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health is still open. This study aimed to assess the diversity of indoor microbial
communities in relationship with the health of occupants.

Methods: Measurements were taken from dwellings of 2 cohorts in Brittany (France),
one with children without any pathology and the other with children and adults with
asthma. Thirty dust samples were analyzed by next generation sequencing with a 16S
and 18S targeted metagenomics approach. Analysis of sequencing data was performed
using giime 2, and univariate and multivariate statistical analysis using R software and
phyloseq package.

Results: A total of 2,637 prokaryotic (5689 at genus level) and 2,153 eukaryotic
taxa were identified (856 fungal taxa (39%) and 573 metazoa (26%)). The four main
bacterial phyla were identified: Proteobacteria (53%), Firmicutes (27%), Actinobacteria
(11%), Bacteroidetes (8%). Among Fungi, only 136 taxa were identified at genus level.
Three main fungal phyla were identified: Ascomycota (84%), Basidiomycota (12%)
and Mucoromycota (3%). No bacterial nor fungal phyla were significantly associated
with asthma versus control group. A significant over representation in control group
versus asthma was observed for Christensenellaceae family (p-value = 0.0015, ad.
p-value = 0.033). Besides, a trend for over representation in control group was observed
with Dermabacteraceae family (p-value = 0.0002, adj. p-value = 0.815).

Conclusions: Our findings provide evidence that dust samples harbor a high diversity
of human-associated bacteria and fungi. Molecular methods such as next generation
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sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity
in dust samples, a less easy strategy for the detection of eukaryotes at least using18S
metagenomics approach. This study showed that the detection of some bacteria might
be associated to indoor air of asthmatic patients. Regarding fungi, a higher number of
samples and sequencing with more depth could allow reaching significant signatures.

Keywords: microbiota,
metagenomics, fungi

INTRODUCTION

Asthma is a common chronic inflammatory airway disease
in children and adults from developed countries. In France,
it affects more than 10% of children and 6% of adults
(Delmas and Fuhrman, 2010).

Asthma is a very complex disease characterized by
enhanced bronchial reactivity leading to airway obstruction
and respiratory difficulties (Martinez and Vercelli, 2013).
Exposure to environmental chemical or biological factors can
lead to exacerbation of asthma and prevention measures are still
needed in order to reduce the exposure to these agents (Beasley
et al., 2015; Shaheen, 2019). The airway microbiome in asthma
patients results from numerous factors. Environmental exposure,
a complex relationship with the gastrointestinal microbiome,
the development of immune function, and a predisposition to
allergic sensitization and asthma are among the most referred
factors (Huang and Boushey, 2015).

Indoor fungal exposure has been associated to the
development of asthma (Chen et al., 2014). But, according to Ege
et al. (2011), children who grow up in the environments with a
wide range of microbial exposures, like farming environments,
are more likely protected from childhood asthma and atopy than
urban children. Feng et al. (2016) reported that parental allergic
diseases, atopy, diet and early life exposures might explain the
higher prevalence of asthma in the urban environment. Also,
there is a complex interplay between genetic predisposition
and environmental exposures, including microbes and allergens
(Anderson and Jackson, 2017). Regarding exposure to molds, it
is estimated that in France about 125,000 individuals suffer from
severe asthma with fungal sensitization (SAFS) episodes (189
cases/100,000 adults per year) (Gangneux et al., 2016).

Among biological agents, bacteria have been less studied even
if endotoxins produced by gram negative bacteria have been
significantly correlated with wheezing in children (Horick et al.,
2006). Moreover, many studies have suggested that exposure to
lipopolysaccharide (LPS), in non-rural environments, is a risk
factor for increased asthma prevalence and severity of disease
(Thorne et al., 2005).

Culture-based studies have been in use for a long time
for the detection of various microorganisms indoor (Rintala
et al., 2008, 2012; Méheust et al., 2014). However, while culture
isolation focuses on the presence of particular bacteria or fungi,
next generation sequencing (NGS) studies unveil microbial
communities comprising thousands of uncultured microbes.
Recent advances in microbiological methods show promise in
determining whether the microbes recovered during indoor

mycobiota,

asthma, indoor environment, dust, next-generation sequencing,

sampling campaigns may in fact be causative agents as such, or
only surrogates of an underlying harmful or beneficial exposure.
Given the lack of knowledge on the specificities of the relevant
exposures, assessments at this stage need to be kept broad and
comprehensive (Mensah-Attipoe et al., 2017).

