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Cell Wall Biogenesis Protein 
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Cell wall biogenesis protein phosphatases play important roles in various cellular processes 
in fungi. However, their functions in the widely distributed mycoparasitic fungus Clonostachys 
rosea remain unclear, as do their potential for controlling plant fungal diseases. Herein, the 
function of cell wall biogenesis protein phosphatase CrSsd1  in C. rosea 67-1 was 
investigated using gene disruption and complementation approaches. The gene-deficient 
mutant ΔCrSsd1 exhibited much lower conidiation, hyphal growth, mycoparasitic ability, 
and biocontrol efficacy than the wild-type (WT) strain, and it was more sensitive to sorbitol 
and Congo red. The results indicate that CrSsd1 is involved in fungal conidiation, osmotic 
stress adaptation, cell wall integrity, and mycoparasitism in C. rosea.
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INTRODUCTION

Cell walls are essential structures that help organisms resist environmental stresses and 
protect a variety of natural cellular processes. In fungi, the biogenesis and integrity of cell 
walls are vital for fungal pathogenesis and survival (Scrimale et  al., 2009; Wei et  al., 2016), 
and their remodeling and expansion determine cell growth and reproduction (Fuchs and 
Mylonakis, 2009; Wang et  al., 2013; Feng et  al., 2017). Several cell wall building-related 
proteins have been identified in fungi, including the RNA-binding protein Ssd1 that was 
first cloned from Saccharomyces cerevisiae and is involved in various cellular processes and 
pathways such as cell wall integrity, signal transduction, and the cell cycle (Kaeberlein and 
Guarente, 2002; Reinke et  al., 2004; Jansen et  al., 2009). Ssd1 is highly conserved in fungi 
and contains a RNase II (RNB) domain (SMART No. SM00955), which is the catalytic 
domain of ribonuclease II, suggesting that it may be involved in post-transcriptional regulation 
by directly interacting with messenger RNAs (mRNAs; Mir et  al., 2009; Kurischko et  al., 
2011b). The protein was also found to be  remarkably enriched in message transmission-
related proteins during cell wall biogenesis (Jansen et  al., 2009).

In S. cerevisiae, Ssd1 regulates cell wall remodeling by inhibiting the translation of related 
proteins (Luukkonen and Séraphin, 1999; Wanless et al., 2014), and its inactivation is regulated 
by the nuclear Dbf2-related (Ndr)/large tumour suppressor (LATS) family protein kinase 
Cbk1 through phosphorylation of the N-terminal region of Ssd1 (Bidlingmaier et  al., 2001; 
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Du and Novick, 2002; Kurischko et  al., 2011a). Lack of this 
regulation significantly impairs bud expansion and causes 
severe aberrant cell wall organization (Moriya and Isono, 1999). 
Three independent pathways separately mediated by Mpt5, 
Ssd1, and Pkc1 regulate cellular integrity; Mpt5 and Ssd1 act 
post-transcriptionally during cell wall biosynthesis and maintain 
cell structure as upstream regulators (Kaeberlein and Guarente, 
2002), while Pkc1 activates a mitogen-activated protein kinase 
(MAPK) cascade that controls the transcription and expression 
of genes involved in cell wall formation (Gerik et al., 2005, 2008; 
Mir et  al., 2009).

Orthologs of Ssd1 have been characterized in several 
pathogenic fungi, and they exhibit various functions. In Candida 
albicans, Ssd1 impedes the mutation of other genes and weakens 
the effects of mutations on cellular processes (Gank et  al., 
2008; Ohyama et  al., 2010; Avrahami-Moyal et  al., 2012). In 
Colletotrichum orbiculare, Ssd1 is essential for penetration of 
appressoria into the epidermal cells of susceptible plants, and 
the Ssd1-deficient mutant displays enhanced basal resistance 
to Nicotiana benthamiana (Tanaka et al., 2007, 2009). Moreover, 
deletion of Ssd1 in Colletotrichum higginsianum and Magnaporthe 
grisea leads to weakened penetration and virulence (Schmidpeter 
et al., 2017; Yu et al., 2019). However, the functions of orthologs 
of Ssd1 in biocontrol fungi remain poorly understood.

