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Antibiotic resistance is a problem for human health, and consequently, its study had
been traditionally focused toward its impact for the success of treating human infections
in individual patients (individual health). Nevertheless, antibiotic-resistant bacteria and
antibiotic resistance genes are not confined only to the infected patients. It is now
generally accepted that the problem goes beyond humans, hospitals, or long-term
facility settings and that it should be considered simultaneously in human-connected
animals, farms, food, water, and natural ecosystems. In this regard, the health of
humans, animals, and local antibiotic-resistance—polluted environments should influence
the health of the whole interconnected local ecosystem (One Health). In addition,
antibiotic resistance is also a global problem; any resistant microorganism (and its
antibiotic resistance genes) could be distributed worldwide. Consequently, antibiotic
resistance is a pandemic that requires Global Health solutions. Social norms, imposing
individual and group behavior that favor global human health and in accordance with
the increasingly collective awareness of the lack of human alienation from nature, will
positively influence these solutions. In this regard, the problem of antibiotic resistance
should be understood within the framework of socioeconomic and ecological efforts
to ensure the sustainability of human development and the associated human-natural
ecosystem interactions.

Keywords: One Health, Global Health, antibiotic resistance, waste water, farming

INTRODUCTION

The problem of antibiotic resistance (AR) has been traditionally addressed by focusing on human-
linked environments, typically health care facilities. Nevertheless, it is now generally accepted
that most ecosystems may contribute to the selection and spread of AR (Aminov, 2009; Martinez
et al., 2009; Davies and Davies, 2010; Martinez, 2014; Berendonk et al., 2015; Larsson et al., 2018).
A key conceptual point is that, based on cultural, humanitarian, and economic reasons, we have
historically preserved the health of individual humans and farming animals. To that purpose, the
same families of antimicrobial agents have been used. As a consequence, their positive (healing)
and negative (selection of AR, therapeutic failure) effects have influenced the common health of
humans and animals in particular locations (One Health). The concept One Health, first used
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in early twentieth century, expands the integrative thinking
about human and animal medicine, including for the first
time ecology, public health, and societal aspects (Zinsstag
et al, 2011). In the case of AR, the One Health perspective
focuses on the risk assessment of emergence, transmission,
and maintenance of AR at the interface between humans,
animals, and any other linked (local) environment (Robinson
et al., 2016; Jean, 2017). Consequently, the application of One
Health approaches demands integrative surveillance tools and
interventions based on multidisciplinary approaches that include
ecological and sociodemographic factors, besides more classic
epidemiological models.

Global Health is based on a broad collaborative and
transnational approach to establish “health for all humans.” In
this case, it focuses AR at a general (global) scale, considering
that the selection and global spread of antibiotic-resistant bacteria
(ARBs) and antibiotic resistance genes (ARGs) are a problem
that influences the health of human societies with disparate
social and economic structures and is linked to many societal
and ecological factors (Chokshi et al., 2019). Interventions to
reduce AR burden in a global world certainly require common
and integrated policy responses of countries, international
organizations, and other actors (stakeholders included). Its goal
is the equitable access to health and minimizing health risks all
over the globe. Besides its objective aspects (i.e., how travelers,
migrating birds, or international commerce may contribute to
AR spread), it has important international political aspects.
It focuses in how countries and international organizations
address the elements connecting and potentially spreading AR
among humans, animals, and natural ecosystems at the Earth
scale (Wernli et al., 2017). In summary, the problems and the
potential solutions concerning AR are not confined to particular
regions, but have a global dimension: a problem for all humans,
animals, and natural ecosystems, which should be solved with
interventions aiming to improve health for all of them (Brown
et al.,, 2006; Koplan et al., 2009; Laxminarayan et al., 2013). In the
context of AR, a healthy environment would be an environment
where AR is low or can be controlled by human interventions
(Hernando-Amado et al., 2019; Andersson et al., 2020).

