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The long and expanding list of viral pathogens associated with causing encephalitis 
confounds current diagnostic procedures, and in up to 50% of cases, the etiology remains 
undetermined. Sequence-agnostic metagenomic next-generation sequencing (mNGS) 
obviates the need to specify targets in advance and thus has great potential in encephalitis 
diagnostics. However, the low relative abundance of viral nucleic acids in clinical specimens 
poses a significant challenge. Our protocol employs two novel techniques to selectively 
remove human material at two stages, significantly increasing the representation of viral 
material. Our bioinformatic workflow using open source protein- and nucleotide sequence-
matching software balances sensitivity and specificity in diagnosing and characterizing 
any DNA viruses present. A panel of 12 cerebrospinal fluid (CSFs) from encephalitis cases 
was retrospectively interrogated by mNGS, with concordant results in seven of nine 
samples with a definitive DNA virus diagnosis, and a different herpesvirus was identified 
in the other two. In two samples with an inconclusive diagnosis, DNA viruses were detected 
and in a virus-negative sample, no viruses were detected. This assay has the potential to 
detect DNA virus infections in cases of encephalitis of unknown etiology and to improve 
the current screening tests by identifying new and emerging agents.

Keywords: metagenomics, next-generation sequencing, encephalitis, DNA viruses, diagnostic techniques, 
bioinformatics

INTRODUCTION

Encephalitis is a severe neurological syndrome defined by inflammation of the brain parenchyma 
in association with clinical evidence of neurological dysfunction (Tunkel et al., 2008). In Western 
countries, its annual incidence has been estimated to be  0.7–12.6 per 100,000 for adults and 
10.5–13.8 per 100,000 for children (Jmor et  al., 2008; Granerod et  al., 2010c; Michael et  al., 
2010). Mortality rates range between 7 and 18%, and among the survivors, severe disability has 
been reported in up to 56% of the cases (Mailles and Stahl, 2009; Granerod et  al., 2010a; 
Thakur et  al., 2013). Encephalitis has multiple etiologies and pathogeneses. Viruses have been 
reported as the most common etiological agents, causing 20–50% of the encephalitis cases 
(Glaser et  al., 2006; Granerod et  al., 2010b; Ambrose et  al., 2011). Immune-mediated etiology 
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has been increasingly recognized as the second most common 
cause of the disease (Gable et  al., 2009; Granerod et  al., 2010a; 
Scheer and John, 2016). Strikingly, in more than 50% of  
cases, the etiology remains undetermined (Glaser et  al., 2006; 
Florance et al., 2009; Gable et al., 2009; Venkatesan et al., 2013).

The “gold standard” diagnostic test is the pathologic examination 
and testing of brain tissue, however, this is rarely done ante-mortem 
due to potential morbidity associated with an invasive neurosurgical 
procedure. The most frequently used diagnostic procedures include 
PCR detection of causative pathogens in cerebrospinal fluid  
(CSF) and blood, serological testing for specific antibodies in 
blood and CSF, and occasionally pathogen culture (Solomon 
et  al., 2007). Herpes simplex virus type 1 (HSV-1), varicella-
zoster virus (VZV), and any of a number of Enterovirus species 
are identified by CSF PCR in 90% of the cases where a viral 
pathogen is identified (Solomon et  al., 2012). Other members 
of the Herpesviridae are commonly detected in encephalitis 
cases – HSV-2, Epstein-Barr virus (EBV), cytomegalovirus (CMV), 
and human herpesvirus types 6 and 7 (HHV-6 and -7) – in 
addition to viruses from diverse families including Adenoviridae, 
Paramyxoviridae, Orthomyxoviridae, Polyomaviridae, Rhabdoviridae, 
Parvoviridae, Astroviridae, Pneumoviridae, Retroviridae, several 
arboviruses from the Flaviviridae, Bunyaviridae, and Reoviridae, 
and both zoonotic and non-zoonotic members of the Togaviridae, 
and Arenaviridae (Palacios et  al., 2008; Mailles and Stahl, 2009; 
Quan et  al., 2010; Chan et  al., 2014; Fok et  al., 2015; Naccache 
et  al., 2015; Haley and Atwood, 2017; Crawshaw et  al., 2018; 
Mehta et  al., 2018; Vidal et  al., 2019). This list is not exhaustive.

