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Although there are effective nucleoside analogs to treat HSV, VZV, and HCMV disease,
herpesvirus infections continue to contribute to significant morbidity and mortality.
Acyclovir is the drug of choice for HSV encephalopathy, yet there is an estimated 6–
19% mortality rate with half of the survivors experiencing moderate to severe chronic
neurological deficits. For VZV, current treatments are inadequate to prevent acute and
persistent pain due to zoster. Treatment of HCMV with GCV requires close monitoring
particularly in patients with impaired renal function and there are no approved treatments
for congenital HCMV infections. New therapeutic options to control cytomegalovirus
reactivation in bone marrow and stem cell transplant patients are needed to improve
patient outcome. No successful chemotherapeutic options are available for EBV, HHV-
6, 7, and 8. Drug resistance is a concern for HCMV, HSV, and VZV since approved
drugs share common mechanisms of action. Targeting DNA encapsidation or capsid
assembly provide additional options for the development of non-nucleoside, small
molecule anti-herpesviral drugs.
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HUMAN HERPESVIRAL DISEASES – TOWARD REDUCING
WORLDWIDE MORBIDITY AND MORTALITY

The enveloped, dsDNA human herpesviruses (Herpesviridae) are classified as either alpha, beta
or gamma herpesviruses depending on their genetic relatedness, host range, replication cycle
and latency properties (Arvin, 2007). The subfamily Alphaherpesvirinae includes three relatively
ubiquitous pathogens, herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2), and varicella-
zoster virus (VZV). All three infect mucosal epithelia and establish life-long latency in cells of
neuronal origin.

Primary infection and reactivation of latent HSV-1 or 2 results in asymptomatic shedding from
the originally infected mucosal surface and/or symptomatic disease in the form of herpes labialis
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(cold sores) or genital lesions. Worldwide, 3.7 billion people
under age 50 (67%) and 417 million people aged 15–49 (11%)
are estimated to be infected with HSV-1 and HSV-2, respectively
(Looker et al., 2015a,b). Genital herpes caused by either HSV-
1 or HSV-2 is estimated to affect >400 million persons
worldwide (Groves, 2016). HSV-1 is primarily associated with
herpes labialis and HSV-2 with epidemic sexually transmitted
herpes genitalis (Whitley and Gnann, 1992), yet both viruses
can cause serious systemic diseases including herpetic keratitis
and viral encephalitis. These latter diseases are of major
concern in immunocompromised patients, especially those
undergoing transplant surgery and chemotherapy. Globally,
neonatal HSV infection is estimated to occur in about ten
cases per 100,000 live births and results in significant morbidity
and mortality (Looker et al., 2017). Recent studies also suggest
an increased risk for Alzheimer’s disease for patients with
the apolipoprotein 4 (APOE-ε4) allele isoform whom are
predisposed to an elevated HSV-1 viral load in neural tissue
(Steel and Eslick, 2015; Olsson et al., 2016; Agostini et al., 2018;
Ashraf et al., 2018; Fulop et al., 2018; Hogestyn et al., 2018;
Kristen et al., 2018).

The genus Varicellovirus contains the species human
alphaherpesvirus 3, commonly known as varicella zoster virus
(VZV or HHV-3). VZV infection typically occurs at a young age
resulting in varicella (chickenpox). Varicella occurs primarily
in unvaccinated children and young adults and can lead to
complications such as encephalitis, pneumonia, or bronchitis
(Gershon et al., 2015). VZV can reactivate later in life to cause
neurologic conditions, especially herpes zoster (shingles) and
post-herpetic neuralgia (Gilden, 2015). In some individuals,
pain remaining after resolution of zoster lesions may become
a debilitating disease. Additionally, as one of the TORCH
infections, primary VZV infection during pregnancy can cause
congenital varicella syndrome consisting of fetal limb hypoplasia,
cutaneous scarring, and blindness in the fetus (Ahn et al.,
2016). VZV remains the only herpesvirus for which vaccines
exist: Varivax (Merck) and ProQuad (Merck) for primary
varicella (chickenpox), and Zostavax (Merck) and Shingrix
(GlaxoSmithKline) for zoster (shingles). However, these vaccines
are not approved for use in pregnant women, people with certain
allergies, and those with immune suppression. The vaccine strain
can also establish latency and reactivate. The overall disease
burden has been significantly reduced as vaccination rates
have increased. Breakthrough cases with mild symptoms are
occasionally observed in vaccinated persons. Leung et al. (2019)
reported in 2019 that “levels of varicella vaccination coverage
with two or more doses and the proportion of adolescents with
evidence of immunity increased from 2007 to 2014, though
16% lacked evidence of immunity in 2014.” Hence, suboptimal
vaccination rates, shingles in the aging population, and the
potential role of VZV in other serious diseases such as ocular
involvement (Kedar et al., 2019) or vasculopathy (Nagel et al.,
2017; Nagel and Bubak, 2018) warrant continued development
of effective treatment options for VZV.