C. rosea (syn. Gliocladium roseum) is a widely distributed 
mycoparasite associated with a range of pathogenic fungi, 
such as Sclerotinia sclerotiorum, Rhizoctonia solani, and Botrytis 
cinerea (Xue, 2003; Zhang et  al., 2008; Kosawang et  al., 
2014). This species has great potential for controlling various 
plant fungal diseases and promoting crop growth (Atanasova 
et al., 2018), and functional genes in particular have attracted 
much attention. Fatema et  al. (2018) demonstrated that two 
polyketide synthase genes, PKS22 and PKS29, play important 
roles in the synthesis of antifungal agents, clonorosein A–D 
that are effective against B. cinerea. Dubey et  al. (2016) 
found that the ABC transporter gene ABCG29 is involved 
in fungal adaptation to oxidative stress in the early stages 
of mycelial development and biocontrol of B. cinerea and 
Fusarium graminearum. Sun et  al. (2019a) indicated that 
the heat shock protein 70 gene, crhsp, had a remarkable 
effect on C. rosea morphological characteristics and significantly 
reduced its ability to parasitize S. sclerotiorum sclerotia. 
However, there have been no studies on the functions of 
Ssd1, and whether Ssd1 is related to cell wall formation in 
C. rosea remains unknown.

In the present study, we  identified and characterized  
the CrSsd1 gene, which is orthologous to S. cerevisiae Ssd1 
and markedly upregulated during C. rosea parasitizing 
S. sclerotiorum (Sun et  al., 2015b). Our results indicate that 
CrSsd1 is involved in conidiation, responses to osmotic stress, 
cell wall integrity, and mycoparasitism in C. rosea. This 
knowledge reinforces our understanding of the mechanisms 
underlying C. rosea mycoparasitism and lays a foundation 
for developing new potent biocontrol agents. To the best 
of our knowledge, this is the first report of CrSsd1 as a 
mycoparasitism-associated protein involved in C. rosea against 
fungal plant pathogens.

MATERIALS AND METHODS

Fungal Strains
C. rosea 67-1 (ACCC 39160) was originally isolated from a 
vegetable yard in Hainan Province, China, using the sclerotia-
baiting method (Zhang et al., 2004). S. sclerotiorum Ss-H (ACCC 
39161) was separated from sclerotia-infected soybean stems 
in a field in Heilongjiang Province, China. B. cinerea TC-B1 
was isolated from infected tomato fruits in a greenhouse (Sun 
et  al., 2015b). All strains were maintained at 4°C in the 
Biocontrol of Soilborne Diseases Lab of the Institute of Plant 
Protection, Chinese Academy of Agricultural Sciences.

Bioinformatics Analysis
The DNA sequence of CrSsd1 was obtained from the draft 
genome sequence of C. rosea 67-1. NCBI1 and UniProt2 were 
used for BLASTp analysis. Functional domains of CrSsd1 were 
predicted using SMART3. The Clustal X program was used 
for amino acid alignments. The phylogenetic tree was constructed 
by MEGA 7.0 using the maximum likelihood method with 
1,000 bootstrap replicates.

Quantitative Reverse Transcription PCR of 
CrSsd1
Strain 67-1 genomic DNA was extracted using a Biospin Fungus 
Genomic DNA Extraction Kit (Bioer Technology Co. Ltd., 
Hangzhou, China) according to the manufacturer’s instructions. 
Plasmid DNA was isolated using a Plasmid Miniprep Purification 
Kit (BioDev Co., Beijing, China).

We analyzed the expression levels of CrSsd1 in strain 
67-1 during different stages of mycoparasitizing sclerotia. 
Strain 67-1 was incubated on potato dextrose agar (PDA) 
at 26°C for 10  days, spores were washed with sterile water 
and adjusted to 1  ×  107  spores/ml, and spore suspensions 
were smeared evenly on a PDA plate and covered with 
cellophane. Uniformly sized sclerotia were placed onto the 
surface of 67-1 plates evenly after culturing for 48  h, and 
C. rosea 67-1 mycelia were collected at 8, 24, and 48  h and 
placed immediately in liquid nitrogen. Each treatment included 
five replicates. Total RNA was extracted using TRIzol reagent 
(Invitrogen, CA, USA) according to the manufacturer’s 
instructions. RNase-free DNase I  (Invitrogen) was used to 
eliminate DNA contamination. Reverse transcription was 
performed using a cDNA FastQuant RT Kit (Tiangen, Beijing, 
China). Gene expression was analyzed by quantitative reverse 
transcription PCR (qRT-PCR) using a Bio-Rad IQ 5 Real-Time 
System (Bio-Rad, CA, USA) and SYBR Premix Ex Taq 
(Takara, Dalian, China) with primers listed in Table  1. 
Elongation factor gene EF1 (GenBank accession number: 
KP274074) was used as a reference gene to normalize gene 
expression in C. rosea 67-1 under sclerotia induction 
(Sun et  al., 2015a,b), and mycelial samples without added 

1 http://www.ncbi.nlm.nih.gov/
2 http://www.uniprot.org/blast/
3 http://smart.embl.de/
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sclerotia acted as a control. The relative expression levels 
of CrSsd1 were calculated using the 2−∆∆Ct method, and three 
replicates were included for each sample.

