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Toxin/antitoxin (TA) systems are present in most prokaryote genomes. Toxins are almost
exclusively proteins that reduce metabolism (but do not cause cell death), and antitoxins
are either RNA or proteins that counteract the toxin or the RNA that encodes it.
Although TA systems clearly stabilize mobile genetic elements, after four decades
of research, the physiological roles of chromosomal TA systems are less clear. For
example, recent reports have challenged the notion of TA systems as stress-response
elements, including a role in creating the dormant state known as persistence. Here,
we present evidence that a primary physiological role of chromosomally encoded TA
systems is phage inhibition, a role that is also played by some plasmid-based TA
systems. This includes results that show some CRISPR-Cas system elements are
derived from TA systems and that some CRISPR-Cas systems mimic the host growth
inhibition invoked by TA systems to inhibit phage propagation.
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TOXIN/ANTITOXIN SYSTEM OVERVIEW

Chromosomal toxin/antitoxin (TA) systems are prevalent in Bacteria and Archaea
(Yamaguchi et al., 2011), and bacteria often have multiple members. For example, Escherichia coli
K-12 has at least 39 TA systems (Kim and Wood, 2016). However, their role in cell physiology
is disputed, even though it is highly unlikely they are merely addiction modules given their
prevalence in most genomes and their redundancy (Sberro et al., 2013). For this review, the phrase
“chromosomal TA systems” excludes horizontally acquired genomic islands and active temperate
phages but includes cryptic (inactive) prophages because they have been integrated into the host
genome (Wang et al., 2010).

TA systems are encoded by adjacent genes, usually consisting of two components and usually
result in the activation of a toxin that reduces metabolism. Contrary to much of the literature,
toxins are probably not activated by specific degradation of bound antitoxins, which are structured
and thereby not likely substrates of proteases such as Lon, but, instead, toxins are probably activated
by de novo RNA synthesis (Song and Wood, 2020c). Toxins reduce metabolism in diverse ways,
for example, by reducing ATP production by damaging the cell membrane (Cheng et al., 2014), by
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inhibiting translation through mRNA/tRNA/rRNA
modifications (Winther et al., 2016; Culviner and Laub,
2018), and by impeding replication through adenylylation of
DNA gyrase and topoisomerase IV (Harms et al., 2015).

TA systems are mobile through horizontal gene transfer
(Ramisetty and Santhosh, 2015), are often autoregulated (Page
and Peti, 2016), and may be arranged in cascades (Wang et al.,
2013). There are eight classification groups for TA systems on
the basis of the antitoxin mechanism (Song and Wood, 2020c): (i)
antitoxin anti-sense RNA inhibits toxin mRNA in type I systems
(Gerdes et al., 1986a); (ii) antitoxin protein binds and inhibits
toxin protein in type II systems (Ogura and Hiraga, 1983); (iii)
antitoxin RNA binds and inhibits the protein toxin in type III
systems (Fineran et al., 2009); (iv) antitoxin protein prevents
the protein toxin from binding its target in type IV systems
(Masuda et al., 2012); (v) antitoxin enzyme, an RNase, degrades
specifically toxin mRNA in type V systems (Wang et al., 2012);
(vi) antitoxin protein stimulates the degradation of toxin protein
in type VI systems (Aakre et al., 2013); (vii) antitoxin enzyme
oxidizes a cysteine residue of the protein toxin to inactivate it in
type VII systems (Marimon et al., 2016); and (viii) antitoxin RNA
inactivates the toxin RNA by anti-sense binding, but the toxin
functions as a small RNA rather than as a protein in type VIII
systems (Choi et al., 2018).