Within the Herpesviridae sub-family of Betaherpesvirinae
are the species human cytomegalovirus (HCMV or HHV-
5) and human herpesviruses type 6A (HHV-6A), 6B

(HHV-6B), and 7 (HHV-7). Shared characteristics include
infection and establishment of latency in lymphocytes and
monocytes/macrophages. Like the other herpesviruses, most
people are infected with the Betaherpesvirinae by adulthood,
and many do not present with symptoms. Primary infections
are typically asymptomatic in immunocompetent individuals,
however, HCMV infection during pregnancy can significantly
impair fetal development (Zavattoni et al., 2014). HCMV-
associated disease pathologies seen in immunocompetent
patients include mononucleosis syndrome, diabetes mellitus
types 1 and 2, Guillain-Barré syndrome, and potential
malignancies [i.e., glioblastoma (Rahman et al., 2019)].
Congenital HCMV is the leading infectious cause of intellectual
disability and deafness in children. There are no approved
treatments for the ∼0.7% of pregnant women who develop
primary HCMV infection during pregnancy (Kenneson and
Cannon, 2007; Leruez-Ville et al., 2016). However, there is some
evidence that hyperimmune globulin may be beneficial for
managing first-trimester infections (Nigro et al., 2019; Schleiss,
2019). Current best practice consists of counseling mothers
to limit behaviors that increase risk for contracting a primary
HCMV infection during pregnancy. In immunocompromised
patients, HCMV is recognized to cause hepatitis, retinitis, colitis,
pneumonitis, esophagitis, polyradiculopathy, transverse myelitis,
and subacute encephalitis (Gupta and Shorman, 2019). Solid
organ transplant recipients often take medications that suppress
their T-cell mediated immune response long-term to prevent
allograft rejection, and thus are particularly at risk for HCMV
disease (Azevedo et al., 2015). The recent approval of letermovir
offers a new treatment option for HCMV in allogeneic stem
cell transplant patients (see below). Acute HHV-6b and HHV-7
infection, known as 6th disease or roseola infantum, can present
as a high fever with accompanying rash in young infants and
toddlers. Reactivation of betaherpesviruses is not uncommon
in immunocompromised transplant, cancer and AIDS patients
(Campadelli-Fiume et al., 1999; Nogalski et al., 2014).

The gammaherpesviruses include Epstein-Barr virus (EBV)
and HHV-8. Infectious mononucleosis and Burkitt’s lymphoma
result from infection of B-cells with EBV (Houldcroft and
Kellam, 2015). The presence of HHV-8, a common opportunistic
pathogen of AIDS, is strongly associated with the development of
Kaposi’s sarcoma (KS) (Cesarman, 2014).