Existing diagnostic methods, although somewhat successful 
for known viruses, are limited by their high specificity when 
employed to detect genetically divergent, unknown, or unexpected 
viruses that might be  present in the sample. Together with 
the large and expanding number of pathogens reported to 
be  capable of causing encephalitis (Granerod et  al., 2010c; 
Gurav et  al., 2010; Benjamin et  al., 2011; Solomon et  al., 2012; 
Woolhouse et al., 2012; Woolhouse and Adair, 2013; Fok et al., 
2015; Hoffmann et al., 2015; Kennedy et al., 2017), it is perhaps 
unsurprising that so many cases have inconclusive etiology.

Metagenomics, the direct and sequence-agnostic analysis of 
all genetic material within a sample, coupled with the massively 
parallel sequencing capabilities of metagenomic next-generation 
sequencing (mNGS) represents a potential breakthrough in 
the diagnosis of encephalitis and has led to the discovery of 
a large number of novel and/or unexpected viral agents of 
disease (Tan et  al., 2013; Phan et  al., 2015; Kawada et  al., 
2016; Kang et  al., 2017; Morfopoulou et  al., 2017; Bukowska-
Ośko et  al., 2018; Oechslin et  al., 2018; Piantadosi et  al., 2018; 
Eibach et  al., 2019; Wilson et  al., 2019).

Nonetheless, viral mNGS is a challenging approach due the 
low relative abundance of virus-derived material in clinical 
specimens compared to host-derived material. Improving this 
ratio is key to achieving a sufficient amount of viral reads to 
allow reliable detection and accurate identification of viruses in 
a sample (Chan et  al., 2014; Hall et  al., 2014; Kohl et  al., 2015; 
Lewandowska et al., 2015; Bukowska-Ośko et al., 2017). Selective 
depletion of the ribosomal RNA (rRNA) fraction followed  
by DNAse digestion resulted in a significant methodological 

improvement in the mNGS protocol for RNA viruses previously 
developed in our laboratory (Manso et  al., 2017). However, 
effective enrichment of viral DNA has proven to be  more 
challenging due to the lack of differential motifs between human 
and viral DNA that allow depleting the former without affecting 
the number of copies of the latter in the sample.

Here, we describe a DNA mNGS protocol focused on increasing 
the relative abundance of viral DNA at two stages: (i) before 
extraction, by performing selective lysis of mammalian cells with 
digitonin, a specific steroidal saponin used by researchers to 
manipulate cell membranes (Hannah et  al., 1998; Jamur and 
Oliver, 2010), followed by DNAse digestion of host genomic DNA, 
and (ii) after generating metagenomic libraries, by size selection 
of library fragments. These two approaches notably improve the 
detection and characterization of DNA viruses in the Clinical 
Virology Multiplex I panel (CVM panel) and clinical CSF samples.

MATERIALS AND METHODS

Ethics Statement
All experiments were performed in accordance with the “Guidance 
on Conducting Research in Public Health England” (Version 3, 
October 2015; Document code RD001A). This study involved 
the use of archived, residual samples that were collected as part 
of a prospective etiological study on encephalitis in the UK with 
approval from the North and East Devon Multicenter Research 
Ethics Committee (05/Q2102/22). The samples were anonymized 
by removal of any patient identifiable information and assignment 
of a non-specific project number prior to genetic characterization.

