respectively. Eluted His-tagged
proteins were desalted using size exclusion chromatography. The
AKTA purifier system was used in conjunction with Sephadex
G25 resin packed into column (16 x 65 mm, GE Healthcare) for
exchanging the sample from SB500 to WELQut cut buffer.

Incubation Temperature Optimization for
GFP-MunX Expression

Only the GFP-MunX fermentation was temperature optimized
as cleaved GFP-MunX had a higher specific activity. The GFP-
MunX expression temperature optimization was performed at 18,
26, and 37°C with three biological repeats of E. coli BL21 (DE3)
harboring the pRSF-GFP-MunX plasmid. The three biological
repeats of E. coli pRSF-GFP-MunX were used to inoculate three
400 mL flasks of terrific broth containing 50 pg/mL kanamycin.
The cultures were grown at 37°C until induction using 0.1 mM
IPTG at an ODgpp nm of 0.6-0.65. Each 400 mL culture was split
into three 100 mL cultures that were incubated at 18, 26, and 37°C
for 48 h, respectively.

To measure in vivo GFP-MunX expression, 1 mL samples
from each flask were collected in triplicate at the time of
induction; samples were collected again at 24 and 48 h and frozen
at —80°C. After collection, samples were thawed, centrifuged and
washed twice with potassium phosphate buffer (pH 7.4). The
in vivo expression of GFP-MunX was fluorometrically measured
in relative fluorescent units (RFUs) at 488 nm (excitation)
and 509 nm (emission) using a Tecan Spark M10™ (Tecan
Group Ltd., Austria).

After 48 h, the total GFP-MunX RFU production for each
sample was calculated by harvesting the induced cells from 80 mL
of culture (centrifugation 8000 x g for 20 min at 4°C). The
mass of each cell pellet was then measured before resuspension
in 15 mL/g wet weight SB buffer. The GFP-MunX in each
sample was extracted and purified using IMAC as described
previously. Briefly, 5 mL from each cell-free lysate was purified
using 5 ml Ni-NTA Superflow cartridges. The RFUs of each Ni-
NTA purified GFP-MunX sample was measured using the Tecan
M10™ Spark (Tecan Group Ltd., Austria). The RFUs/g were
then calculated for each sample by dividing the measured RFUs
by the equivalent wet weight (g) of cells lysed for purification (i.e.,
grams of lysed cells in 5 mL). The total RFUs produced for each
sample was calculated by multiplying the RFUs/g by the total wet
weight of cells harvested in each sample.

Optimization of IPTG Concentration for

Induction

Fluorometric intensity was used to optimize IPTG induction
concentration for GFP-MunX expression using the Tecan Spark
M10™ (Tecan Group Ltd., Austria) kinetic incubation program
and humidity cassette in a 96 well microtiter plate. Three
biological repeats of E. coli BL21 (DE3) harboring the pRSF-GFP-
MunX plasmid were inoculated into three 1 L Erlenmeyer flasks

containing 200 mL filter sterilized terrific broth supplemented
with 50 pg/mL kanamycin, and incubated at 37°C. Once an
ODegoo nm of 0.55 was reached, each culture was chilled in an
ice bath. Culture aliquots were then incubated with 0.01, 0.05,
0.1, 0.2, 0.4, 0.6, 0.8, 1, and 2 mM IPTG (final concentration) in
triplicate in a 96 well microtiter plate. The microtiter plate was
incubated within a humidity chamber by the Tecan Spark M10™
at 26°C for 20 h. Every 20 min the microtiter plate was shaken
for 30 s, allowed to settle for 10 s, RFUs were then measured at
509 nm (emission) after excitation at 488 nm.

Concentration Estimation

One milliliter of Ni-NTA purified and buffer exchanged
GFP-PlaX and GFP-MunX eluents were lyophilized and
analytically weighed off in triplicate to estimate total protein
mass. The purified GFP-PlaX and GFP-MunX samples were
electrophoretically separated using tricine SDS-PAGE to estimate
sample purity (Schigger and von Jagow, 1987). To avoid
saturation during Coomassie staining the 10x dilutions of
GFP-PlaX and GFP-MunX were used to estimate protein purity
(Supplementary Figure S3). Gel analyzer 2010a' was used to
determine the pixel density of each stained band in respective
lanes and used to estimate sample purity (Lazer and GelAnalyzer,
2010). WELQut cleavage optimization.

