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Despite the extended view of the composition of diabetic foot infections (DFls), little
is known about which transcriptionally active bacterial communities are pertinent
to infection, and if any differences are associated with increased infection severity.
We applied a RNA sequencing approach to analyze the composition, function, and
pathogenicity of the active bacterial communities in DFIs. Taxonomic profiling of bacterial
transcripts revealed the presence of 14 bacterial phyla in DFIs. The abundance
of the Spiroplasma, Vibrio, and Mycoplasma were significantly different in different
infection severities (P < 0.05). Mild and severe stages of infections were dominated
by Staphylococcus aureus and Porphyromonas asaccharolytica, respectively. A total of
132 metabolic pathways were identified of which ribosome and thiamin being among the
most highly transcribed pathways. Moreover, a total of 131 antibiotic resistance genes,
primarily involved in the multidrug efflux pumps/exporters, were identified. Furthermore,
iron acquisition systems (synthesize and regulation of siderophores) and pathways
involved in the synthesis and regulation of cell-surface components associated with
adhesion, colonization, and movement of bacterial cells were the most common
virulence factors. These virulence factors may help bacteria compete for scares
resources and survive the host wound proteases. Characterization of transcriptionally
active bacterial communities can help to provide an understanding of the role of key
pathogens in the development of DFls. Such information can be clinically useful allowing
replacement of DFIs empirical therapy with targeted treatment.

Keywords: diabetic foot infection, RNA sequencing, metatranscriptomics, active bacterial community, resistome,
virulence factors

INTRODUCTION

Diabetic foot infections (DFIs) are a frequent cause of hospitalization and typically precede events
such as lower extremity amputation (Lavery et al,, 2003). Traditional approaches to identify
pathogens colonized in DFIs have relied on culture-based methods that are limited to detect
bacterial species grown under standard laboratory conditions (Heravi et al., 2020).
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Over the last decade, several studies have identified that
diabetic foot ulcers were composed of a complex bacterial
community consisting of aerobes, anaerobes, fastidious, and
unculturable microorganisms using 16S rRNA sequencing (Smith
et al., 2016; Gardiner et al, 2017). The 16S rRNA approach
is limited to genomically present but transcriptionally inactive
bacterial communities. It also does not provide insight into the
potential or actual function of the bacterial community in DFIs.

High-throughput RNA sequencing or metatranscriptomic
analysis is a promising tool to obtain insights into
the functionality —of active bacterial communities.
Metatranscriptomics has also addressed the limitation of
microarray assays such as unspecific hybridization signals
(Zhao et al., 2016).

The composition and function of the active bacterial
communities in DFIs can provide a clue for understanding the
actual role of microorganisms in infection progression and the
improvement of therapeutic approaches. To the best of our
knowledge, this is the first study applying an RNA sequencing
approach to explore the composition, function, and virulence
factors of the transcriptionally active bacteria in DFIs.

MATERIALS AND METHODS

Ethics Statement

This study was approved by the South West Sydney Local Health
District Research and Ethics Committee (HREC/14/LPOOL/487,
SSA/14/LPOOL/489) and Macquarie University Human
Ethics Committee (Reference No. 5201500839). All the
experiments were performed in accordance with relevant
guidelines and regulations. Informed consent has been
obtained for this study.

Patient Population

In this prospective study, 43 consecutive patients aged over
18 years presenting to the Liverpool Hospital High-Risk
Foot Service with a clinically diagnosed DFI were enrolled
over a 6-month period. Infection severity was determined
using the International Working Group of the Diabetic Foot
(IWGDEF), Perfusion, Extent, Depth, Infection and Sensation
(PEDIS) classification system, and patients were assigned
accordingly (PEDIS 2 refers to mild infection, PEDIS 3 refers
to moderate infection, PEDIS 4 refers to severe infection)
(Lipsky et al., 2016). Since RNA sequencing approach requires
RNA with high quality and integrity, after RNA extraction
from all of the clinical samples and initial assessment, 16
samples that had high-quality and integrity RNA were selected
for RNA sequencing.