Clinical Virology Multiplex I Panel  
(CVM Panel)
A lyophilized reagent comprising 11 DNA viruses known to 
cause encephalitis was obtained from the National Institute of 
Biological Standards and Controls (Potters Bar, UK, catalog number 
15/130-xxx). Prior to extraction, the reagent was resuspended in 
1 ml of negative CSF sample. The following viruses were included 
in the panel: adenovirus serotype 2 (AdV-2), BK and JC 
polyomaviruses (BKPyV and JCPyV, respectively), HSV-1, HSV-2, 
CMV, EBV, VZV, HHV-6a and b, and Parvovirus B19 (PV B19). 
Further information as to their characteristics can be  found on 
the NIBSC website1 and in studies by Doris et  al. (2015).

Clinical CSF Samples
A total of 12 CSF samples from patients suffering from  
acute viral encephalitis, previously characterized by routine 
diagnostic testing.

Digitonin-DNAse Treatment of CSF 
Samples
Plasma membranes of cells present in 200  μl CSF were 
permeabilized by adding digitonin (Sigma Aldrich, Poole, UK) 
to a final concentration of 25–100  μg/ml and incubating at 

1 www.nibsc.org/documents/ifu/15-130-xxx.pdf
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37°C for 5  min, followed by the addition of 2  U of Turbo 
DNAse enzyme and Turbo DNAse buffer (both ThermoFisher, 
Dartford, UK) to a final concentration of 1X. Digests were 
incubated at 37°C for 10 min, followed by immediate extraction.

Nucleic Acid Extraction and Library 
Preparation
A total of 200 μl of either untreated or digitonin-DNAse-treated 
CSF was extracted using PureLink Viral RNA/DNA Mini Kit 
(Invitrogen, Renfrewshire, UK) following the manufacturer’s 
specification but omitting carrier RNA. Concentrations of dsDNA 
in extracts were determined using the Quant-it dsDNA HS 
Assay Kit on a Qubit 3.0 fluorometer (both Invitrogen).

Sample extracts were diluted to 0.2  ng/μl where possible; 
extracts with lower DNA concentrations were used without 
dilution. DNA libraries were prepared from 5  μl DNA using 
the Nextera XT DNA library prep kit (Illumina, Cambridge, 
UK) according to the manufacturer’s instructions.

The standard protocol for the clean-up of libraries used 
AMPure XP beads (Beckman Coulter, High Wycombe, UK) 
at the recommended 1.8X bead ratio. The effects of single and 
double clean-up steps and the use of 0.85X bead concentration 
were investigated. Following clean-up, libraries were analyzed 
for size distribution using the High Sensitivity DNA Kit on 
a 2100 Bioanalyzer Instrument (both Agilent, Stockport, UK) 
and were quantified using Qubit, as described above.

Batches of four libraries labeled with different indexes were 
pooled; within each pool, each component library contributed the 
same total mass. Pools were further quantified by Qubit, as described 
above and diluted to a final concentration of 2  nM before being 
denatured with 0.2  N sodium hydroxide for 2  min, diluted in 
kit reagent HT1 to produce a 20 pM solution and then further 
diluted to 7.9 pM. Of this library pool dilution, 600 μl was loaded 
onto a MiSeq cartridge. Sequencing was performed on an MiSeq 
instrument using the MiSeq Reagent Kit V2 (300 cycles; both 
Illumina) according to the manufacturer’s guidelines.

Real-Time PCR
The relative abundance of human material in sample extracts 
was evaluated by real-time PCR using primer and probe sets 
targeting c-myc (Schroeder and Nitsche, 2010) and β-globin 
(Lo et  al., 1998). Reactions were performed using the KAPA 
Probe Fast Universal Kit (Roche, Burgess Hill, UK) according 
to the manufacturer’s instructions.