VIRAL TERMINASE INHIBITORS FOR
TREATING HUMAN CYTOMEGALOVIRUS
INFECTIONS

Toxicity is an issue among approved HCMV therapies including
ganciclovir (GCV), foscarnet and cidofovir. These drugs have
complex administration and monitoring requirements and are
associated with several toxicities including myelosuppression.
For example, GCV, the preferred drug of the three is not
recommended for patients when the absolute neutrophil count
is under 500 cells/ml or when the platelet count is under
25,000/ml (Grayson, 2010). Hematologic malignancies and
advanced HIV/AIDS, as well as many of the pharmacotherapies
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used to treat them, often result in myelosuppression. Patients
affected by these diseases are among the highest risk group
for severe HCMV infection, yet treatments options are limited.
Herpesvirus terminases are part of the molecular nano-motor
that initiates viral DNA translocation into empty capsids (Rao
and Feiss, 2015). Inhibition of terminase activity results in
the accumulation of empty viral capsids and no infectious
viral particles are assembled. Terminase has been recognized
as a viable antiviral target and several compounds that block
the terminase complex have been described including the
naphthalenesulfonate BAY 38-4766 (Buerger et al., 2001),
benzimidazoles (Underwood et al., 1998; Buerger et al.,
2001; Hwang et al., 2007), hydroxypyridonecarboxylic acid
compounds (Wang et al., 2017; Kankanala et al., 2018)
and letermovir (Goldner et al., 2011; Foolad et al., 2018;
Gentry et al., 2019). Letermovir is a dihydroquinazolinyl-
acetic acid that represents a new class of HCMV inhibitors
that was recently approved for clinical use (Table 1). Briefly,
In 2011 Goldner et al. (2011) reported a small molecule
compound (AIC246) that had potent in vitro activity against
HCMV with novel mechanism of action. The compound was
active against laboratory and clinical isolates (EC50 ∼4 nM
with CC50 90 µM). Due to letermovir’s distinct mechanism
of action, cross resistance to cidofovir, foscarnet and/or
ganciclovir was absent.

In murine studies of HCMV infected xenografts, AIC246 had
favorable toxicological and pharmacological profiles and proved
more effective against HCMV than valganciclovir (Lischka et al.,
2010). Phase I and II trials demonstrated that AIC246 had a
favorable pharmacokinetic profile, was well tolerated and safe
(Chemaly et al., 2014; Stoelben et al., 2014; Kropeit et al., 2017a,b,
2018). In a phase three study, letermovir reduced clinically
significant HCMV infection in allogeneic stem cell transplant
patients (Marty et al., 2017). Successful Phase II and III clinical
trials resulted in approval of letermovir in the United States,
Canada, Japan, Switzerland, and the European Commission for
the prevention of HCMV infection and disease in adult HCMV-
seropositive recipients of an allogeneic hematopoietic stem cell
transplant (Maffini et al., 2016; Fuji et al., 2017; Chen et al., 2018;
Cho et al., 2018; El Helou and Razonable, 2019; Katayama and
Iwato, 2019; Ljungman et al., 2019; Mori, 2019).

The viral terminase complex has a low frequency of natural
polymorphisms and thus pre-existing mutations associated
with resistance in clinical isolates without prior exposure to
letermovir seemed unlikely (Pilorge et al., 2014). Douglas
et al. (2019) demonstrated that patients taking letermovir
had no significant increase in genomic HCMV variants
after 24 weeks compared to patients who had been taking
a placebo, suggesting low rates of resistance development
to letermovir. However, laboratory and clinical resistance
to letermovir has been demonstrated and can be mediated
by amino acid substitutions within the HCMV UL56 gene
(Chou, 2015, 2017; Goldner et al., 2015; Chou et al.,
2018; Douglas et al., 2019; Frietsch et al., 2019; Jo et al.,
2019; Komatsu et al., 2019; Piret and Boivin, 2019). Studies
comparing the development of resistance in vitro for GCV
and letermovir showed that mutations conferring resistance to

letermovir developed more rapidly than gangciclovir (Chou et al.,
2018). An increasing number of letermovir resistant isolates
have been documented in patients thus complicating clinical
management (Razonable, 2018). The emergence of clinical
resistance further emphasizes the need for additional anti-HCMV
therapeutic options.

SMALL MOLECULE COMPOUNDS
TARGETING ALPHAHERPESVIRUS
CAPSIDS AND DNA ENCAPSIDATION

Capsid Assembly Inhibitors
Numerous capsid assembly inhibitors have been described for
dengue (Scaturro et al., 2014), Hepatitis C (Kota et al., 2012), and,
a first-in-human trial of GSL4, a Hepatitis B virus capsid assembly
inhibitor (Merlini et al., 2019). In 2012, the first herpesvirus
capsid assembly inhibitor, 35B2, a pyrazolo [1,5-c]1,3,5-triazin-
4-one derivative (35B2) (Table 1) was identified (Inoue et al.,
2012). 35B2 showed in vitro activity against both ACV resistant
and sensitive strains of VZV. Strains resistant to 35B2 were
found to have mutations in ORF40, the VZV major capsid
protein. Infected fibroblasts treated with 35B2 showed altered
localization of MCP. Additionally, electron microscopic studies
demonstrated the lack of capsid formation in the presence of
35B2 suggesting that the pyrazolo compound affected normal
capsid assembly. No in vivo results have been reported to date.
The data suggest that novel antivirals can be identified that target
herpesviral M to inhibit normal capsid formation.