Sample Collection

After the DFI ulcer was cleaned with sterile 0.9% NaCl, a
sterile single-use punch with a circular hollow blade was rotated
around the affected area, and then the sharp debridement was
collected by disposable forceps and preserved immediately in a
2 ml RNAlater stabilization solution (Thermo Fisher Scientific,

Waltham, MA, United States) for 24 h at 4°C and then stored at
—80°C until processed.

Sample Pretreatment

Infected tissue specimens (<25 mg) were homogenized in
1 ml TRIzol reagent (Invitrogen, Carlsbad, CA, United States)
using TissueRuptor II (Qiagen, Hilden, Germany) at 230 V,
50/60 Hz for 10 s.

RNA Extraction

The above pretreated tissue samples (<25 mg) were
incubated in 1 ml TRIzol reagent for 5 min prior to further
homogenization using 0.1 and 0.5 mm beads in a FastPrep-
24 instrument (MP Biomedicals, Irvine, CA, United States)
with a velocity of 5 m/s for 1 min while sitting on dry
ice to break the bacterial cell wall. TRIzol® Plus RNA
Purification Kit (Invitrogen, Carlsbad, CA, United States)
was used to extract high-quality RNA from homogenized
tissue samples. Extracted RNA was further treated with
TURBO DNase (Invitrogen, Carlsbad, CA, United States)
and purified by AMPure XP beads (Beckman Coulter Life
Sciences, San Jose, CA, United States) according to the
manufacturer’s instructions.

RNA Integrity, Synthesis of cDNA, and

lllumina Sequencing

Quality and integrity of extracted RNA were evaluated in
an Agilent 2100 Bioanalyzer system using microfluidics-based
electrophoresis on microfluidic chips (Agilent Technologies,
Santa Clara, CA, United States) which produced an RNA integrity
number (RIN) as an output. Illumina whole transcriptome
library preparation with rRNA depletion was performed using
the Illumina Ribo-Zero Gold Epidemiology kit (Illumina Inc.,
San Diego, CA, United States) on 16 selected high-quality
RNA samples. The RNA sequencing was run on one Illumina
NovaSeq 6000 S4 flow cell (300 Cycle) by the Australian Genome
Research Facility to achieve >150 million pair-end reads of 150
nucleotides per sample.

Processing of Metatranscriptome Data
Sequencing reads were passed through the FastQC quality
control pipeline Version 0.11.7 (Andrews, 2010) to visualize
their quality. Sequencing reads were trimmed and quality-filtered
with Trimmomatic tool version 0.39 (LEADING:5, TRAILING:5,
SLIDINGWINDOW = 4:15, MINLEN = 50) (Bolger et al,
2014). To filter human sequencing reads, trimmed reads were
mapped to the human reference genome using ultrafast universal
RNA-seq aligner (STAR v2.5.2a, human reference: GRCh37
genome including transcript annotation) (Dobin et al., 2013) and
Burrows-Wheeler Alignment (BWA-mem version 0.7.15, human
reference: GRCh38) (Li and Durbin, 2009). Putative non-human
reads were then mapped to ribosome RNA databases (SILVA
16S, 23S, 28S, 18S rRNA, rfam 5S rRNA) using SortMeRNA
v2.1 to identify and remove ribosomal RNA sequences (Kopylova
et al., 2012). Putative bacterial mRNA was the target for further
analyses (Figure 1).
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FIGURE 1 | Overview of the metatranscriptome pipeline applied in this study.
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The taxonomic label assignment to sequencing reads was done
using Kraken classifier v2 (an alignment program for assigning
taxonomic labels to sequencing reads) (Wood and Salzberg,
2014). The database Kyoto Encyclopedia of Genes and Genomes
(KEGG) (version 9 November 2016) was used to annotate
the function of sequencing reads (Kanehisa and Goto, 2000)
using DIAMOND v.0.99.

Visualization and statistical analysis were performed in
Calypso 8.27 (Zakrzewski et al., 2016). ANOVA was used
to determine if bacterial composition and function were
significantly changed with infection severity.