Generation of Gene Deletion and 
Complementation Mutants
The plasmid pKH-KO containing two uracil-specific excision 
reagent (USER) cloning sites (USC1 and USC2) on either side 
of the hygromycin resistance gene hph was used to construct 
a CrSsd1 disruption vector (Frandsen et  al., 2008). Upstream 
and downstream flanking sequences of CrSsd1 were amplified 
using primer pairs CrSsd1-uF/CrSsd1-uR and CrSsd1-dF/
CrSsd1-dR, respectively, and cloned into two USC sites using 
the USER-friendly cloning method to generate CrSsd1-deletion 
vector pKH-KO-CrSsd1.

For construction of the gene complementation vector, 
the full-length sequence of CrSsd1, including the promoter, 
protein-coding, and terminator regions was amplified from 
67-1 genomic DNA and cloned into the pKN vector (carrying 
the G418 resistance gene neo; Kong et  al., 2019). The 
resulting gene deletion and complementation vectors were 
transformed into protoplasts of 67-1 and ΔCrSsd1, 
respectively, to generate gene deletion and complementation 
mutants using protoplast formation and transformation of 
C. rosea (Sun et  al., 2017). Primers (Table  1) were designed 
and mutants were verified by PCR and DNA sequencing. 
Furthermore, the expression levels of CrSsd1 in wild-type 
(WT), deletion and complementation strains were tested 
using reverse transcription PCR (RT-PCR) with primers 
CrSsd1-F and CrSsd1-R and reference gene EF-1 gene 
(Table  1; Sun et  al., 2015a,b).

Fungal Growth, Conidiation, and Stress 
Tolerance
To analyze differences in vegetative growth among C. rosea 
67-1, ΔCrSsd1, and ΔCrSsd1-C strains, agar blocks (3  mm) 
of strains were inoculated onto the center of a PDA plate 
and cultured at 26°C. The size and morphology of colonies 
were measured daily. After 15  days, fungal spores were 
collected by adding 5  ml sterile distilled water, and spores 
were counted under a BX41 microscope (Olympus, Tokyo, 
Japan). The conidial germination rates of all strains were 
determined. Spore suspensions of WT, ΔCrSsd1 and 
ΔCrSsd1-C strains with a concentration of 1  ×  107  spores/
ml were prepared and inoculated in potato dextrose (PD)  
broth on a rotary shaker at a speed of 180  rpm. Samples 
were incubated at 26°C, and the germinated conidia were 
counted at 8 and 16  h post inoculation. To evaluate the 
stress response, cultures were grown on PDA plates amended 
with different stress agents [1  M NaCl, 1  M KCl, 1  M 
glycerin, 1 M sorbitol, 20 mM H2O2, 0.03% SDS, and 0.3 mg/
ml Congo red (CR)] for 10  days. Diameters of colonies 
were counted, and microscopic observation of the hypha 
under different stress conditions was performed with a 
fluorescence microscope system (DM6 B, Leica, Germany). 
All assays were repeated three times.

Antagonistic Activity Against Botrytis 
cinerea
Antagonistic activity of C. rosea 67-1, ΔCrSsd1, and ΔCrSsd1-C 
strains against B. cinerea was tested on 9  cm PDA plates. A 
3-mm agar plug of strains was inoculated 2  cm from the edge 
of the plate and cultured at 26°C for 5 days. A plug of B. cinerea 

TABLE 1 | Primers used in this study.

Primer 
No

Primer Sequence (5'–3')a,b Relevant characteristics

1 CrSsd1-uF GGTCTTAAUCAGGGGAGCAGCAGTTGG PCR primers to amplify the CrSsd1 upstream fragment for construction of 
CrSsd1 deletion mutants2 CrSsd1-uR GGCATTAAUGGGGAGGGGAAGATAGCTAG

3 CrSsd1-dF GGACTTAAUGCCTCACAATCCGCTCTCTA PCR primers to amplify the CrSsd1 downstream fragment for construction of 
CrSsd1 deletion mutants4 CrSsd1-dR GGGTTTAAUAGCTGAGTGAGGGGTGATAT

5 CrSsd1-in-F GGTCAACCCATCCACCCTG
PCR primers for identification of CrSsd1 deletion transformants

6 CrSsd1-in-R GCTGCATTGGGTTGAGCTG
7 CrSsd1-out-F GCGAAACCCAATTCCCAGTT

PCR primers for identification of CrSsd1 deletion transformants
8 CrSsd1-out-R CACTCCGACTTTGCTTGACC
9 CrSsd1-yz-F GGCGGACCCCTAATGATGTA

PCR primers for identification of CrSsd1 deletion transformants
10 CrSsd1-yz-F TTGCCATCCGAACCTTCTTC
11 HPH-F TGGAGCTAGTGGAGGTCAACA

PCR primers for amplification of the hygromycin resistant gene HPH
12 HPH-R CGGTCGGCATCTACTCTATTC
13 CrSsd1-F GTCGATGAAGTCTGGTCCCA