Of course, the Global Health concept of “health of an
environment” (Iavarone and Pasetto, 2018; Pérez and Pierce
Wise, 2018; Bind, 2019; van Bruggen et al, 2019) or, in
general, Planetary Health (Lerner and Berg, 2017), has an
unavoidable anthropogenic flavor. In practice, we consider
“healthy environments” or “healthy ecosystems” those that
minimize their current or their potential harm for the human
individual or the society, in our case for AR. In other words, we
adopt a selfish strategy, which should be necessarily implemented
by the international (global) institutions. Selfishness (Kangas,
1997) applies mainly to individuals, but also to societal groups.
However, these groups have not enough possibilities to act alone
in the case of infectious diseases in general and AR in particular,
which may expand worldwide. Therefore, individual selfishness
for health should be integrated in local One Health and also in
Global Health actions. The goal of controlling AR is a highly
complex one, and its dimension has been compared to climate
change or biodiversity loss, problems where individual actions

are not enough for providing a solution, and consequently,
individual freedom is confronted with collective responsibility
(Looker and Hallett, 2006).

The construction of human societies reflects the tension
between individual freedom and social rules/laws. The
implementation of different social rules/laws for regulating
human activities within a society is mainly based on moral (as
Kants categorical imperative (Kant, 1785) or religious-based
brotherhood (Matthew 22:35-40) statements), social stability
(as anticrime laws; Schiavone, 2012), organizative (type of
government and how it is formed, group identity), and efficacy
(as antitrust laws; Ricardo, 1821) arguments. However, these
arguments mainly apply for establishing the socioeconomic
organization as well as the individual welfare within a society.
The situation concerning human health is somehow different.
There are individual diseases, such as cancer or stroke, and
social diseases, such as transmissible infections. For the firsts,
social norms (as consciousness of the importance of the control
of cholesterol, excess sugar uptake, or hypertension levels) are
well established, and even laws (non-smoking regulations) had
been implemented in occasions. However, the main impact of
these regulations is at the individual health level (Wikler, 2002),
because the associated diseases are not physically transmissible.
A different situation happens in the case of infectious diseases in
general and of AR in particular. For these diseases, everything
that happens in a single person affects any one around. Further,
the fact that an ARG emerging in a given geographic area
can spread worldwide implies that neither individual norms
nor country-based norms have been sufficient until now to
counteract the worldwide spread of AR.

One important aspect of laws in democratic societies is
that they must be well accepted by the community, so that
the acceptation of social norms usually comes first than
their implementations as rules/laws. Actually, the efficiency
of democracy for responding to social crisis (as current AR
or COVID-19 crises), in opposition to other more autocratic
regimens where decisions are implemented top-down, had been
the subject of debate from the early beginning of democratic
revolutions (Tocqueville, 1838; Hobbes, 1968; Rousseau, 1974;
Spinoza, 2007). In this regard, it is important to remark that
One Health aspects of AR can be tackled in the basis of country-
level regulations that are linked to the socioeconomic and cultural
aspects of each country (Chandler, 2019; Chokshi et al., 2019).
However, because global Earth governance does not exist, Global
Health control of AR is based on recommendations, rather than
in rules/laws. Consequently, the acceptance of social norms,
starting within individuals or small organizations and expanding
throughout the whole society (Figure 1), is fundamental to
provide global solutions to the AR problem (Nyborg et al,
2016; Chandler, 2019). The acceptance by the community of
these social norms, considering that the way of promoting these
norms might differ in different parts of the world (Cislaghi
and Heise, 2018; Cislaghi and Heise, 2019), largely depends
on the transfer to the society of the knowledge required to
understand the mechanisms and the impact for human health of
the emergence and transmission of AR, an information that is
discussed below.
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FIGURE 1 | How the interactions among individual health, One Health, Global Health, and social norms influences antibiotic resistance. The right panel shows the
different levels of dissemination of antibiotic resistance. In the left panel, the different types of norms (from individual to global norms) that can impact antibiotic
resistance at each level are shown. These norms influence all levels of transmission: the individual promotes (red arrows) his own individual health, but doing it also
promotes the health of the group, and the health of the group promotes Global Health of the human society at large. At each level, there is a positive action (red
broken lines) on antibiotic resistance. Such dynamics largely depends on social norms (blue arrows) rewarding the individual or the groups whose behavior promotes
health. Below the left panel, the basic social norm, progress and development, has consequences on the whole ecobiology of the planet (lower panel with bullet
points), influencing the undesirable open circulation of antimicrobial resistant bacteria (with their mobile genetic elements) and antibiotic resistance genes.