Data Analysis
Adapters and poor-quality terminal bases were removed from 
paired-end FASTQ files with Trimmomatic v0.39 (Bolger et  al., 
2014; RRID:SCR_011848); followed by removal of duplicates  
and low-complexity reads using PRINSEQ (Schmieder and 
Edwards, 2011; RRID: SCR_005454) with an entropy cut-off of 
70 and all de-duplication options selected. Cleaned FASTQs were 
mapped with PALADIN (Westbrook et  al., 2017) to a database 
comprising the RefSeq viral protein sequences downloaded from 
the /refseq/release/viral directory within the NCBI ftp repository  
(located at ftp://ftp/ncbi.nlm.nih.gov) supplemented with the NCBI 

RefSeq human protein sequences (/refseq/H_sapiens/mRNA_Prot). 
NCBI taxonomy files (/pub/taxonomy/taxdmp.zip) were used to 
map taxon IDs to each reference (Brister et  al., 2015; 
RRID:SCR_003496). Hits were considered only for those mapping 
results having an e-score below 10−10. For each hit, taxon IDs 
for the mapped target itself and all of its parental taxonomic 
divisions were obtained by iteratively querying the nodes.dmp 
file of taxdmp.zip; counters were incremented for all taxon IDs 
common to both ends of paired-end reads. Outputs were limited 
to viruses within taxonomic divisions known to infect humans 
(Woolhouse et  al., 2012; Woolhouse and Adair, 2013).

In the second analysis stage, cleaned FASTQs were mapped 
with BWA MEM (Li, 2013; RRID:SCR_010910) to RefSeq 
genomes of those viruses having over 1.5 reads per million 
assigned by PALADIN. To visualize detection of diverse genome 
fragments within a target virus, mapped reads were binned 
by the percentile within the genome length of their mapped 
starting position (the POS field in the SAM files).

RESULTS

Digitonin-DNAse Treatment Depletes 
Human DNA From CSF Extracts
The effect of digitonin-DNAse treatment on human DNA 
concentrations in nucleic acid extracts was investigated by treating 
a virus-negative CSF sample with 25, 50, 75, or 100  μg/ml 
digitonin followed by DNAse digestion. Real-time PCR against 
c-myc and β-globin showed greater than 99% reduction in human 
material in both cases, with Qubit spectrophotometry showing 
an approximate 90% reduction (Table 1) at a concentration greater 
than 50  μg/ml. Similar analysis of the CVM panel resuspended 
in a virus-negative CSF sample treated with 50 μg/wml digitonin 
and DNAse showed a reduction of 95–99% human material 
compared to controls. This protocol enhancement was applied 
to four CSF samples from patients diagnosed with viral encephalitis. 
In three of the four, a reduction in human material of up to 
98% was obtained. In the fourth sample, no reduction was 
observed, although the initial concentration was very low.

Digitonin-DNAse in Combination With 
AMPure Size Selection Enhances Virus 
Detectability in CSF Extracts
Libraries prepared from duplicate extracts of both control and 
digitonin-DNAse treated CVM panel aliquots were sequenced 
on a single MiSeq run, yielding an average of 2.6 million 
paired-end reads per sample. With the exception of HSV-2, 
which showed a slight reduction in relative read count compared 
to the control, all viruses showed an increase (Table 2). BKPyV 
was exceptional in showing an average 60x increase. VZV, 
JCPyV, and adenovirus (AdV) showed increases of 30x, 28x, 
and 15x, respectively. The remaining panel viruses showed 
1.6–2.6x increases. Strikingly, PV B19 was undetectable in the 
control libraries, but three reads per million (rpm) were detected 
in the two libraries following digitonin-DNAse treatment.

The four libraries from the previous analysis were subjected 
to a second clean-up step at an AMPure bead ratio of 0.85X. 
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This step selectively removes shorter fragments from the libraries 
(Figure  1). The rightmost columns of Table  2 show a modest 
effect of up to 1.3x on the detection of viral reads in the 
control samples and a 1.3–2.5x effect upon the digitonin-DNAse 
treatment libraries. With both enhancements combined, BKPyV 
showed the highest increase in read frequency (131x). VZV, 
JCPyV, and AdV showed 61x, 59x, and 32x increases, respectively, 
with the remaining herpesviruses showing a combined increase 
of 1.3–6.2x.