TOXIN/ANTITOXIN SYSTEMS STABILIZE
MOBILE GENETIC ELEMENTS

In contrast to chromosomally encoded TA systems, the
physiological role of TA systems is more clear for mobile genetic
elements like plasmids. The stabilization role was established with
the discovery of TA systems via the report of the CcdB/CcdA type
II TA system, which stabilizes the mini-F plasmid (Ogura and
Hiraga, 1983). Subsequently, the type I TA system, Hok/Sok, was
shown to stabilize the R1 plasmid (Gerdes et al., 1986b). Since
these initial reports with plasmid stabilization, many examples
of TA systems stabilizing plasmids have been documented.
Furthermore, the integrative and conjugative element SXT
in Vibrio cholerae has been shown to be stabilized via the
MosT/MosA TA system (Wozniak and Waldor, 2009), and TA
systems stabilize prophages (Soutourina, 2019). Hence, although
not all TA systems stabilize plasmids, the physiological role of TA
systems for the stabilization of non-chromosomal mobile genetic
elements is clear.

TOXIN/ANTITOXIN SYSTEMS AND THE
GENERAL STRESS RESPONSE

Unlike the role of TA systems in stabilizing mobile genetic
systems and in phage inhibition, the physiological role of
chromosomal TA systems for stress resistance is being challenged.
For example, the Van Melderen group published a series
of negative results in which they claimed the chromosomal
Escherichia coli MqsR/MqsA TA system had no role in stress
resistance, on the basis of a lack of transcription response and

lack of phenotype upon deleting mqsRA (Fraikin et al., 2019).
Critically, their transcription results were invalidated within a
few months in that mqsRA transcription was shown to increase
by over 181-fold during amino acid stress and 90-fold during
oxidative stress (LeRoux et al., 2020b). In addition, although the
Van Melderen group did not find a phenotype upon deleting
mqsRA, including in the presence of bile acid stress (Fraikin
et al., 2019), the Gross lab reported in Cell that E. coli mqsR
has reduced growth with fusidic acid and radicicol, and they
reported a hypomorphic mqsA mutation (i.e., a strain with
reduced MqsA because mqsA is lethal owing to extreme MqsR
toxicity; Brown et al., 2009) has reduced growth with the bile
acid deoxycholate (Nichols et al., 2011). Furthermore, we showed
clearly that deleting mqsRA alters the cell’s response to bile acid
in seven independent experiments with 2 to 5% deoxycholate
and identified the importance of periplasmic protein YgiS as
responsible for deoxycholate uptake (Kwan et al., 2015). In
addition, we discovered that antitoxin MqsA binds and represses
the promoter of the master regulator of the stress response,
sigma factor RpoS, through the palindrome that MqsA uses for
its own transcription regulation (Wang et al., 2011); deletion
of mqsRA along with five other TA systems increased both
hydrogen peroxide and acid resistance by a factor of 10,
and deletion of mqsRA increased biofilm formation, c-di-GMP
levels, cellulose/curli (Wang et al., 2011). Also, three separate
groups have found that MqsR/MqsA is related to antibiotic
tolerance based upon deletion of mqsR (Kim and Wood, 2010;
Luidalepp et al., 2011; Wu et al., 2015). Convincingly, these
results are based on deletions, rather than production of the TA
module from plasmids.

In addition, other phenotypes have been reported that are
related to the MqsR/MqsA TA system in E. coli, including
those related to heat shock (Richmond et al., 1999), biofilm
formation (Shah et al., 2006), nitrogen starvation (Figueira et al.,
2015), and nitric oxide (Partridge et al., 2009). Also, there are
reported phenotypes related to the MqsR/MqsA TA system in
non-E. coli systems including copper stress (Merfa et al., 2016),
vesicles (Santiago et al., 2016), and biofilm formation (Lee et al.,
2014) in Xylella fastidiosa. Moreover, MqsR/MqsA affects biofilm
formation in Pseudomonas fluorescens (Wang et al., 2019) and
persistence and biofilm formation in Pseudomonas putida (Sun
et al., 2017). Similarly, other TA systems such as the MazE/MazF
(Kolodkin-Gal et al., 2007), RelE/RelB (Christensen et al., 2001),
and YafQ/DinJ (Zhao et al., 2016) TA systems have been linked to
the general stress response; but their roles have also been disputed
in E. coli (LeRoux et al., 2020a).