The comprehensive antibiotic resistance database (CARD
v3.0.1) (Jia et al., 2016) was used to identify bacterial transcripts
carrying antibiotic resistance function (DFI resistome) using
DIAMOND v.0.99. Antibiotic resistance genes in CARD
were annotated as a present for a particular sample if at
least 90% of the CARD reference sequence was covered
by the metatranscriptome reads and with an average read
fold of least 2.63.

The presence of bacterial virulence factors
metatranscriptome reads was evaluated using the Virulence

in

the metatranscriptome pipeline used in this study is shown
in Figure 1.

RESULTS

After the initial assessment of extracted RNA, 16 samples
that had high integrity and quality RNA with either a mild
(25%), moderate (31.25%), or severe infection (43.75%) were
investigated in this study. The average age of patients was
60.80 £ 10.43 years (range from 34 to 77 years). Three patients
were female, and 13 patients were male. Three patients (2
females and one male) had Type 1 diabetes, while remaining
patients suffered from Type 2 diabetes. All patients suffered from
peripheral neuropathy (100%) (Table 1).

Microbial Community Composition

RNAseq results in an average of 170 million paired-end reads
(range 128 to 204 million) of 150 nucleotides per sample
and on average 7.6 million paired-end reads per sample were
taxonomically assigned to a bacterial taxon using Kraken.
Fourteen bacterial phyla, 24 classes, 55 orders, 91 families,
109 genera, and 135 active species were identified in DFlIs.
Alignments of the sequencing reads using Kraken showed that
the DFIs comprised of the phyla Proteobacteria, Firmicutes,

Factor Database (VFDB) with at least 90% of coverage and an  Bacteroidetes, ~ Fusobacteria, — Actinobacteria, — Tenericutes,
average read fold of 3.90 (Chen et al., 2016). The overview of  Cyanobacteria, — Spirochetes, ~ Thermotogae,  Acidobacteria,
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TABLE 1 | Demography of recruited patients in this study.

Patient Age Gender Type of Duration of Duration PEDIS score
ID diabetes diabetes of ulcer 2 = Mild,
(1,2) (Year) (weeks) 3 = Moderate,
<2 (0), 2-6 4 = Severe
(1), >6(2)

DFI109 51  Female 1 30 2 2
DFI111 51  Female 1 30 2 3
DFI112 68 Male 2 12 2 2
DFI113 54 Male 1 23 2 3
DFI114 72 Male 2 20 1 2
DFI117 34 Male 2 14 2 3
DFI119 61 Male 2 13 1 2
DFI121 61  Female 2 12 2 3
DFI126 54 Male 2 11 2 3
DFI153 65 Male 2 20 2 4
DFI155 62 Male 2 21 1 4
DFI160 59 Male 2 2 1 4
DFI161 68 Male 2 19 0 4
DFI166 71 Male 2 22 2 4
DFlIt67 77 Male 2 35 2 4
DFI171 64 Male 2 17 1 4

Planctomycetes, Verrucomicrobia, Aquificae, and Deferribacteres
in descending order of the mean abundance in the samples.
Proteobacteria, Firmicutes, and Bacteroidetes constituted the

most abundant phyla. The abundance of individual taxa is
visualized in Figure 2.

The genera Proteus, Porphyromonas, Anaerococcus,
Parvimonas, and Peptoniphilus constituted the highest number
of assigned sequencing reads in descending order. The genera
Mpycoplasma, Spiroplasma, and Vibrio were significantly
abundant in moderate infections (P < 0.05, Figure 3).

Regardless of infection severity, Proteus mirabilis,
Porphyromonas asaccharolytica, Parvimonas micra, Anaerococcus
mediterraneensis, and Peptoniphilus harei had the highest number
of assigned transcripts (Figure 4). Among samples with mild
and moderate infections (N = 9), three samples were dominated
by Staphylococcus Porphyromonas  asaccharolytica
was detected in all severe samples (n = 7) and dominant
in four samples.

aureus.

Functional Annotations of the

Transcripts in DFls

Using similarity searches to the KEGG database, 132
functional pathways were identified in the DFIs. Six pathways
were significantly changed in different infection severities
(P < 0.05) (Table 2).