Application of the Enhanced Protocol to 
CSF Samples From Encephalitides
A series of 12 CSF samples from acute encephalitis patients 
was tested together with negative human plasma (NHP) and 
water controls, using the enhanced protocol incorporating  
the digitonin-DNAse and size selection modifications. With 
conventional diagnostics, a DNA virus etiology was established 
in nine of the patients and excluded in one (Table  3). In 
samples from the remaining two patients (nos. 1 and 11), the 
presence of AdV and BKPyV (respectively) was provisional; 
the real-time PCR curves emerged at a cycle beyond the 
established limit of detection of the assay. Four samples were 
multiplexed on each MiSeq sequencing run, giving approximately 
3–5 million reads per sample.

In seven of the diagnoses (five of VZV and two of JCPyV), 
the metagenomic analysis gave a strong corroborating signal 
with 16–161  rpm (Table  3, nos. 2, 3, 6–9, and 12). A sixth 
VZV diagnosis (no. 4) gave only EBV hits by PALADIN at 
16 rpm, mapping to a broad range of genomic regions, suggesting 
possible initial mis-diagnosis (Figure 2). Mapping this sample’s 
FASTQ files to the VZV reference genome gave over 200 hits, 
but these were almost entirely targeting two short regions of 
VZV; only three regions in total had any mapping at all.

Similarly, EBV was the only virus detected in a sample 
initially diagnosed with HHV-6 infection (no. 5  in Table  3), 
with 8.6  rpm detected by PALADIN. Sample no. 11 (one of 
the two samples with a late diagnostic PCR – BKPyV in this 
instance), gave 8.7  rpm for EBV. Both samples’ read sets again 
mapped to diverse regions of the EBV genome, whereas in 
the former, only 11 reads mapped to the HHV-6b genome 
across nine percentiles. The latter sample also had a relatively 
high number (22  rpm) of torque teno virus (TTV) reads 
detected, also mapping across genome percentiles, although 
no higher resolution identification than the genus 
alphatorquevirus was possible. The second late-cycle diagnosis, 
for AdV (sample no. 1), gave a very high number of reads 
for human papillomavirus type 10 (HPV10), sufficient to 
assemble an entire genome (data not shown).

The final sample (no. 10) was positive for the β-glucan 
biomarker, suggesting the presence of a fungal pathogen (Lyons 
et  al., 2015), and no viral targets were detected in this sample. 
Secondary AdV detections were made by PALADIN analysis 
in the two JCPyV-positive samples (nos. 7 and 8). However, 
reference mapping of these targets indicated that these were 

TABLE 1 | Reduction of human DNA in cerebrospinal fluid (CSF) extracts 
following digitonin-DNAse treatment of three sample sets.

Digitonin 
conc. (μg/ml)

Threshold cycle (Ct) Total DNA 
conc. (ng/μl)

c-myc β-globin

Control CSF

0 31.5 32.2 1.23
25 35.5 36.4 0.15
50 >40 >40 <0.10
75 36.4 >40 0.13

100 >40 >40 0.17

Control CSF 
spiked with 
CVM I Panel

0 30.2 29.4 1.95
30.3 29.4 2.12

50 35.9 35.9 <0.10
35.7 35.8 0.10

Patient CSF 
samples

0

29.0 28.6 1.6
28.4 28.2 1.8
27.3 27.5 3.45
33.6 34.2 <0.10

50

32.1 32.2 0.22
33.9 34.0 <0.10
30.3 30.0 0.56
32.5 33.5 <0.10

DNA concentrations were determined by Qubit analysis.

TABLE 2 | Summary of total number of reads and reads matching viral targets 
expressed per 1 million QC-filtered reads in the Clinical Virology Multiplex I panel, 
showing the effects of duplicate digitonin-DNAse and size-selection treatments.