PCR primers for identification of CrSsd1 expression levels in RT-PCR assays
14 CrSsd1-R CGCTGATCTCTTCCTCCTCA
15 CrSsd1-com-F CCCCCGGGCTGCAGgaattcGTTGTGGTGATCGTTGGAGG PCR primers to amplify full-length CrSsd1 including 1,441 bp upstream and 

505 bp downstream fragments for complementation of the CrSsd1 deletion 
mutant

16 CrSsd1-com-R TCGACGGTATCGATaagcttTGTTCGTCACTAGCCTTAGGG

17 EF1-F TCGATGTCGCTCCTGACT PCR primers for amplification of the reference gene EF1 in qRT-PCR and 
RT-PCR assays18 EF1-R AGCGTGACCGTTTATTTGA

19 CrSsd1-RT-F TGGCAAGGTTTCACTGAAGG PCR primers for amplification of the CrSsd1 gene in qRT-PCR assays
20 CrSsd1-RT-R TGCTGCAACAAACGAAGAGG

aRespective exogenous enzyme sites are indicated by lowercase letters in the sequence.
bUnderlined sequences are homologous recombination sequences of the pKH-KO vector.
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was then placed equidistant from the other side of the plate 
and cultured at 26°C for 20  days. The distance of hyphal 
extension for each strain was measured (Dubey et  al., 2014; 
Tzelepis et  al., 2015; Filizola et  al., 2019).

Mycoparasitic Ability Against Sclerotinia 
sclerotiorum Sclerotia
Sclerotia of uniform size were surface-sterilized with 1% NaClO 
for 3  min, rinsed three times with sterile water, and then 
immersed in spore suspensions of wild-type (WT) 67-1, 
ΔCrSsd1, and ΔCrSsd1-C strains at a concentration of 
1  ×  107  spores/ml for 10  min. Sclerotia were picked and 
placed onto a piece of wet sterile filter paper in a Petri dish 
(diameter 9 cm) and incubated at 26°C. Treatment with sterile 
water was used as a control. The number of sclerotia infected 
by the transformants was counted under a stereo microscope 
(SMZ-10, Nikon, Tokyo, Japan) at 8, 16 and 24  h. Sclerotia 
covered with C. roses mycelia were regarded as parasitized, 
and parasitic rates of all strains were calculated (Sun et  al., 
2017). After 7 days, we investigated parasitic severity of sclerotia 
using a BX41 inverted microscope (Olympus) based on a 
four-grade scale (0  =  no C. rosea hyphae were detected on 
the surface of sclerotia; 1  =  loose C. rosea hyphae extended 
to the sclerotia; 2  =  sclerotia were covered with C. rosea 
hyphae but not softened; and 3  =  sclerotia were covered with 
C. rosea hyphae and exhibited soft rot; Sun et  al., 2019a). A 
total of 30 sclerotia were tested for each treatment, and three 
replicates were performed.

Control Efficacy Against Soybean 
Sclerotinia Rot
Pot experiments were carried out to test the ability of C. rosea 
67-1, ΔCrSsd1, and ΔCrSsd1-C strains to control S. sclerotiorum 
on soybean in the greenhouse. Soybean seeds (Zhonghuang 
13; Institute of Crop Sciences, CAAS, China) were sown in 
sterile soil in plastic pots (diameter 11  cm). When nine 
compound leaves had grown, seedlings were sprayed with 
100  ml spore suspension (1  ×  107  spores/ml) from each 
strain. After drying for 2  h, an equivalent amount of 
S. sclerotiorum mycelial suspension was inoculated onto leaves. 
Plants treated with sterile water followed by the pathogen 
served as controls, and 12 pots were tested for each isolate. 
The greenhouse was maintained at 26–28°C and 60% relative 
humidity, and all pots were arranged randomly. After 7  days, 
disease severity of Sclerotinia rot was scored using grades 
0–4 according to the percentage of lesions on soybean leaves 
(0  =  no symptoms on soybean leaves; 1  =  less than 10% 
lesions on soybean leaves, 2  =  10–30% lesions on soybean 
leaves; 3  =  30–50% lesions on soybean leaves; and 4  =  over 
50% lesions on soybean leaves). All unfolded compound 
leaves were checked and three replicates were performed for 
each treatment.

Statistical Analysis
Statistical software SPSS 2.0 (Chicago, IL, USA) was used 
for ANOVA. Statistical tests were carried out using Tukey’s 

test for multiple comparisons and a p  <  0.05 was considered 
statistically significant.