Portal Inhibitors
Herpesvirus DNA enters and exits the capsid through its portal.
The portal protein, located at a single capsid vertex is required
for DNA packaging in dsDNA bacteriophages and herpesviruses.
Portal proteins of the human herpesviruses, although only
modestly conserved at the primary amino acid level, share a
conserved core structure.

In 2000, the thiourea compound its N-(4-[3-(5-Chloro-
2,4-dimethoxyphenyl)-thioureido]-phenyl)-acetamide and its 2-
fluoro-benzamide derivative (WAY-150183; Table 1), were found
to inhibit HSV-1 replication in vitro (van Zeijl et al., 2000). Lack
of a functional portal on the capsid vertex prevented both the
cleavage of concatameric viral DNA into genome length progeny
and the packaging of the DNA into capsids. In 2003, a class
of non-nucleoside N-(α methylbenzyl-N′-arylthiourea analogues,
termed Compounds 1, 2, and 3 demonstrated in vitro inhibition
of VZV replication (Visalli et al., 2003). The isolation of resistant
isolates to either the HSV-1 or VZV inhibitors suggested that the
compounds targeted UL6 or ORF54 portal proteins, respectively,
and prevented DNA encapsidation (Visalli and van Zeijl, 2003;
Visalli et al., 2003, 2014; Di Grandi et al., 2004). The HSV-
1 compounds had good in vitro activity (0.4–1.5 uM) but no
in vivo studies were reported for the compound series. The VZV
compound series had excellent in vitro activity (IC50 10 nM –
1 µM), showed no cellular cytotoxicity (CC50 > 37 µM) and
was effective against a panel of clinical isolates and ACV-resistant
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TABLE 1 | Drugs and compounds targeting herpesviral DNA encapsidation and viral capsid assembly.

Drug or compound Virus Mechanism of
action/target

Route Adverse effects Structure

Clinically approved

Letermovir HCMV Quinazoline derivative,
viral terminase UL56

o, iv Gastroenteritis,
nasopharyngitis,
dyspnea, >serum
creatinine and hepatic
transaminitis

Preclinical: in vivo

α-methylbenzyl thiourea
derivates (Comp 1, 2,
and 3)

VZV DNA encapsidation
inhibitor, ORF54 portal

ip Well tolerated in mouse
model

Preclinical: in vitro

Pyrazolo derivatives
(35B2)

VZV Capsid assembly
inhibitor, major capsid
protein UL19

WAY-150183 HSV-1, HSV-2 DNA encapsidation
Inhibitor, UL6 portal

Chlorobenzothiophen
derivatives (45B5)

VZV DNA encapsidation
inhibitor, UL6 portal

VZV strains. Only empty capsids were observed in the nuclei of
VZV infected cells In the presence of compound.

Combined, the results suggested that small molecular thiourea
compounds targeting herpesvirus portal proteins represented
a new class of anti-herpesvirus inhibitors. Portal proteins
are cyclical multimers formed of 12 or 13 subunits that
create a hollow empty core or channel. Hence, the thiourea
compounds likely inhibit encapsidation by affecting portal
structure, function, and/or protein-protein interaction(s). Below,
we provide the first in vivo evidence that a small molecule
compound targeting a viral portal is a viable drug candidate. The
host of range of VZV is limited to humans, therefor the in vivo
efficacy of a thiourea analog was tested in a previously described
SCID-Hu VZV infection model (Rowe et al., 2010; De et al.,
2014). The results presented here are the first for any compound
targeting a viral portal in an animal model.