Virus No treatment Digitonin Size-
selection

Digitonin and 
size-selection

AdV
41

29

458

476

33

31

925

1,003

PV B19 -
3

3
-

5

8

JCPyV
28

30

751

778

32

25

1,434

1,552

BKPyV
24

55

1,948

2,083

40

54

4,067

4,146

HSV-1
8

12

21

29

12

6

27

56

HSV-2
57

95

74

61

69

62

89

88

VZV
11

20

432

386

14

14

864

808

HHV-6a
63

46

84

104

56

60

113

113

HHV-6b
54

51

98

134

51

52

123

203

CMV
59

51

81

87

55

63

161

192

EBV
39

44

84

113

47

36

119

150

Total reads (×106)
1.27

1.21

2.39

2.85

2.63

2.45

2.58

2.68
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FIGURE 1 | Bioanalyzer traces showing the effect of AMPure bead ratio on library fragment size distribution. Traces represent analyses of a pool of four 
Clinical Virology Multiplex I panel (CVM panel) libraries, two of which were digitonin-DNAse treated and two untreated. The pool was initially cleaned using a 
1.8X AMPure bead ratio (open circles), before being cleaned a second time using a 0.85X AMPure bead ratio (closed circles). The x-axis time variable 
correlates with library fragment size – earlier fragments are shorter than later ones. The peaks at 43 and 113 s are internal control fragments of known 
molecular weight.

TABLE 3 | Metagenomic Next-Generation Sequencing (NGS) results for 12 CSF samples derived from patients with encephalitis, together with two control samples.

Sample Routine diagnosis Total reads (×106) Virus detected Reads per million Mapped reads Genome percentiles

1† AdV 4.73
AdV 0 0 0
HPV10 229 2,222 100

2 VZV 7.12 VZV 21 616 87

3 VZV 3.66 VZV 56 463 67

4 VZV 4.94
VZV 0 214 3
EBV 16 103 67

5 HHV-6 4.44
HHV-6 0 11 9
EBV 8.6 59 33

6 VZV 3.52 VZV 98 595 87

7 JCPyV 2.98
AdV 3.0 0 0
JCPyV 16 71 34
EBV 2.7 8 5

8 JCPyV 3.32
JCPyV 21 314 56
AdV 2.7 0 0

9 VZV 3.23 VZV 50 424 79

 10‡ β-glucan+ 3.43 None

 11† BKPyV 3.33
BKPyV 0 0 0
EBV 8.7 47 32
TTV 29 327 47

 12 VZV 4.94 VZV 161 1,714 100

 NHP - 1.51 HHV-6 3.3 14 8

 H2O - 0.20 None

For each virus detected by the PALADIN component of the pipeline, the number of reads per million total reads is given, alongside the outputs of the downstream BWA mapping process. 
†Routine diagnostic qPCR results for samples 1 and 11 were beyond their limits of detection and are possible artifacts.
‡This result is indicative of the presence of a fungal pathogen.
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false positives, with zero AdV-mapping reads in either sample. 
An additional PALADIN detection of EBV in sample 7 
corresponded to a total of just eight EBV-mapping reads.

In the two controls, the water control gave few reads, of 
which none derived from a DNA virus, whereas HHV-6b was 
detected in the NHP control at a rate of 3.3  rpm, with 14 
mapped reads across eight genome percentiles.

DISCUSSION

Effective treatment of many forms of encephalitis relies upon 
a prompt response, with delays often leading to devastating 
consequences. The high number of cases in which the etiological 
agent remain undiagnosed highlights the need for improved 
diagnostic methods. The use of unbiased, sensitive and cost-effective 
metagenomic NGS assays to sequencing the total RNA and 
DNA in a sample represents a potential breakthrough in the 
diagnosis of infectious encephalitis.