In contrast to work showing chromosomal TA systems
like MqsR/MqsA affect the stress response, the impact of TA
systems on persistence is not convincing, primarily because
the fold changes in most persister experiments with individual
TA systems are usually small (less than 10-fold) and strains
with multiple TA systems deleted do not show consistent
phenotypes. Persistence is an extreme stress response that
occurs when a subpopulation of cells becomes dormant due to
ribosome dimerization as a direct result of increased ppGpp
levels (Kim and Wood, 2016; Kim et al., 2018; Song and
Wood, 2020a,b; Yamasaki et al., 2020). Specifically, inactivation
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of 10 TA systems did not affect E. coli persistence for
several groups (Harms et al., 2017; Goormaghtigh et al., 2018;
Svenningsen et al., 2019). Similarly, deletion of 12 TA
systems in Salmonella enterica had no effect on persistence
(Pontes and Groisman, 2019).

In addition, there is little evidence that cells resuscitate by
inactivating TA system toxins. For example, some have indicated
(Dewachter et al., 2019) that the peptidyl-tRNA hydrolase Pth
counteracts toxin TacT in Salmonella Typhimurium during
resuscitation; however, there are no data showing that Pth plays a
role in persister resuscitation (Cheverton et al., 2016). Similarly,
it was reported that deactivation of HokB toxin in E. coli causes
persister cell resuscitation; however, single-cell observations were
not used (Wilmaerts et al., 2019), the experiments rely on
non-physiological levels of toxin from overproduction studies
(Wilmaerts et al., 2018, 2019), deleting hokB has no effect
on persistence (Verstraeten et al., 2015), and GTPase Obg,
the enzyme used to claim originally that HokB is related to
persistence, reduces persistence without HokB (Verstraeten et al.,
2015). Therefore, although TA systems appear to be utilized by
cells to respond to stress, they are probably not utilized to form
or resuscitate persister cells.

DISCOVERY OF TOXIN/ANTITOXIN
SYSTEMS AND PHAGE INHIBITION

Restriction/modification systems are utilized to ward off phage
infection; however, they also stabilize plasmids (Kulakauskas
et al., 1995). Because TA systems stabilize plasmids (Ogura
and Hiraga, 1983), we reasoned by the transitive property that
TA systems may also inhibit phage (Pecota and Wood, 1996).
In addition, we realized that temperature shock, amino acid
deprivation, antibiotics, and, critically, phage infection, would
alter transcription and would perhaps activate toxins of type I TA
systems that rely on antisense antitoxin RNA production (Pecota
and Wood, 1996); hence, we hypothesized that TA systems may
be used to inhibit phage. To test this hypothesis, we induced the
type I TA system Hok/Sok from the R1 plasmid and challenged
with T1, T4, T5, T7, and λ phage and found T4 phage were
substantially inhibited: plating efficiency was reduced by 42%,
plaque size was reduced by 85%, burst size was reduced by 40%,
maturation time was increased by 36%, and the latent period was
increased from 30 to 60 min. The likely mechanism is that upon
phage infection, T4 phage blocks host transcription in 3–4 min,
which leads to elimination of Hok and Sok RNA production;
the Sok RNA is then preferentially degraded, and Hok toxin is
produced (Pecota and Wood, 1996). Therefore, a TA system was
shown to inhibit phage. We also reasoned that phage inhibition
by TA systems would be important for biofilms where cells in
outer layers could protect kin (Pecota and Wood, 1996).

PARADIGM OF PHAGE INHIBITION AND
TOXIN/ANTITOXIN SYSTEMS

Additional evidence of the role of TA systems for phage
inhibition was provided 8 years later when it was shown the

chromosomal type II MazF/MazE system inhibits phage P1
(Hazan and Engelberg-Kulka, 2004). Critically, mazEF deletions
produced more P1 phage; hence, the phenotype of phage
exclusion was verified without overproducing this TA system
(Hazan and Engelberg-Kulka, 2004). Also, the type II RnlA/RnlB
system inhibits T4 phage in E. coli (Koga et al., 2011).