Pathways involved in ribosome and thiamine metabolism
were the most abundant pathways (Figure 5A). A high number of
ribosomal transcripts, particularly in S. aureus, P. asaccharolytica,
and Finegoldia magna, may indicate high transcriptional activity
and important metabolic roles of these species (Figure 5B).
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FIGURE 2 | Clustered bar chart based on hierarchical clustering of the Bray—Curtis distances of the DFIs based on the taxonomic composition of active bacterial
phyla as determined by metatranscriptome sequencing predicted using Kraken and visualized in Calypso. The horizontal axis is the square root abundances of the

identified taxa.

DFI167
| - DFI109
- DFI111
= - DFI112
— DFI161
- DFI121
Groups:
- DFI166 B Mild
@ Moderate
- DFI71 B Severe
~ DFI117 Features:
O Acidobacteria
- DFI119 Actinobacteria
B Aquificae
B Bacteroidetes
DEN2S @ Cyanobacteria
O Deferribacteres
[~ DFI1S3 O Firmicutes
B Fusobacteria
— DFI113 @ Planctomycetes
@ Proteobacteria
- DFI160 B Spirochaetes
O Tenericutes
- DFI155 O Thermotogae
@ Verrucomicrobia
- DFI114
T 1
15 20

Frontiers in Microbiology | www.frontiersin.org

July 2020 | Volume 11 | Article 1688


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Heravi et al.

Metatranscriptomics of Diabetic Foot Infection

abundances of each bacterial genus.

icakiiia Spiroplasma Vibrio
0.4 p=0.011 ® P=0.0045 » []
P=0.043 P=0.024 _ p-000s1 "
— — 0.30 —_—

= 03 _. 03 a _ =
ﬁ - @ - @ 025 .
| ———
5 —— & - g 020 B

02 . L] * 0.2 B 3
g - —_— — 8 —_— ¥ g 015 i q
2 . Ba § ° e § 7
2 o4 i * 3 041 3 0.10
s = —— —— —— ——— <

3 0.05 E | -
°
0.0 L —— 0.0 | o] o —y— 0.00 *
Mild Moderate Severe Mild Moderate Severe
Mild Moderate Severe

FIGURE 3 | The genera Mycoplasma, Spiroplasma, and Vibrio significantly increased in moderate infections (P < 0.05). The vertical axis shows the square root

{'

E

IIe

Mﬁ

i

— DFI17
.
 DFI121
- DFI161
— DFI153
Groups:
| Mild
- DFI166 @ Moderate
W Severe
DFI113 Features:
@ Porphyromonas_cangingivalis
@ Streptococcus_agalactiae
— DFI160 @ Prevotella_intermedia
@ Haemophilus_parainfluenzae
@ Bacteroides_thetaiotaomicron
- DFI71 B Clostridium_tetani
@ Tannerella_forsythia
B Escherichia_coli
~ DFI167 @ Enterococcus_faecalis
@ Streptococcus_dysgalactiae
@ Parvimonas_micra
- DFI109 O Morganella_morganii
B Anaerococcus_prevotii
O Anaerococcus_mediterraneensis
~ DFI111 B Peptoniphilus_harei
B Fusobacterium_nucleatum
O Proteus_mirabilis
- DFI112 @ Finegoldia_magna
O Staphylococcus_aureus
@ Porphyromonas_asaccharolytica
— DFI119

T
10

=]
o

Abundance sqrt(TSS)

FIGURE 4 | Clustered bar chart of the top 20 active bacterial species. The dendrogram was calculated using the hierarchical clustering of Bray—Curtis distances
including the top 20 species assigned using Kraken. The horizontal axis is the square root abundance of the identified taxa.
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DFI Resistome Prediction

Assignment of bacterial transcripts to the CARD database
revealed the presence of 131 different genes directly or indirectly
involved in antibiotic resistance mechanisms using the cut-off of
>90% reference sequence coverage with the average read fold of
at least 2.6 in 12 samples. No CARD feature was identified in
four samples. The DFI resistome was mainly comprised of genes
involved in the multidrug efflux pumps/exporters, resistance to
beta-lactam, macrolide, and tetracycline antibiotics. TEM beta-
lactamase resistance genes and genes involved in multidrug
efflux pumps/exporters were detected in 11 samples. Tetracycline
resistance gene (tet) and Erm methyltransferase were also

detected in six and four samples, respectively. Furthermore, Gene
cfxA, encoding a class A beta-lactamase was detected in five
samples (Figure 6).