DEFINING THE BRICKS BUILDING UP
ANTIBIOTIC RESISTANCE IN A
GLOBALIZED WORLD

The classic definition of AR is based only on the clinical outcome
of the infected patient. An organism is considered resistant
when the chances for the successful treatment of the infection it
produces are low (Martinez et al., 2015). This definition, which is
the most relevant in clinical settings, presents some limitations
for studies based on One Health approaches that include
the analysis of non-infective organisms, which lack a clinical
definition of resistance, as well as analysis of the distribution of
ARGs, in several occasions, using non-culture-based methods
(Martinez et al., 2015). Even in the case of animal medicine,
antibiotic concentration breakpoints defining resistance are still
absent for some veterinary-specific antimicrobials and poorly
defined for different types of animals with disparate weights,
which would influence the availability of the drug inside animal
body (Toutain et al., 2017; Sweeney et al., 2018). To analyze AR
beyond clinical settings, the term resistome, understood as the
set of genetic elements that can confer AR, irrespectively of the
level of resistance achieved, in a given organism/microbiome was
coined (D’Costa et al., 2006; Wright, 2007; Perry et al., 2014).

AR acquisition is the consequence of either mutation (or
recombination) or recruitment of ARGs through horizontal
gene transfer (HGT), transformation included. AR mutations
are generally confined to their original genomes, propagating
vertically and not spreading among bacterial populations,
although some few exceptions of horizontal transfer of
chromosomal regions containing AR mutations have been
described (Coffey et al., 1991; Ferrandiz et al., 2000; Novais
et al., 2016; Nichol et al., 2019). The set of mutations that confer
AR can be dubbed as the mutational resistome. Current whole-
genome-sequencing methods of analysis can allow defining
the mutational resistome in an isolated microorganism (Cabot
et al., 2016; Lopez-Causape et al., 2017). However, they are not
robust enough yet for determining the mutational resistome in
metagenomes. Consequently, the impact of these analyses in One
Health studies is still limited and will not be further discussed in
the present review.

Concerning their relevance for acquiring AR, ARGs can be
divided in two categories. The first one comprises the genes
forming the intrinsic resistome (Fajardo et al, 2008), which
includes those that are naturally present in the chromosomes of
all (or most) members of a given bacterial species and have not
been acquired recently as the consequence of antibiotic selective
pressure. Despite that these genes contribute to AR of bacterial
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pathogens, they are responsible just for the basal level of AR,
which is taken into consideration when antibiotics are developed.
In this regard, unless these genes, or the elements regulating their
expression mutate, they are not a risk for acquiring resistance
and have been considered as phylogenetic markers (Martinez
et al,, 2015). Further, it has been discussed that these genes may
contribute to the resilience of microbiomes to antibiotic injury
(Ruppe et al., 2017b), hence constituting stabilizing element of
microbial populations when confronted with antibiotics more
than a risk for AR acquisition by pathogens.

The second category, dubbed as the mobilome, is formed
by ARGs located in mobile genetic elements (MGEs) that
can be transferred both vertically and horizontally, hence
allowing AR dissemination among different bacteria (Frost et al.,
2005; Siefert, 2009; Jorgensen et al., 2014; Lange et al.,, 2016;
Martinez et al., 2017).

While the analysis of the resistome of microbiota from
different ecosystems has shown that ARGs are ubiquitously
present in any studied habitat (D’Costa et al., 2006; Walsh, 2013;
Jana et al., 2017; Lanza et al., 2018; Chen et al., 2019b), the impact
of each one of these ARGs for human health is different. Indeed,
it has been stated that the general resistome of a microbiome is
linked to phylogeny and to biogeography, indicating that most
ARGs are intrinsic and do not move among bacteria (Pehrsson
et al., 2016). However, some ARGs escape to this rule and are
shared by different ecosystems and organisms (Forsberg et al.,
2012; Fondi et al., 2016). These mobile ARGs, frequently present
in plasmids (Tamminen et al., 2012; Pehrsson et al., 2016), are the
ones that are of special concern for human health.

Although not belonging to the antibiotic resistome, genes
frequently associated with resistance to other antimicrobials, such
as heavy metals or biocides, as well as the genes of the MGEs
backbones, eventually involved in the transmission and selection
of ARGs among microbial populations, the mobilome at large,
are also relevant to track the emergence and dissemination of AR
among different habitats (Lanza et al., 2015; Martinez et al., 2017;
Baquero et al., 2019).