In addition, 13 years after the discovery of phage inhibition
by Hok/sok, the type III ToxN/ToxI system from plasmid
pECA1039 of phytopathogen Erwinia carotovora was found to
inhibit phage ϕA2 and ϕM1 when produced from a plasmid
(Fineran et al., 2009), and 18 years later, the well-known abortive
infection AbiEii/AbiEi system from plasmid pNP40 that inhibits
the 936 phage family was suggested to be a type IV TA system (Dy
et al., 2014). Hence, phage inhibition has been shown to be an
important physiological role in types I, II, III, and IV TA systems.

Notably, in all TA systems tested for phage inhibition, there
is no evidence of cell death during TA system activation under
physiological conditions of toxin production, that is, via native
toxin production levels (Song and Wood, 2018). However,
it is somewhat difficult to differentiate possible activation of
a toxin during phage invasion that leads to cell killing and
killing from the phage itself, except that if the toxin kills the
cell, phage progeny would be reduced. Similarly, there is no
evidence of cell death under physiological conditions of toxin
production for plasmid stabilization. Hence, phrases like “post-
segregational killing” and “programmed cell death” should be
avoided because activation of toxins of TA systems serves to
reduce metabolism, not kill cells (based on the evidence to date)
(Song and Wood, 2018).

PHAGES EVOLVE RESISTANCE TO
PHAGE INHIBITION SYSTEMS

Phages and bacteria co-evolve (Stern and Sorek, 2011) to the
extent that phages can be captured and utilized for the benefit
of the host (Wang et al., 2009, 2010; Lee et al., 2018; Song
et al., 2019). Hence, phages have developed means to thwart
host anti-phage mechanisms. For example, phages have evolved
myriad ways to undermine both restriction/modification (Stern
and Sorek, 2011) and CRISPR-Cas (Bondy-Denomy et al., 2013;
Rauch et al., 2017) systems. Therefore, if TA systems are bona
fide phage inhibition systems, there should be examples of
phage systems that undermine host phage exclusion mechanisms.
Critically, to thwart bacterial phage inhibition systems, phages
now have been identified that include antitoxins in their
genome to inhibit host toxins; for example, T4 phage carries
the Dmd antitoxin that inactivates both the RnlA/RnlB and
LsoA/IsoB type II TA systems of E. coli O157:H7 (Otsuka
and Yonesaki, 2012). T4 phage Dmd inactivates toxin RnlA by
direct binding (Wei et al., 2016). Similarly, the mycobacterium
phage Ibhubesi encodes a homolog of McbA, the antitoxin
of the MbcT–MbcA TA system of Mycobacterium tuberculosis
(Freire et al., 2019).

As additional evidence of phage evolving resistance to host
TA systems utilized for phage inhibition, T7 phage produces
the protease inhibitor Gp4.5 to prevent activation of host
TA systems by inhibiting Lon protease, which is used by
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many TA systems to degrade antitoxins (Sberro et al., 2013).
Hence, phage inhibition is an important physiological role
of TA systems because four different types of TA systems
inhibit phage and because phages have evolved defenses
against TA systems.

In an additional role related to the co-evolution of phage and
TA systems, whole, active TA systems have now been shown to be
incorporated into phage genomes and used as regulatory units.
Specifically, the PfiT/PfiA TA system is used by Pf4 filamentous
phage of Pseudomonas aeruginosa to control phage production
(Li et al., 2020).