RESULTS

Identification and Expression Levels of 
CrSsd1
Gene cloning and bioinformatics analysis showed that CrSsd1 
(GenBank accession number: MN816008) is 3,894 bp in length 
with no introns and encodes a 1,298-amino-acid polypeptide 
that contains the RNB domain (Figure  1A), which is the 
catalytic domain of ribonuclease II. CrSsd1 shares 45.8% 
identity with S. cerevisiae Ssd1, which is involved in a range 
of cellular processes, including cell wall integrity, signal 
transduction, and RNA deterioration. Phylogenetic analysis 
and sequence alignment of CrSsd1 with other fungal species 
revealed close homology with homologs of Ssd1 in Fusarium 
oxysporum and Trichoderma arundinaceum, and it is highly 
conserved among various fungi (Figure  1B).

The expression levels of CrSsd1 in 67-1 were also investigated 
during different stages of mycoparasitizing sclerotia by 
qRT-PCR. Analysis of gene expression indicated that CrSsd1 
was upregulated in C. rosea throughout mycoparasitism, 
particularly at 24  h, and expression levels were more than 
four-fold higher than the control (Figure 2), which is consistent 
with the transcriptome data from C. rosea parasitizing 
S. sclorotiorum (Sun et  al., 2015b).

CrSsd1 Disruption and Complementation
To identify the role of CrSsd1 in C. rosea, single gene deletion 
mutants were generated using a homologous recombination 
strategy (Figure  3A). Among 187 hygromycin-resistant 
transformants, three ΔCrSsd1 strains with identical phenotypic 
characteristics were confirmed by PCR analysis with primers 
CrSsd1-in-F/R (inside of the target gene), CrSsd1-yz-F/R 
(outside of the homologous fragment), HPH-F/R (on both 
ends of the hph gene), and CrSsd1-yz-F/HPH-R (Figure  3C). 
Moreover, fragments amplified by primer pair CrSsd1-yz-F/R 
were sequenced, and the results showed that the CrSsd1 gene 
was successfully replaced with a hygromycin B resistance 
cassette as expected. For complementation of CrSsd1, the 
vector pKN-CrSsd1-C was transformed into the ΔCrSsd1 
strain and 11 complementation strains were finally obtained. 
RT-PCR verification demonstrated a complete loss of CrSsd1 
transcript in ΔCrSsd1 mutants, whereas specific products were 
detected in the WT and complementation strains. In addition, 
the expression of EF-1 gene was detected in all strains 
(Figure  3D).

Effects of CrSsd1 on Fungal Growth, 
Conidiation and Sensitivity to Stresses
Three ΔCrSsd1 and ΔCrSsd1-C mutants were selected to analyze 
the functions of CrSsd1 gene. The colony morphology showed 
that ΔCrSsd1 mutants had flatter and thinner mycelia than 
those of the WT 67-1 and the complemented transformant 
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ΔCrSsd1-C (Figure  3B). Moreover, the mycelial growth rates 
of mutants were slightly slower than that of the WT and 
ΔCrSsd1-C strains. When grown on PDA for 9 days, the colony 

diameter of 67-1 reached 5.95  cm, while that of ΔCrSsd1 was 
5.29  cm, and the difference was significant (p  <  0.05; 
Figures  4A,B). Surprisingly, gene-deficient strains lost almost 
all ability to undergo conidiation. After incubation on PDA for 
15  days, only 1  ×  106  spores/plate were harvested for ΔCrSsd1, 
compared with 4.9 × 107 spores/plate for the WT strain (p < 0.01; 
Figures 4A,C). Conidial germination rate of the ΔCrSsd1 mutants 
was 46.9%, significantly lower than that of the WT strain (68.7%) 
at 8 h (p < 0.05); however, both strains increased to approximately 
100% at 16  h (Supplementary Figure S1). The complemented 
transformants showed similar results with WT.

The sensitivity of mutants to a variety of environmental 
stresses, including osmotic stress, oxidative stress, cell 
membrane stress, and cell wall stress, was investigated. The 
results showed no significant differences among strains under 
treatment with NaCl (1  M), KCl (1  M), glycerin (1  M), 
H2O2 (20  mM), or SDS (0.03%). However, interestingly, 
ΔCrSsd1 grew much slower in media containing sorbitol 
(1 M) or CR (0.3 mg/ml) compared with WT and complemented 
strains, indicating that ΔCrSsd1 deletion mutants were more 
sensitive to osmotic and cell wall stresses (Figures  5A,B). 
To further investigate the stress sensitivity of ΔCrSsd1 and 
67-1, the hyphal phenotypes under different stress conditions 
were observed. Our findings demonstrated that the loss of 

A

B

FIGURE 1 | Characterization of the Clonostachys rosea CrSsd1 protein. (A) The domain structure of C. rosea CrSsd1 as annotated by SMART Mode (http://smart.
embl.de/). (B) Phylogenetic analysis of CrSsd1 of C. rosea and its homologs from other fungi. Amino acid sequences were aligned by Clustal X and analyzed by 
MEGA 7.0 using the maximum likelihood method. Numbers in parentheses indicate GenBank accession numbers. Numbers at the nodes represent the bootstrap 
values of 1,000 bootstrap replicates. Bars = 0.10 and represent sequence divergence.