Comp 1 (Table 1), an α-methylbenzyl thiorurea compound
that prevented VZV DNA encapsidation in vitro, was evaluated
in a SCID-Hu thymus/liver VZV infection model (Figure 1).
Both doses of Comp 1 significantly reduced the VZV growth
rate compared to vehicle (p = 0.0037). The treatment phase was
extended beyond the typical 7 days to observe any potential side
effects of the compound. Only the vehicle group lost weight
whereas the compound treatment groups showed positive weight
gain and the mice appeared well-hydrated with smooth fur
indicating that Comp 1 was well-tolerated. Previous studies
showed that compounds from the α-methylbenzyl series were
not toxic in multiple cell lines [(Visalli et al., 2003), data not
shown] nor in murine, canine and primate pharmacokinetic
studies (data not shown). The results presented here merit further

investigation of α-methyl benzyl analogs, in particular, newer
compounds that have been optimized for oral bioavailability and
that have activity against other herpesvirus family members.

In 2017, a 5-chlorobenzo[b]thiophen derivative (45B5)
(Table 1) was characterized as a potential anti-VZV compound
(EC50 16.9 µM) (Yasui et al., 2017). All 45B5 resistant laboratory
strains were found to have at least one mutation in ORF54. Cells
infected in the presence of compound had decreased viral DNA
synthesis and did not appear to affect portal-scaffold protein
interactions. Therefore, it was postulated that 45B5 inhibits viral
DNA release from the capsid portal vertex at the nuclear pore.

PERSPECTIVE ON FUTURE DIRECTIONS

The Herpesviridae are known to contribute significantly to
worldwide human and animal morbidity and mortality. The
herpesviral double stranded DNA genome is encased in an
icosahedral protein capsid that is tethered to a lipid bilayer
envelope by viral tegument proteins. The family name is
derived from the Greek word herpein meaning “to creep” in
reference to the unifying feature of these viruses to establish
latency. Herpesvirus pathogenesis and disease manifestations are
determined by the cell and tissue types that can be infected by the
different viral species.

Nucleoside analogs such as ACV have been indispensable
prophylactic and therapeutic treatment options. Even with the
availability of effective nucleoside analogs, human herpesviruses
are associated with substantial morbidity and mortality. We and
others have proposed the development of new agents with unique
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FIGURE 1 | SCID-Hu mice with thymus/liver xenografts were inoculated with VZVLUC (firefly luciferase) and treated with vehicle or Comp 1 at 2.5 or 5 mg/kg in
Cremaphor-DMSO-Saline s.c. daily from 2 h after infection to Day 7. Each mouse was weighed on the day before virus inoculation in order to calculate the drug
concentration in the preparations. (A) Mice were injected with D-luciferin (150 mg/kg s.c.) and then VZV replication was measured by IVIS bioluminescence imaging
daily from days 1–10. VZV yield was calculated as fold change for each mouse by dividing Total Flux values by the lowest value on Day 1. The lines are the average
for the group (N = 7 Vehicle group, N = 8 treatment groups), the error bars are the standard deviation of the mean. Both doses of Comp 1 significantly reduced VZV
yield compared to vehicle on Day 7 (p = 0.0037; 1-way ANOVA with Dunnett’s Multiple Comparison Test). (B) Mice were weighed on Day 10 and the net change for
each mouse was calculated. Each symbol represents one mouse (some mice in the Vehicle group lost weight due aggressive activity). No mice died in any of the
three groups.

mechanisms of action such as targeting the viral helicase-primase,
ribonucleotide reductase, protease, glycoprotein attachment and
fusion, viral protein kinases, and DNA encapsidation (e.g.,
terminase and portal inhibitors). Although several candidates
with novel targets advanced to phase II and III clinical trials,
only one compound, letermovir, has been approved for human
use since the antisense antiviral fomivirsen (HCMV retinitis) and
famciclovir more than twenty years ago (1998). The recent FDA
approval of the letermovir is proof of principle that targeting
herpesvirus DNA encapsidation is a viable chemotherapeutic
strategy. In Figure 1 we show for the first time that targeting
the viral portal protein in vivo is a viable option. It is possible
that new compounds can be identified that target any of the
three herpesvirus terminase subunits and/or portal proteins.
There are still no approved chemotherapeutic options for EBV
or HHV-6, 7, and 8. The limitations of current therapies due
to specificity, toxicity, bioavailability and resistance merit the
continued discovery and research of novel herpesvirus antivirals.
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