HGT processes are recognized as the main mechanisms
for transmission of genetic information (Baquero, 2017). From
the ecological point of view, HGT should be understood as a
cooperative mechanism that allows the exploitation of common
goods as ARGs (Baquero et al., 2019) by different members
within bacterial communities. In fact, some studies suggest that
the ecological consequences of HGT events in AR evolution are
contingent on the cooperation of complex bacterial communities,
besides the acquisition of individual adaptive traits (Smillie et al.,
2011). However, the understanding of the ecological causes
and consequences of ARGs transmission among organisms and
microbiomes is still limited from the One Health and Global
Health perspectives.

HGT-mediated AR is a hierarchical process (Figure 2) in
which ARGs are recruited by gene-capture systems as integrons
and afterward integrated in MGEs as plasmids, insertion
conjugative elements, or bacteriophages (Frost et al., 2005;
Garcia-Aljaro et al, 2017; Gillings et al.,, 2017; Botelho and
Schulenburg, 2020), which afterward are acquired by specific
bacterial clones. Selection at each of these levels will also select

for all the elements involved in AR spread. For instance, the
acquisition of an ARG by a clone may promote the expansion
of the latter (and of all the genetic elements it contains,
other ARGs included) in antibiotic-rich environments, such
as hospitals or farms (Martinez and Baquero, 2002; Schaufler
et al., 2016), and vice versa, the introduction of an ARG in
an already successful clone may increase the chances of this
resistance gene for its dissemination even in environments
without antibiotics, unless the associated fitness costs are high.
In this sense, if ARG acquisition reduces the fitness, and
this implies a decreased capability for infecting humans (see
below), the burden for human health might eventually be lower.
Nevertheless, it is relevant to highlight that AR transmission
cannot be understood just by analyzing the genetic mechanisms
involved and the consequences of such acquisition for the
bacterial physiology. Indeed, as discussed below, there are
ecological and socioeconomic elements that strongly influence
AR dissemination.

HIGHWAY TO ANTIBIOTIC RESISTANCE

The evolution of AR comprises the emergence, the transmission,
and the persistence of ARBs (Martinez et al., 2007; Baquero
etal., 2011). Concerning human health, selection of ARBs/ARGs
is particularly relevant at the individual health level, whereas
transmission is a main element to be taken into consideration
at the One Health and Global Health levels (Figure 2). Indeed,
unless AR is transmitted, it will be just an individual problem that
would not affect the community at large.

It is generally accepted that non-clinical ecosystems are often
primary sources of ARGs (Davies, 1994). As above stated, after
their capture and integration in MGEs (Figure 2), ARGs and
their bacterial hosts can contaminate different ecosystems, which
might then be involved in their global spread (Martinez, 2012;
Fondi et al.,, 2016; Gillings, 2017; Gillings et al., 2017). This means
that nearly any ecosystem on Earth, along with the human-
driven changes produced in it, may modulate evolution of AR.
Importantly, the huge escalation and worldwide expansion of
a limited set of animals, plants, and their derived products,
including foods, due to the anthropogenic selection of a few
breeds and cultivars for mass production in livestock and
agricultural industries (Okeke and Edelman, 2001; Zhu et al,
2017) of economic interest have collapsed the variability and
biodiversity of animals and plants (Seddon et al., 2016). Because
these organisms harbor particular host-adapted bacteria, which
are frequently under antibiotic challenge, this situation, together
with the ecological similarities of human habitats, might favor
AR spread (Martiny et al., 2006; Manyi-Loh et al., 2018). Indeed,
while in underdeveloped areas of the world food animals are
very diverse, intensive farming, common in developed countries,
ensures a “shared-stable” environment where only the most
productive types prevail (Kim et al., 2017). The common genetic
origin of these types and the process of microbiota acquisition
from nearby animals in intensive farming should homogenize
also their microbiomes with consequences for AR dissemination.
Actually, it has been shown that the loss of microbial diversity
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FIGURE 2 | Genetic, ecological, and socioeconomic elements mediating the transmission of antibiotic resistance. ARGs are ubiquitously present in any studied

microbiome (A). However, only a few of them are transferred to human/animal pathogens, hence constituting a health problem. The genetics events implied include

the acquisition of ARGs by gene-recruiting genetic elements such as integrons (B); the integration of these elements in MGEs as plasmids, bacteriophages, or
(Continued)
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FIGURE 2 | Continued