In this study, we  present an mNGS protocol that allows 
enhanced detection and characterization of DNA viruses in 
CSF samples, overcoming the challenges of low target abundance 
through the use of digitonin-DNAse treatment and AMPure 
bead-based size-selection of library fragments. Up to 99% of 
the human DNA was removed by this method – more than 
methods exploiting differential methylation between host and 

viral genomic material (Feehery et  al., 2013; Oyola et  al., 2013; 
Thoendel et  al., 2016). Concomitantly, virus read frequencies 
were enhanced by up to nearly 60-fold. These values compare 
favorably with conventional methods of viral enrichment, where 
the depletion of human material either led to only modest 
increases in viral read frequency (Hall et  al., 2014), or 
improvements dependent upon either the virus and techniques 
used (Kohl et  al., 2015), or high nucleic acid input quantities 
(Conceição-Neto et  al., 2015; Parras-Moltó et  al., 2018). This 
mirrors our experience with these physicochemical methods 
in that the recovery of some viruses can be  enhanced, but 
this is invariably at the expense of others. Although other 
saponins have been successfully applied to pathogen metagenomics 
(Hasan et  al., 2016), the variability of commercial saponin 
products reduces its potential for use in clinical applications.

A second enhancement followed the observation that in DNA 
libraries prepared from digitonin-DNAse treated samples, fragments 
of human origin had a size distribution considerably shorter 
than viral fragments (data not shown). We hypothesize that much 
of this material represents DNAse-hypersensitive mononuclosomes 
(Schwartz et  al., 2019). Size-selection of libraries derived from 
both virus panels and clinical samples with a low ratio of AMPure 
beads resulted in a further increase in the frequencies of viral 
reads, as well as a greater representation of reads from diverse 
genomic regions of the detected viruses. The PV B19 genomes 
in the CVM panel gave low rpm values, and then only after 

FIGURE 2 | BWA mapping against the reference sequence of viruses detected by PALADIN in the 12 datasets from clinical cerebrospinal fluid (CSF) samples. 
Results are expressed as reads per genome percentile. No DNA viruses were detected in sample 10. In brackets are the diagnoses made by the originating 
laboratory using routine testing.
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digitonin treatment, perhaps reflecting a low copy number in 
the CVM panel and/or the single-stranded nature of its genome. 
AMPure bead-based size selection is routinely used to selectively 
remove adapter dimers from library preps, but other than a 
recent VIDISCA paper (Edridge et  al., 2019), this is the first 
time it has been used to perform the enrichment of viral DNA 
fragments on library preps from CSF samples.

The enhanced mNGS workflow was challenged using a panel 
of CSF samples from patients suffering from encephalitis, previously 
diagnosed by routine diagnostic tests. Sequencing data were 
blindly analyzed, and achieved concordant results in seven of 
the nine samples with a definitive diagnosis. In the two discordant 
samples, mNGS clearly detected a different viral species within 
the Herpesviridae family from that originally diagnosed, both 
through PALADIN and through reference mapping. Unfortunately, 
retrospective confirmatory laboratory tests could not be performed 
owing to a lack of remaining sample, and the cause of the 
discrepancies remains unclear. Reads from both samples mapped 
to their originally diagnosed viruses (HHV-6 and VZV), but 
in both cases, the number and distribution of hits were both 
much lower than for those detected by PALADIN.

In one of two CSF samples with an unconfirmed diagnosis 
by routine testing, the presence of EBV and TTV was identified 
by mNGS; TTV has been recently detected in CSF samples from 
encephalitis patients, and EBV is a well-established cause (Kang 
et  al., 2017; Eibach et  al., 2019). In the second, mNGS was able 
to assemble a complete genome of HPV10, an alphapapillomavirus 
exclusively associated with cutaneous lesions (Cubie, 2013), and 
hence most likely to represent a skin flora contaminant arising 
from lumbar puncture. A final sample had a putative diagnosis 
of a fungal agent, and our mNGS assay detected no viral reads.