Expressed Bacterial Virulence Factors
in DFls

The assignment of bacterial transcripts to the VFDB revealed
the presence of 225 different mechanisms involved in bacterial
pathogenicity using 90% coverage with the average read fold of
at least 3.90 in seven samples. No VFDB feature was identified
in nine samples. Overall, the most common virulence factors
identified in DFIs comprised pathways involved in synthesizing
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TABLE 2 | Pathways significantly changed between infection severities (P < 0.05).

Pathway Class Increased in
infection
severity
(PEDIS)

Lipoic acid metabolism Metabolism of vitamins and Mild

cofactors

Two-component systems Signal transduction Mild

Bacterial invasion to epithelial  Bacterial infectious disease Mild

cells

Glycerolipid metabolism Metabolism of lipid Moderate

TCA cycle Metabolism of carbohydrate Moderate

Mismatch repair Replication and repairing DNA  Severe

and regulation of siderophores (iron-chelating molecules). The
next common virulence factors were involved in bacterial cell-
surface components (fimbria and flagellum) which facilitate
adhesion, colonization, and movement of bacterial cells. Other
pathways involved in the pathogenicity of pathogens are shown
in Figure 7.

DISCUSSION

Diabetic foot infections are the most severe and costly
complication of diabetes. With regards to the diabetic
population, 50% of them are recognized to have ulcerated
feet (Gupta and Kumar, 2019). Progression of DFIs to

more complicated scenarios, such as minor and major
amputation of a lower limb occurs every 30 s in the world
which can influence the quality of life in many diabetic people
worldwide'.

Identification of pathogenic bacteria is the first
essential step to monitor and control the etiology of DFIs
accurately (Sadeghpour Heravi et al, 2019). However,
a large portion of bacterial species are not culturable
using traditional methods (Suryaletha et al, 2018). While
many human disorders have been linked to a shift in
the bacterial composition/function (Nowicki et al, 2018),
it is still unclear how this fluctuation may influence the
development of DFIs.

Metatranscriptomics provides an extraordinary opportunity
to systematically study bacterial communities (Zhao
et al, 2016) including information about active bacterial
compositions/functions which are necessary for the initiation
and progression of the infection.

This study provides insights into the transcriptionally active
bacterial population and its functionality in DFIs by means of a
metatranscriptomic approach.

In this study, a high abundance of the transcripts assigned to
the genera Proteus, Porphyromonas, Anaerococcus, Parvimonas,
Peptoniphilus, Prevotella, Fingoldia, and Streptococcus were
identified in DFIs. Taxonomic annotation revealed that
bacterial pathogens in mild infection (PEDIS 2) were mainly
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S. aureus, F. magna, Fusobacterium nucleatum, and Proteus
mirabilis which were commonly identified in DFIs (Gardiner
et al, 2017). In moderate infections (PEDIS 3), F. magna,
P. harei, Morganella morganii, and Anaerococcus prevotii were
the most common assigned transcripts. In severe infections
(PEDIS 4) P. asaccharolytica, F. magna, Parvimonas mica,
Anaerococcus mediterraneensis, and Proteus mirabilis were
predominant (Figure 4). These findings suggested that aerobic
Gram-positive cocci such as S. aureus which has been the
most described pathogen in DFIs were less common as
the severity of infection increased. Transcripts assigned
to the genera Spiroplasma, Vibrio, and Mycoplasma were
significantly increased in moderate infections (P < 0.05), which
indicated a major metabolic role of these genera in DFIs.
The presence of transcripts assigned to both metabolically
active aerobic (such as S. aureus, Proteus mirabilis, and
Escherichia coli) and anaerobic microorganisms (such as P.
asaccharolytica, F. magna, and Fusobacterium nucleatum)
indicated the dual status of the bacterial lifestyle and the
complexity of the bacterial communities in DFIs. The high
prevalence of anaerobes and fastidious microorganisms (such
as Anaerococcus spp. and Peptoniphilus spp.) may explain the
inadequacy of culture-based methods in isolating the entire
pathogens in DFIs.