insertion conjugative elements (C); and the acquisition of these elements by specific bacterial clones (D). These ARBs can share these elements among the
members of gene-sharing communities (E) and also move among different ecosystems, including humans, animals (particularly relevant farm animals), and natural
ecosystems (with a particular relevance for water bodies). The connection of these ecosystems, as well as the reduced diversity of animals, plants, and in general
habitats as the consequence of human activities, allows the different microbiomes to be in contact, favoring ARGs transmission among the microorganism they
encompass (F). This transmission is facilitated at the global scale by travel, animal migration, trade of goods, and eventually by meteorological phenomena, climate
change included (G), hence producing a Global Health problem (H). While most studies on the dissemination of ARGs focus on MGEs (Davies, 1997; Muniesa et al.,
20183; Lanza et al., 2015; Garcia-Aljaro et al., 2017), recent works suggest that the contribution of natural transformation (orange arrow), allowing the direct uptake of

ARGs by natural competent microorganisms, may have been underestimated (Domingues et al., 2012; Blokesch, 2017). Further, competence can occur due to
interbacterial predation (Veening and Blokesch, 2017), a biological interaction that may facilitate the acquisition of beneficial adaptive traits by predator bacterial
species (Cooper et al., 2017; Veening and Blokesch, 2017). Other HGT mechanisms, such as DNA packing in extracellular vesicles (ECV) or transference of DNA
through intercellular nanotubes, also seem to be relevant in nature (Dubey and Ben-Yehuda, 2011; Fulsundar et al., 2014). While the biotic conditions that may
enhance HGT have been studied in detalil, less is known concerning abiotic modulation of ARGs transfer. Under contemporary conditions, at least 1024
microorganisms are affected by a freeze-and-thaw cycle, at least 10'9 are agitated by sand, and at least 10" are subjected to conditions suitable for

electrotransformation every year (Kotnik and \Weaver, 2016).

may favor AR spread (Chen et al., 2019a). Note that, beyond the
transmission of particular AR spreading clones, AR is expected to
spread in farms by the modification (eventually homogenization)
of animals’ microbiota. Notwithstanding, even farm workers
are subject to microbiome acquisition from animals, leading to
microbiome coalescence (Baquero et al., 2019; Sun et al., 2020).
It is to be noticed, and the recent COVID-19 crisis exemplifies it,
that besides economic development, cultural habits are relevant
in the use of animals for food, a feature that has not been
analyzed in detail, particularly with respect to their role as vectors
potentially involved in AR dissemination.

Despite that the homogenization of hosts may help in AR
transmission, the spread of ARBs has some constraints, because
the differential capability of each bacterial clone for colonizing
different hosts may modulate their dissemination. Indeed, while
some species and clones are able to colonize/infect different
animal species, humankind included, several others present some
degree of host specificity (Price et al,, 2017; Sheppard et al.,
2018). Further, it has been shown that the capacity to colonize
a new host is frequently associated with a reduction in the
capacity for colonizing the former one. The same happens for
mobile ARGs; they are encoded in MGEs that present different
degrees of host specificity, which defines the formation of
gene-exchange communities, where the interchange of genetic
material among members is facilitated (Skippington and Ragan,
2011). Conversely, the incorporation of different replicons
and modules within plasmid backbones, a feature increasingly
reported (Douarre et al., 2020), would enable ARG replication
in different clonal/species background and thus modify the
community network of ARGs. Actually, the risk for humans of
animal-based AR seems to be linked in most cases to shuttle,
generalist clones able to colonize humans and particular animals
(Price et al., 2017; Sheppard et al., 2018). The understanding
of the elements driving the transfer of AR among animals,
humans included (Figure 3), requires the comprehensive survey
of the clones and ARGs that are moving among them (European
Food Safety Authority et al., 2020). Tools to track the global
epidemiology of antimicrobial-resistant microorganisms such as
Bigsdb (Jolley et al., 2018) or comprehensive databases of ARGs,
ideally providing information of their mobility (Zankari et al,
2012; Alcock et al., 2020), are fundamental for studying AR
transmission at a global level.