The impact of hits caused by read mis-assignment or reads 
from reagents and environmental contaminants was initially 
minimized by filtering the mapping results both by e-score 
and by limiting outputs to viruses within taxonomic divisions 
known to infect humans (Woolhouse et  al., 2012; Woolhouse 
and Adair, 2013). Notwithstanding these filters, in two JCPyV-
positive samples, a low number of AdV reads were detected. 
In one of the two, EBV was also detected. Secondary reference 
mapping analysis revealed the AdV detections to be  false 
positives and the EBV attribution to be  doubtful, owing to 
the low number of both hits and mapped reads, in contrast 
with the high values from the true positive JCPyV outputs. 
These data support the use of multiple bioinformatic tools with 
diverse algorithmic natures, a principle that has been repeatedly 
shown to improve the accuracy of metagenomic analyses (Lin 
and Liao, 2017; McIntyre et al., 2017). In a recent paper (Miller 
et  al., 2019), a group from San Francisco proposed having at 
least three viral reads spanning at least three non-overlapping 
regions of the most closely matched reference sequence as a 
requirement to report a pathogen detected by metagenomics. 
While in the light of VZV data from sample 4 and the hits 
at up to 5 rpm in both samples and the NHP control we would 
advocate more stringent corroborating metrics within our 
metagenomic assays, the application of thresholds at a level 
enabling discrimination between true and false positive detections, 
while retaining a useful sensitivity remains largely empirical. 

Hence, in all cases, formal diagnosis necessitates confirmation 
with pathogen-specific assays (Granerod et  al., 2010b; Brown 
et  al., 2018), although the diagnosis of HHV-6  in sample 5 
could be  dependent upon the testing algorithm. It should 
be  noted, however, that demonstrating that a detected agent 
is causative can be  problematic, particularly in cases where a 
novel agent is discovered (Tan et al., 2013; Phan et al., 2015, 2016; 
Bukowska-Ośko et  al., 2018; Eibach et  al., 2019).

The level of agreement between our mNGS results and 
routine diagnostics compares favorably to those of other authors. 
For example, a similar Swiss study recently reported metagenomic 
analyses of six CSF samples with a DNA virus diagnosis, of 
which only one was reliably concordant with prior diagnostics. 
In the remainder, the signal-to-noise ratios were insufficient 
to consider the metagenomic information valid (Oechslin et al., 
2018). In another recent study using the VIDISCA-NGS 
technique, CSF samples were tested in which the presence of 
herpesvirus had been previously diagnosed by routine qPCR 
test. Digestion of target material during DNase treatment 
presented a problem and as a result, virus was detected in 
just one of the DNAse treated samples. Less than 30% of the 
non-DNAse treated samples gave a signal, and only then in 
high viral load samples (Edridge et  al., 2019).

In contrast, the San Francisco group reported a strong 
concordance between routine and mNGS results. The study evaluated 
the accuracy of a mNGS assay for detection of pathogens causing 
encephalitis, including 26 DNA virus positive and 19 DNA virus 
negative samples previously tested by qPCR assay, observing a 
89.8% accuracy. This value increased to 92.4% when repeat testing 
of discrepant samples was performed (Miller et  al., 2019).

To conclude, digitonin-DNAse treatment can effectively 
improve the ratio of viral to host DNA in CSF samples. The 
proportion of viral reads can be  further improved by size-
selecting libraries prepared from digitonin-DNAse treated samples. 
The use of effective enrichment methods allows more samples 
to be  multiplexed per sequencing run, thus reducing costs and 
making the mNGS approach more economical in the clinical 
setting. By applying only moderately advanced bioinformatic 
tools, the presence of DNA viruses can be successfully identified 
in the resulting mNGS datasets. Thus, in conjunction with a 
parallel RNA virus method (e.g., adapted from Manso et  al., 
2017), this proposed mNGS assay has the potential to help 
detect viral causative agents from the high number of encephalitis 
cases with unknown etiology and to be  used as a second-line 
test to current target-specific assays. The increased accessibility 
of NGS technologies in clinical microbiology laboratories and 
the ever-decreasing costs of running these tests should make 
this a reality. Furthermore, mNGS will spur improvements in 
the current screening tests by identifying new and emerging 
etiological agents which could be  later incorporated into the 
target-specific first-line tests.
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