According to Singanayagam et al. (2017), who underlined the
role of microbes in the exacerbation of asthma, the emergence of
next generation molecular sequencing techniques to characterize
the microbiota has facilitated renewed interest. They concluded
that longitudinal studies that characterize the changes in lower
respiratory tract microbiota from birth up to development of
asthma are currently unavailable. Additionally, few studies have
focused on the interactions between bacteria and the immune
system in driving development of nonatopic asthma phenotypes.

Thus, despite the recognition of the importance of microbial
exposure for human health, the precise role of microbes in
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FIGURE 1 | Bacterial alpha-diversity, measured by Shannon diversity Index is
plotted for samples with asthma (red) and controls (blue). The line inside the
box represents the median, while the whiskers represent the lowest and
highest values within the 1.5 interquartile range (IQR). Outliers as well as
individual sample values are shown as dots. Mann-Whitney statistical testing
showed no significant difference in diversity between the two groups
(pShannon = 0.5393).
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the development and exacerbation of respiratory symptoms and
allergies remains poorly understood.

The objective of our study was to use 16S and 18S rRNA
sequencing approaches to characterize and identify indoor
bacterial and eukaryotic communities that may be associated
with the exacerbation of asthma. This pilot study compared two
groups of asthmatic and non-asthmatic people’s dwellings.

MATERIALS AND METHODS
Study Population and Home Visits

Thirty dust samples were collected from dwellings of 2 French
cohorts and were analyzed by next-generation sequencing:

(i) 15 dwellings of asthma patients (ASTHMA) from The
Ecenvir cohort, which aims to evaluate the clinical and
the economic impact of Indoor Environment Counselor
(IEC) on the symptoms of severe asthma. Patients answered

a questionnaire during an interview with the IEC on
dwellings characteristics (localization in cities or rural,
apartment or house, ...) and cleaning habits of patients.
Asthma was graded with the GINA (Global Initiative for
Asthma) scale and patients had three clinical check-ups.

(ii) 15 control dwellings of control patients (CONTROL) from
the Pélagie AC cohort, which follows more than 3,500
pregnant women in Brittany from pregnancy to age of
20 of children. The Pélagie AC project aims to assess the
effects on children respiratory health of chemicals and
biological pollutants exposure. One of the check-up of
Pélagie AC cohort occurs once the children are 6 years old.
A subset of families without asthma answered a detailed
questionnaire about their dwellings characteristics and life
for the Pélagie AC study.

According to the French Public Health Law, protocols of
this type are exempt from the requirement for formal informed
consent. However, The INSERM and Rennes Ethical Committees
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approved the protocol, patients were informed and it was possible
for them to refuse environmental samples for both cohorts:

— The Pélagie AC cohort, with dwellings being part of a
larger study as stated in Dallongeville et al. (2015) (French
Consulting Committee for the Treatment of Information in
Medical Research (no. 09.485),

— The Ecenvir cohort, with dwellings being part of a larger
study as approved by the Comité de Protection des
Personnes de Rennes Ouest V (8 january 2013, N°ID RCB
2012-A01414-39).

Dust Collection

Dust samples were collected by vacuuming the floor in the child’s
bedroom using a Dustream Collector™ (Indoor biotechnologies,
United Kingdom) sampler-fitted vacuum cleaner (40 pm
mesh nylon filter, domestic vacuum cleaner) as described by
Dallongeville et al. (2015). Briefly, sampling was preferentially
carried out on the carpets (when available) or on hard surface
floors until filling at least 2/3 of the filter-sampler, in order to
ensure collection of at least 10 mg of fine dust. Collected dust
was sieved at 300 pwm to discard debris, and 10 mg of fine dust
were resuspended in 1 mL of PBS-Tween (0.05%) bufter, shaked
at 800 rpm for 1 h and stored at —20°C until analyzed.