Cleavage parameters were optimized using a modification of
the method supplied by Thermo Fisher Scientific for the WELQut
protease. The WELQut-to-sample ratios were set to 1:100, 1:50,
1:25, 1:5 (v/v) for 50 pL samples of GFP-PlaX and GFP-MunX,
respectively, and diluted to a final volume of 250 iL in WELQut
cut buffer (Supplementary Table S7). The corresponding units
of WELQ to approximately 466.5 pug of GFP-PlaX was 2.5, 5,
10, and 50 U, respectively. The corresponding units of WELQ
to approximately 547.5 g of GFP-MunX was 2.5, 5, 10, and
50 U, respectively.

Antimicrobial Activity Assays

Antimicrobial activity of plantaricin 423 and mundticin ST4SA
was assessed against Listeria monocytogenes EDG-e grown
on Brain Heart Infusion media (BHI) containing 7.5 pg/mL
chloramphenicol. The spot plate method was performed on
solid medium (1% w/v agar) seeded with Listeria monocytogenes
EDG-e. SDS-PAGE separations were assayed for activity by
casting the polyacrylamide gel in an agar bilayer seeded
with Listeria monocytogenes EDG-e. Before casting, the poly
acrylamide gels were fixed for 20 min in a 25% isopropanol, 10%
acetic acid fixing solution and then rinsed 3 x 15 min with sterile
ultra-pure water.

The MIC of GFP-MunX and -PlaX against L. monocytogenes
EDG-e was determined using a 96 well microtiter plate assay
at various concentration of cleaved GFP-MunX and GFP-PlaX
in technical and biological triplicate. An overnight culture of
L monocytogenes EDG-e was used to inoculate BHI broth
containing 7.5 pg/mL chloramphenicol at 1% v/v. GFP-MunX
and GFP-PlaX was cleaved at the predetermined optimal
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WELQut to sample ratios of 1:25 and 1:10, respectively.
Serial dilutions of cleaved GFP-MunX and -PlaX stock
concentrations were made (Supplementary Figures S5, S6). Due
to the differences in GFP-MunX and -PlaX concentration and
differences in mundticin ST4SA and plantaricin 423 specific
activity, 10 pL of each GFP-MunX samples and 20 wLGFP-
PlaX samples was added to 190 and 180 pwL BHI broth
containing L. monocytogenes EDG-e in a 96 well microtiter plate,
respectively. Absorbance readings (595 nm) were recorded at
times 0 and 18 h. Listerial inhibition was expressed as I =1 —
(Am/Ap), where A, is the sample absorbance and Ay the control
(blank) absorbance at 595 nm (Cabo et al., 1999). One bacteriocin
unit (BU) is defined here as the minimum amount of bacteriocin
required to inhibit at least 50% of the indictor strain’s growth in
200 wL culture volume (Cabo et al., 1999).

HPLC and LC-ESI-MS

For yield calculation of MunX, GFP-MunX was digested with
WELQut protease as described elsewhere and injected onto
a Discovery BIO Wide Pore C18 HPLC column (10 pm,
250 x 10 mm, Sigma-Aldrich). The sample was separated using
a gradient of 10-90% Solvent B (Solvent B: 90% Acetonitrile/10%
MilliQ, 0.1% TFA) over 12 min. Active peaks were collected and
lyophilized in order to determine residual mass.

For ESI-MS analysis cleaved GFP-MunX was heated at 90°C
for 10 min and cetrifuged (12000 x g, 10 min). The supernatant
was subsequently injected onto a Hypersil Gold C18 HPLC
column (5 wm, 4.6 x 100, Thermo Fisher Scientific). The sample
was separated using a gradient of 10-50% Solvent B (Solvent
B: Acetonitrile, 0.1% TFA) over 10 min. Peaks were collected
and tested for activity as described elsewhere. Active peaks were
concentrated using a SpeedyVac vacuum concentrator before
ESI-MS analysis (CAE Stellenbosch, South Africa).

Statistical Analysis

Statistical analysis was performed using Graph Prism Version
3.0 (Graph Pad Software, San Diego, CA). Data generated
from the effect of incubation temperature, time and IPTG
induction concentration on heterologous expression of GFP
fusion constructs was represented as the mean with stand
error of mean (SEM). Bonferroni post-tests was performed
after a two-way ANOVA on in vivo incubation temperature
optimization data to identify significant treatments over time.
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