FIGURE 2 | Expression levels of CrSsd1 in C. rosea under sclerotia 
mycoparasitism conditions. Black columns represent samples added with 
fresh sclerotia. Gray columns represent controls (samples without sclerotia). 
The relative expression levels of CrSsd1 were calculated using the 2−∆∆Ct 
method. Error bars show the standard deviation (SD) of three replicates.
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A

B

C D

FIGURE 3 | Construction of replacement vectors and confirmation of CrSsd1 deletion mutants. (A) Schematic representation of the gene disruption strategy. The 
hygromycin resistance cassette (hph) was cloned into the corresponding sites of vector pKH-KO-CrSsd1 to replace the 3,894 bp CrSsd1 open reading frame. The 
annealing sites of primers are indicated by small black arrows. (B) Colony morphologies of 67-1, ΔCrSsd1, and ΔCrSsd1-C grown on potato dextrose agar (PDA) 
plates at 26°C for 10 days. (C) PCR analysis of 67-1 and CrSsd1 deletion mutant strains using primers 5/6 (CrSsd1-in-F/R), 9/10 (CrSsd1-yz-F/R), 11/12 (HPH-
F/R), and 9/12 (CrSsd1-yz-F/HPH-R). Lanes 1–4, PCR products amplified with the above primers using 67-1 as template; lanes 5–8, PCR products amplified with 
the above primers using ΔCrSsd1 as template. Primer numbers refer to binding sites shown in Table 1. (D) Reverse transcription PCR (RT-PCR) analysis of CrSsd1 
gene expressions in 67-1, ΔCrSsd1, and ΔCrSsd1-C strains, using CrSsd1 specific CrSsd1-F/R primers (Table 1). The RT-PCR product of 247 bp was expected 
from 67-1 and ΔCrSsd1-C but not in the CrSsd1 deletion mutants.

CrSsd1 impaired hyphae branching under NaCl, KCl, sorbitol, 
and CR, indicating that the CrSsd1 gene played an important 
role in C. rosea response to osmotic and cell wall stresses 
(Supplementary Figure S2).

Effects of CrSsd1 on Antagonistic Activity, 
Mycoparasitism and Control Efficacy
In vitro antagonistic activity tests showed that C. rosea 67-1, 
ΔCrSsd1, and ΔCrSsd1-C strains could all overgrow a colony 
of B. cinerea after culturing for 20  days. However, the hyphal 
extension ability was decreased by 41.3% for ΔCrSsd1 mutants 
compared with the WT strain (p < 0.05), and the complemented 
strain ΔCrSsd1-C recovered this ability almost to the WT 
level (a decrease of only 3.6%; Figure  6).

No hyphae of ΔCrSsd1 mutants were detected on the surface 
of the sclerotia at 8  h after inoculation, and the parasitic rate 

was 20.5% at 16  h, which was remarkably lower than the WT 
(57.8%, p  <  0.05). By 24  h, hypha of 67-1 and ΔCrSsd1-C 
covered the whole sclerotia surface, while only 48.3% were 
parasitized by the ΔCrSsd1 mutants (Table  2). After 7  days 
of cultivation in a moist environment, the mycoparasitism level 
of ΔCrSsd1 on sclerotia was markedly reduced compared with 
that of WT 67-1 and complemented strain ΔCrSsd1-C. From 
the external phenotype and the inner structure of the sclerotia, 
we  could see that infected sclerotia were completely softened 
and rotten, resulting in high parasitic severity (grade 4), whereas 
those treated with the ΔCrSsd1 deletion mutant were covered 
only sparsely in hyphae and remained relatively firm, equating 
to mycoparasitism grade 1, indicating that deletion of the 
CrSsd1 gene substantially weakened the mycoparasitism of 
C. rosea. Additionally, mycoparasitic ability was recovered in 
the complemented strain (Figures  7A,B).
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After inoculation with S. sclerotiorum for 7  days, severe 
leaf lesions were observed in control soybean seedlings. However, 
soybean seedlings treated with the biocontrol fungus 67-1 were 
much healthier and displayed less damage, consistent with 
excellent control efficacy against soybean Sclerotinia rot. 
Interestingly, when the CrSsd1 gene was deleted, the control 
efficacy of the mutant was markedly reduced, while the efficiency 
was regained in the complemented strain (Figure 8 and Table 3), 
demonstrating that CrSsd1 could dramatically affect the biocontrol 
efficacy of C. rosea.