DNA Extraction, Sequencing, and

Analysis

Total DNA was extracted from samples using the method
developed by Godon et al. (1997). A portion of the 16S
rRNA was amplified using the barcoded, universal primer set
(515WF/918WR) (Wang et al., 2009). DNA extraction was
carried out according to the guanidium thiocyanate method.
Positive extraction control is included. A portion of the 18S
rRNA was amplified using universal 18S rRNA primer set
(574WF/952WR) (Hadziavdic et al., 2014). PCR reactions were
performed using AccuStart II PCR ToughMix kit and cleaned
(HighPrep PCR beads, Mokascience). The amplification program
consists of 28 PCR cycles with the following steps: 94°C for
3 min, followed by 28 cycles of 94°C for 30 s, 53°C for
40 s and 72°C for 1 min, followed by a final elongation step
at 72°C for 5 min. PCR positive and negative controls are
included. Pools were submitted for sequencing on Illumina
MiSeq instrument at GeT-PlaGe (Auzeville, France). Sequencing
read length was 250 bp. Sequences were processed using
Mothur (version 1.33.1) according to MiSeq SOP pipeline
(Schloss et al., 2009).

Barcodes, primers, and sequences showing homopolymers
of more than 8 bp have been discarded. Sequences showing
100% homology were grouped in unique sequences, then in
OTUs (operational taxonomic unit, based on 97% homology).
Sequences were next assigned to match to a sequence in SILVA
(version 123) and PR2 databases for prokaryotes and eukaryotes
respectively to identify the genus level. We considered assigned
sequences with relative abundance (RA) higher than 0.002 %.

TABLE 1 | Abundances and percentages of the bacterial communities in the environmental samples of the control and asthma groups.

Deseq method

Linear Discriminant Analysis
(LDA) Effect Size (LEfSe)

Classical Univariate Statistical

Asthma

Control

Comparisons

FDR

IfcSE Pvalues

Asthma Control LDAscore log2FC

Pvalues FDR

Statistics

FDR

Abundance Percentage Abundance Percentage Pvalues

Taxa

—5.75 —0.54907 0.36825 0.13595 0.45318

0.23728 5335600 4209300
0.14718 2639100 3859700
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FIGURE 3 | Proportion of bacterial community at phylum level in the control and asthma groups at the phylum level. *0.01 < p < 0.05, based on Mann-Whitney
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Sequencing Data Analysis

Analysis of sequencing data was performed using QIIME 2', and
univariate and multivariate statistical analysis using R software
and phyloseq package.

RESULTS

Comparison of Microbiota in the

Environmental Samples

The sequencing of the 16S rRNA allowed the identification of
2,637 bacterial taxa, 589 at genus level with a predominance
of Proteobacteria (53%), Firmicutes (27%) and Actinobacteria
(11%). Regarding 18S, 2,153 eukaryotic taxa were identified:
856 fungal taxa (39%) and 573 metazoa (26%). Among
Fungi, only 136 taxa were identified at genus level. The
16S and 18S sequencing data have been uploaded at EBI
Metagenomics under the accession numbers PRJEB37043 and
PRJEB37050 respectively.

Bacteria

The Shannon index was used to evaluate the intra-group
diversity in the environmental samples of the two groups;
it was 3.68 £ 0.67 in the control group and 3.94 + 0.22
in the asthma group, showing no significant difference in
diversity between the two groups (Mann-Whitney statistical
p = 0.5393) (Figure 1). The beta-diversity results using

Thttps://qiime2.org

ANOSIM method indicated that the bacterial composition
in the two groups was different as the global R-value was
0.109, with a p-value of 0.004. Hierarchical clustering analysis
(Figure 2) indicated no distinct difference in the OTUs for
the environmental samples of the two groups. There was no
significant difference between the compositions of the bacterial
communities in the environmental samples of the two groups,
when analyzed at feature level (Supplementary Figure 1).
When analyzed at the phylum level the abundance for the
phylum Firmicutes was 38.35% in the control group, significantly
higher than and 24.34% in the asthma group (24.34%,
p = 0.02) (Table 1). Further, Proteobacteria, Actinobacteria
and Bacteroides showed an abundance of 42.18, 13.32, and
4.74% in the control group and 58.84, 9.20, and 6.58% in
the asthma group, respectively, with no significant difference
between the compositions of the bacterial communities in the
environmental samples of the two groups (Table 1, Figure 3 and
Supplementary Figure 1).