MALLEABLE TOXIN/ANTITOXIN
SYSTEMS EVOLVED INTO CRISPR-Cas
COMPONENTS

CRISPR-Cas is a prevalent anti-phage system present in
about 40% of Bacteria and 90% of Archaea (Sorek et al.,
2008). The first link between TA systems and CRISPR-Cas
was based on bioinformatics and linked Cas proteins to
toxin VapD based on protein sequence homology (Makarova
et al., 2006). When we discovered the GhoT/GhoS type V
TA system, the crystal structure of antitoxin GhoS linked it
to Cas2 proteins of CRISPR-Cas, so another link between
the two phage defense systems was established based on
conservation of structure (Wang et al., 2012). TA systems
are now considered the ancestors of Cas2 proteins (Makarova
et al., 2020). This evolution of TA systems into CRISPR-Cas
systems is supported by random mutagenesis studies, which
have shown antitoxins like GhoS (type V) can be converted
into a novel toxin ArT via only two amino acid substitutions,
and antitoxins like MqsA (type II) and ToxI (type III) can
be made to inhibit this de novo toxin (Soo et al., 2014).
This concept of TA system malleability has been confirmed
(Aakre et al., 2015).

CRISPR-Cas SYSTEMS MIMIC
TOXIN/ANTITOXIN SYSTEMS BY
UTILIZING GROWTH INHIBITION FOR
PHAGE INHIBITION

Critically, upon detecting invading DNA, the type III CRISPR-
Cas system of Streptococcus thermophilus degrades not only the
invading DNA but also non-specific host RNA through cyclic
oligoadenylate signaling modification of Csm6 (Kazlauskiene
et al., 2017). In addition, the Staphylococcus epidermidis subtype
III-A CRISPR-Cas system causes general host growth arrest
(but not cell death) through Csm6 when plasmids invade
with inefficient DNA targets (Rostøl and Marraffini, 2019a).
Hence, CRISPR-Cas in this species likely makes the host
dormant to evade phage in a manner remarkably similar to TA
systems, which reduce metabolism to limit phage propagation
(Pecota and Wood, 1996). Further evidence of general host
arrest as an anti-phage response has been found in the

Listeria seeligeri type VI-A CRISPR-Cas system, which uses
Cas13 to degrade host RNA upon phage invasion (Meeske
et al., 2019); this CRISPR-Cas-induced host dormancy also
protected neighboring cells from phage. Hence, inhibition of
host metabolism by CRISPR-Cas systems is a common backup
system to specific degradation of phage DNA, which mimics
TA systems and their reduction in host growth to inhibit phage
propagation. Moreover, it has been speculated that strains may
utilize both CRISPR-Cas and TA systems for phage inhibition
(Rostøl and Marraffini, 2019b).

PERSPECTIVES

As summarized here, the most compelling arguments for phage
inhibition as the primary physiological role of TA systems are
(i) types I, II, III, and IV TA systems inhibit phage so this is a
general mechanism; (ii) phages have evolved resistance to some
bacterial TA phage exclusion systems to increase infection; and
(iii) CRISPR-Cas systems, which are well-known phage inhibition
strategies, mimic TA systems by reducing host metabolism to
inhibit phage propagation.

Although the physiological role of phage inhibition by TA
systems is well-established, to confirm phenotypes with new TA
systems, we suggest that research should include experiments that
show TA systems inhibit phage without over-producing the TA
components; that is, TA loci should be deleted and the deletion
strains tested for increased phage production. In this way, TA
systems under physiological conditions will be further linked to
phage inhibition.

Because phage attack is so prevalent, that is, there are 10-
fold more phage than bacteria (Chibani-Chennoufi et al., 2004),
perhaps the reason there are so many different TA systems in
many bacterial genomes is not solely because of the various
stresses bacteria encounter but also because different TA loci are
utilized for different phages. Clearly, at this point in TA research,
the answer to the question posed previously, “TA systems: why
so many and what for” (Tsilibaris et al., 2007; Van Melderen,
2010), is that, rather than “devoid of any current physiological
role” (Saavedra De Bast et al., 2008), they are used for the epic
battle between bacterium and phage, that is, specifically they are
primarily used for phage inhibition.
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