DISCUSSION

The fungal cell wall is the first line of defense for protecting 
against environmental stresses, and any action to remodel it is 
tightly controlled to maintain balance with stress resistance and 
osmotic stability. Ssd1 is known to be involved in cell wall integrity 
and biosynthesis in several pathogenic fungi. To explore the 
functions of the cell wall biogenesis protein phosphatase CrSsd1 in 
mycoparasites, we  investigated CrSsd1 in C. rosea using gene 
deletion and complementation methods and found that loss of 
CrSsd1 led to defects in conidiation, stress responses, mycoparasitism, 
and biocontrol efficacy. To the best of our knowledge, this is the 
first demonstration that CrSsd1 plays an important role in conidiation 
and mycoparasitism in C. rosea, which is of great value for the 
development of biocontrol fungal agents.

Normal mycelial growth is crucial to ensure fungal vitality 
and other activities (Cota et  al., 2008; Liu et  al., 2016).  

In our current study, ΔCrSsd1 deletion mutants exhibited 
reduced hyphal growth, suggesting diverse functions for CrSsd1 
in different fungal pathogens. The ΔCrSsd1 strain also showed 
a significant reduction in conidiation, which plays important 
roles in the completion of the fungal life cycle, and the ability 
to produce conidia is essential for successful colonization and 
mycoparasitism (Iqbal et al., 2019; Kong et al., 2019; Sun et al., 
2019b). These phenotypes indicate that CrSsd1 is required for 
vegetative growth and asexual reproduction. The exploration 
of CrSsd1 regulating fungal sporulation will be very interesting 
and worth to be  further investigated.

Fungi respond in various ways to exogenous stresses in 
order to maintain cell shape and normal physiological processes 
(Leng and Zhong, 2015; Wang et  al., 2019). The fungal cell 
wall is a highly dynamic structure and is the first barrier 
that interacts with diverse environmental stresses. In addition, 
cell well integrity is vital for survival and pathogenesis but 
the regulatory mechanisms are complicated (Reinke et  al., 
2004). In the present study, CrSsd1 deletion mutants displayed 
greater sensitivity to the cell wall inhibitor CR, consistent 
with previous observations for S. cerevisiae and C. albicans 
(Moriya and Isono, 1999; Gank et  al., 2008; Yanamoto et  al., 
2011). Ssd1 has been implicated in the maintenance of cell 
wall integrity in C. albicans, and deletion of Ssd1 can render 
cells more susceptible to cell wall-perturbing agents such 
as Calcofluor white (Ram and Klis, 2006; Gank et  al., 2008). 
Additionally, the loss of CrSsd1 leads to increased sensitivity 
to sorbitol and osmotic stress agent, and overexpression of 
Ssd1 rescues the sorbitol dependence of cell wall-defective 

A B

C

FIGURE 4 | Impact of CrSsd1 deletion on mycelial growth and conidia formation. (A) Mycelial growth of 67-1, ΔCrSsd1, and ΔCrSsd1-C on PDA medium after 3, 
6, and 9 days of incubation, and conidiation of these strains on PDA after 15 days. (B) Statistical analysis of colony diameters in (A). (C) Number of conidia 
produced by each strain on PDA plates. The data are the means of the three ΔCrSsd1 and ΔCrSsd1-C mutants and the means and standard errors are calculated 
from three independent replicates. Statistical tests were carried out using Tukey’s test for multiple comparisons. Asterisks indicate statistically significant differences 
(p < 0.05).
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FIGURE 6 | Impact of CrSsd1 deletion on the antagonistic activity of C. 
rosea. Plate confrontation assay of 67-1, ΔCrSsd1, and ΔCrSsd1-C against 
Botrytis cinerea at 20 days post-inoculation. Red arrows indicate the hyphal 
extension distance of each strain toward B. cinerea.

mutants in C. albicans (Avrahami-Moyal et  al., 2012). It 
was also noticed that the hyphal branching of the ΔCrSsd1 
strains markedly lessened under the stresses of NaCl, KCl, 
sorbitol, and CR, which might be  a possible explanation 
for CrSsd1 regulating C. rosea response to osmotic and cell 
wall stresses. From these observations, we  deduced that 
CrSsd1 may perform a different regulatory mechanism in 
stress responses in different fungi. Nevertheless, until recently, 

there was no experimental evidence for the contribution of 
CrSsd1 to cell wall integrity in mycoparasites.