Fungi

The Shannon index was used to evaluate the intra-group
diversity in the environmental samples of the two groups; it
was 3.00 & 0.77 in the control group and 2.89 £ 0.64 in the
asthma group, showing no significant difference in diversity
between the two groups (Mann-Whitney statistical p = 0.66952)
(Figure 4). The beta-diversity results using ANOSIM method
indicated that the fungal composition in the two groups was
not different as the global R- value was -0.003, with a p-value
of 0.859. There was no significant difference between the
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are shown as dots. Mann-Whitney statistical testing showed no significant difference in diversity between the two groups (pShannon = 0.66952).
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compositions of the fungal communities in the environmental
samples of the two groups, when analyzed at feature level
(Supplementary Figure 2) and phylum level (Table 2). For
the phylum Ascomycota, the abundance was 82.21% in the
control group and 89.18% in the asthma group. Furthermore,
Basidiomycota and Mucoromycota showed an abundance of
12.09 and 3.92% in the control group and 9.03 and 1.24% in the
asthma group, respectively (Figure 5).

Differential Abundance Analysis

Bacterial and fungal taxon-levels (OTU) differences in relative
abundance were examined between the asthma and control
groups. A significant over representation of specific bacteria
was observed in control patients’ group for Christensenellaceae
family (p-value = 0.0015, adj. p-value = 0.033) (Figure 6) and
only a trend for Dermabacteraceae family (p-value = 0.0002, adj.
p-value = 0.065) (Figure 7).

DISCUSSION

Health effects of environmental microbes are still debated and
not completely understood. A first approach is to examine
relationships between genes, microbes in airways and gut, and
the environment in asthma causes. This is a complex, dynamic
and very heterogeneous process still unresolved (Huang and
Boushey, 2015). Besides, healthy environments may have impact
on the exacerbation of asthma and the usefulness of allergen
avoidance on asthma control have shown various evidence of
their efficacy on the clinical improvement of patients (Le Cann
et al., 2017; Gangneux et al., 2020). In this work, our aim was
to compare microbial communities in asthma patients dwellings
compared to non-asthma control homes, and to characterize
and identify indoor bacterial and eukaryotic communities that
may be associated with the exacerbation of asthma. In the
literature, exposure to low fungal and bacterial richness in
house dust is associated with an increased risk of asthma
development (Ege et al., 2011; Dannemiller et al., 2013). Air,
dust and surface sampling strategies to detect bacteria and fungi
have alternately advantages and limits, as well as the different
methods of detection, identification and quantification (Méheust
et al., 2014; Gangneux et al., 2019). Because our objective for
this work was to use NGS, we decided to sample dust by
vacuuming the floor rather than aerosols in order to gain in
sensitivity. Another valuable technical option described in the
literature relies on the use of electrostatic dust cloths for further
molecular, immunological or cultural analysis (Cox et al., 2017;
Kristono et al., 2019).

In our work, the alpha- and beta-diversity results indicated
that the bacterial and fungal composition in the two groups were
not different, without significant difference when analyzed at
the phylum level. On a global point of view, our results are in
accordance to others as the main phylum detected in both group
is Proteobacteria, then Firmicutes, Actinobacteria, Bacteroidetes
(Hewitt et al., 2012), with Firmicutes over represented in the
control group compared to asthma dwellings. Besides, there was
a trend of more Proteobacteria detected in asthma population as

TABLE 2 | Abundances and percentages of the fungal communities in the environmental samples of the control and asthma groups.