Transcripts assigned to thiamin pathways dominated the
DFIs. Since this pathway is a vital pathway in bacterial
pathogenesis (Du et al., 2011; Costliow and Degnan, 2017)

disrupting this pathway may lead to bacterial cell death and may
suggest a novel target for treatment of DFIs (Schauer et al., 2009;
Monjas et al., 2016). Also, the great abundance of ribosomal
transcripts indicated the high translational activity of the bacterial
population in our study (Bisanz et al., 2014) which may suggest
the use and development of antibiotics that specifically target
ribosomal function and subunits in bacterial pathogens.

The high abundance of bacterial transcripts assigned to a
two-component system (TCS) in the mild stages of infection
in this study (P < 0.05) (Table 2) and the importance of the
TCS in bacterial survival may suggest a key role of the system
as a new antimicrobial target. Furthermore, the high abundance
of transcripts assigned to the bacterial pathway “invasion of
epithelial cells” during mild infections (P < 0.05) may also
suggest invading ability of pathogenic bacteria to enter epithelial
cells and expand the infection in the early stages of infection
(Ribet and Cossart et al., 2015; Table 2).

We have identified that most DFIs have complex metabolically
active bacterial communities, thus understanding which bacteria
contribute to the infective process could help to reduce
the overuse of commonly prescribed antibiotics. Beta-lactam
antibiotics are the most broadly prescribed antibiotics in the
empirical therapy of DFIs. Extended-spectrum f-lactamase
(ESBL) is the main resistance mechanism in Gram-negative
bacteria, which results in multidrug resistance (MDR) pathogens.
Based on our findings, genes conferring resistance to beta-
lactams and genes involved in multidrug efflux pumps/exporters
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were detected in eleven samples. Tetracycline resistance genes
(tet) and Erm methyltransferases were detected in six samples
(Figure 6). Alarming levels of ESBL phenotypes, which were
resistant to many classes of commonly prescribed antibiotics
such as penicillins and cephalosporins have been reported
in many different studies which were concordant with our
findings suggesting more precaution in the prescription of these
antibiotics in the treatment of DFIs (Motta et al., 2003; Turhan
etal., 2013).

Also, the iron acquisition system (synthesize and regulation of
siderophores) was the most common mechanism involved in the
pathogenicity of bacterial cells in DFIs. Pathways involved in the
synthesis and regulation of cell-surface components associated
with adhesion, colonization, and movement of bacterial cells
were the next common virulence factors. These virulence factors
may help bacteria compete for scares resources and survive
the host wound proteases. This may explain the importance of
the aforementioned systems in the pathogenicity of bacterial
cells and targeting these factors to prevent bacterial cells more
effectively (Figure 7).

However, obtaining RNA with high RIN from infected
clinical samples suitable for RNA sequencing approach is very
challenging, after the initial assessment of the extracted RNA, we
were limited to low sample size as RNA in some infected tissue
may have already been degraded in situ.

RNA sequencing is very costly as well and needs deep
sequencing (average of 170 million reads per sample in this study)
to be able to capture enough bacterial RNA signals as > 95%
of sequencing reads belonging to human RNA reads in clinical
samples. However, recent advances in the genomics field over the
past quarter-century have led to considerable reductions in the
sequencing costs. Since these methods are becoming frontlines in
medical laboratories, it may be projected that this reduction to be
continued in order to influence the scale and scope of research
projects investigating genomic aspects of bacterial communities
(Marshall et al., 2017).

To the best of our knowledge, this is the first study to
apply an RNA-sequencing technique to profile the active
bacterial communities in DFIs. Our findings can help to
identify the composition and function of bacterial communities
in DFIs. However, further experimental research is needed
to evaluate the pathogenicity of the identified bacterial
species and the application of detected pathways in the
treatment of DFIs.

CONCLUSION

Based on our findings, treatment strategies targeting a single
species or specific bacterial pathways might be ineffective
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