During mycoparasitism, a host fungus is parasitized by and 
provides a nutrient source for another biocontrol fungus, such 
as species of the genus Trichoderma, and C. rosea (Karlsson 
et al., 2017; Nygren et al., 2018). Mycoparasitism comprises several 
steps; when encountering a fungal host, mycoparasites trigger 
gene expression associated with recognition, penetration, and 
parasitism, through various mechanisms related to mycoparasitism, 
antifungal activity, competition, and production of cell 
wall-degrading enzymes (Qualhato et al., 2013; Lysoe et al., 2017; 
Gomez-Rodriguez et  al., 2018; Ramirez-Valdespino et  al., 2018). 
Our findings confirmed that the deletion of CrSsd1 severely 

A

B

FIGURE 5 | Sensitivity of 67-1, ΔCrSsd1, and ΔCrSsd1-C to diverse stresses. (A) Sensitivity of strains grown on PDA plates containing different stress agents; 
1 M NaCl, 1 M KCl, 1 M glycerin, 1 M sorbitol, 20 mM H2O2, 0.03% SDS, and 0.3 mg/ml Congo red (CR). Images were captured after 10 days of incubation at 
26°C. (B) Inhibition of mycelial growth compared with non-treated controls. The data are the means of three mutants, and the means and standard errors are 
calculated from three independent replicates. Statistical tests were carried out using Tukey’s test for multiple comparisons. Asterisks indicate statistically significant 
differences (p < 0.05).

TABLE 2 | Parasitic rate of C. rosea strains against S. sclerotiorum sclerotia.

Strain 8 h (%) 16 h (%) 24 h (%)

WT 4.3 ± 0.5 a 57.8 ± 0.6 a 100.0 ± 0.0 a
ΔCrSsd1 0.0 ± 0.0 b 20.5 ± 0.9 b 48.3 ± 1.3 b
ΔCrSsd1-C 4.1 ± 0.9 a 55.3 ± 1.0 a 100.0 ± 0.0 a

Data are the means ± SD of three replicates of three mutants. Different letters in a 
column indicate significant differences according to Tukey’s test (p < 0.05).
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impaired C. rosea antagonistic activity and mycoparasitic ability 
to S. sclerotiorum and B. cinerea and dramatically decreased the 
control efficacy against soybean Sclerotinia rot. These observations 

were further supported by analysis of CrSsd1 gene expression 
during different stages of C. rosea parasitizing S. sclerotiorum 
sclerotia, which showed that CrSsd1 was highly expressed 
throughout mycoparasitism, particularly in the first stage of 
infection. It has been reported that Ssd1 is an important component 
of the regulation of Ace2p activity and morphogenesis (RAM) 
pathway comprised of two kinases and four associated proteins 
and a conserved Cbk1 target involving phosphorylation in S. 
cerevisiae (Bidlingmaier et  al., 2001). Current researches suggest 
that Cbk1 and RAM regulate polarized growth, mating efficiency, 
and cell wall morphogenesis (Schmidpeter et  al., 2017). 
We  hypothesize that CrSsd1 influences the mycoparasitic activity 
and cell wall integrity of C. rosea by regulating the expressions 
of genes related to RAM pathway.

Herein, we  analyzed the functions of CrSsd1 in hyphal 
growth, conidiation, and stress responses in C. rosea and 
found that it is involved in cell wall integrity and osmotic 
stress. Additionally, we  found that CrSsd1 is involved in 
mycoparasitism and biocontrol efficacy. The results provide 
new insight into the mycoparasitism-associated mechanisms 
of C. rosea and may assist the development of new biocontrol 

A

B

FIGURE 7 | Mycoparasitism of C. rosea strains against Sclerotinia sclerotiorum sclerotia. (A) External phenotypes of healthy and infected sclerotia. (B) Transection 
of infected and uninfected sclerotia. Images were captured after 7 days incubation at 26°C.

FIGURE 8 | Impact of CrSsd1 deletion on efficacy against soybean Sclerotinia 
rot. Soybean Sclerotinia rot by C. rosea 67-1, ΔCrSsd1, and ΔCrSsd1-C after 
7 days in a greenhouse. Plants treated with sterile water followed by the S. 
sclerotiorum pathogen served as controls (CK), and 12 pots were tested for 
each isolate. Disease severity of Sclerotinia rot was investigated after 7 days.

TABLE 3 | Control efficacy of C. rosea against soybean Sclerotinia stem rot.

Strain Disease index Control efficacy (%)

CK 62.8 ± 1.3 a -
WT 21.3 ± 1.1 c 66.1 ± 1.2 a
ΔCrSsd1 45.9 ± 0.9 b 26.9 ± 1.1 b
ΔCrSsd1-C 24.7 ± 0.7 c 60.7 ± 1.5 a

Data are the means ± SD of three replicates of three mutants. Different letters in a 
column indicate significant differences according to Tukey’s test (p < 0.05).
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agents for controlling fungal plant pathogens. In-depth studies 
will be needed to further clarify the exact regulatory mechanism, 
such as comparative analysis of transcription profiles.

CONCLUSION

In summary, the CrSsd1 protein of C. rosea was demonstrated 
to be  essential for conidiation and responses to sorbitol and 
CR. Furthermore, CrSsd1 was found to be  involved in 
mycoparasitism and biocontrol efficacy, indicating that it plays 
diverse and essential roles in this fungus.
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