Deseq method

Linear Discriminant Analysis
(LDA) Effect Size (LEfSe)

Classical Univariate Statistical

Asthma

Control

Comparisons

Asthma Control LDAscore log2FC IfcSE Pvalues FDR

FDR

Statistics Pvalues

FDR

Abundance Percentage Abundance Percentage Pvalues

Taxa

0.51503
0.51503

—0.39748 0.40435 0.3256

—5.55

0.10635 0.29345 8744400 8042200

0.17607 0.29345 996370

0.89511

142

0.11207 0.31014
0.18608 0.31014

89.18
0.91251

169747
17194

82.21

136492

Ascomycota

0.22313 0.31541

0.99581 0.19698 0.51503
0.50444 0.51503
0.51503 0.51503

1.4868
1.9928

0.22401
—1.2848

0.99249
—1.2974

5.29
89
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3.08

1388100
185200
26473

201920 358010
33275
24060

0.89511
0.40601

0.15849 0.29345

74
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1235 0.32481

0.91251

0.16554 0.31014
0.33805 0.42257

9.03
1.24

36
0.18

2357
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352

12.09
3.92
1.54
0.23

20078
6515
2564

376
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Others

Frontiers in Microbiology | www.frontiersin.org

July 2020 | Volume 11 | Article 1671


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Gangneux et al.

Dust Microbiota and Asthma Patients

100

89.18
90

82.21

12.09

Proportion of fungal community at phylum level (%)

10 9.03
. 392 2 154
0 - . 0.36 0.23 0.18
Ascomycota Basidiomycota Mucoromycota Chytridiomycota others
m Control = Asthma

FIGURE 5 | Proportion of fungal community at phylum level in the control and asthma groups at the phylum level. *0.01 < p < 0.05, based on Mann-Whitney U-test.

Orignal Count

Christensenellaceae

Log-transformed Count

124

method based on Mann-Whitney U-test.

[ J
p-value = 0.0015, adj. p-value = 0.033
1e+05+
84
°
Q
o
% class
'E ‘ Asthma
_8 41 . Control
< 5e404+
04
0e+00+ B e . 22l ) oo -@e-oense o
Asthma Control Asthma Control
class class

FIGURE 6 | Box plot of differential abundance of Christensenellaceae family in the control and asthma groups using Classical Univariate Statistical Comparisons

previously described (Ciaccio et al., 2015). This was associated
with a higher abundance of Proteobacteria in airways microbiota
of asthmatic people (Hilty et al., 2010). However, it is very
difficult to compare the studies because usually the populations
studied are different (sometimes urban, sometimes rural, etc. . .).
At the family level, a signature in differential abundance was
observed with significantly more Christensenellaceae detected in
control dwellings than in asthma homes. Regarding other genus
and family, no statistical difference was observed even if much
Dermatobacteriacae were also detected in control dwellings.

Some limitations of this work can be identified. A lack of
statistical power is possible, linked to the limited number of
dwellings sampled. However, this study opens new perspectives
with interesting trends that may drive further studies on the
topic. Also, it is possible that we have underestimated the fungal
burden and diversity in dust samples because of a potential loss
of fungal spores as shown for aerosols (Mbareche et al., 2019).
The interest of concentrating particles before DNA extraction
needs to be investigated on dust samples as it has been studied
for air samples. Finally, we intentionally decided to amplify and
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FIGURE 7 | Box plot of differential abundance of Dermabacteraceae family in the control and asthma groups using Classical Univariate Statistical Comparisons

method based on Mann-Whitney U-test.
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Type

sequence rRNA of 18S gene in order to detect fungi but also
eukaryotes cells that may be involved in asthma sensitization such
as cockroach, house dust mites or pets. However, we were very
disappointed by the low resolution for species identification of
non fungal eukaryotes and were not able to analyze them. Thus,
if looking only to fungi, the question of using ITS1-2 or 28S
rRNA targets could have been asked, while advantages and limits
of each target and even primer sets are still debated (Hanson
et al., 2016; De Filippis et al., 2017; Frau et al., 2019). Another
option is to use shotgun sequencing for taxon identification
and abundance assessment for both prokaryotic and eukaryotic
sequences. New tools such as NGS should be more standardized
from one study to another and include processing steps of quality
controls in order to avoid low-quality reads and sequences and
to optimize abundance thresholds and profiles. However, deep
sequencing really opens new perspectives on the comprehension
of the microbial exposome and its impact on airway microbiome.
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