It is worth mentioning that, because humans constitute a
single biological species, the human-associated organisms spread
easily among all individuals. In fact, more prominent differences
in humans’ microbiome composition can be observed between
individuals than among ethnic groups, even though, as expected,
the resemblance in microbiotas is higher among those groups that
are geographically clustered (Deschasaux et al., 2018; Gaulke and
Sharpton, 2018). Some groups of human population are, however,
more prone to acquire ARBs, due either to socioeconomic or to
cultural factors. In LMICs (low- to medium-income countries)
and BRICS (Brazil, Russia, India, China, and South Africa)
countries, the combination of wide access to antibiotics, weak
health care structures, and poor sanitation defines certainly a
dangerous landscape. Moreover, the progressive aging of the
Western population might favor the establishment and further
expansion of an elderly reservoir of ARBs and ARGs, an issue
that deserves further studies. The hypothesis that the microbiome
of elder people might be a reservoir of AR is based not
only on their cumulative history of antibiotic exposure and
contacts with health care centers, but also on the rampant use
of antibiotics of this population more prone to suffer from
acute, chronic, or recurrent infections. Significant worldwide
advances in the organization of medical care of the elderly people
lead to frequent hospitalizations, but health care centers may
also facilitate the selection and further amplification of AR in
the community. In addition, this may subsequently favor the
entry of high-risk clones and of ARGs in the hospital setting
(Hujer et al., 2004).

As stated above, there is a global increasing permeability of
the natural biological barriers that have historically prevented
bacterial dissemination through different ecosystems. Besides
local spread of AR in environments shared by animals and
humans, which has to be addressed under a One Health approach,
AR can disseminate worldwide (Figure 2) by economic corridors
that promote the global interchange of goods and trade or human
travelers or by natural bridges, such as animal migration paths
or natural phenomena such as air and water movements (Okeke
and Edelman, 2001; Baquero et al., 2008; Allen et al., 2010;
Overdevest et al., 2011; Kluytmans et al., 2013; Fondi et al,
2016). The result is the appearance of similar ARBs and ARGs
in different geographic areas. As the consequence, AR is a Global
Health problem in the sense that an ARB that emerges in a
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given place can rapidly spread worldwide. Indeed, multidrug-
resistant bacteria, similar to those encountered in clinical settings,
have been detected in human isolated populations that were
not previously in contact with antibiotic, as well as in wildlife
(Clemente et al, 2015). This indicates that pollution with
ARGs is present even in places where antibiotic concentrations
are low (Kiimmerer, 2004) and might involve mechanisms
of transmission that do not require selection. For instance,
migrating birds can carry enteropathogenic bacteria resistant
to different antibiotics (Middleton and Ambrose, 2005; Poeta
et al., 2008), and international travelers, even those not receiving
antibiotic treatments, also contribute to AR transfer among
different geographic regions (Murray et al., 1990; Reuland et al.,
2016). In the group of long travelers are refugee people, in which
dissemination of multidrug-resistant strains is favored by the
poor sanitary conditions and overcrowding camps that refugees
confront (Maltezou, 2016).

A final issue concerning AR is its stability in the absence of
selection. It has been proposed that the acquisition of AR reduces
bacterial competitiveness in the absence of antibiotics (fitness
costs) (Andersson and Hughes, 2010; Martinez et al., 2011);
certainly, a wishful proposition such as, if true, the reduction
in the use of drugs or eventually antibiotic-cycling strategies
should decrease AR (Beardmore et al., 2017). Nevertheless,
eliminating the use of an antibiotic does not produce a full
decline of AR (Sundqvist et al., 2010). In fact, different studies
have shown that AR not always reduces fitness but also can
even increase bacterial competitiveness (Andersson and Hughes,
2010; Schaufler et al., 2016). In addition, compensatory mutations
or physiological changes that restore fitness can be selected in
resistant bacteria (Andersson, 2006; Schulz zur Wiesch et al.,
20105 Olivares et al., 2014). It is a fact, however, that although
ARBs are found nearly everywhere, including wild animals,
natural ecosystems, or people from isolated populations without
contact with antibiotics, among others (Durso et al, 2012;
Clemente et al., 2015; Alonso et al., 2016; Fitzpatrick and Walsh,
2016; Power et al.,, 2016), AR prevalence is consistently lower
when antibiotics are absent, which suggests that pollution may
impact AR, a feature that is discussed below.

ANTIBIOTIC RESISTANCE IN AN
ANTHROPOGENICALLY IMPACTED
WORLD

Pollution of natural ecosystems is associated with activities that
have driven relevant economic transition, in principle favoring
human welfare, such as mining, industry, intensive land use, or
intensive farming, among others. Notwithstanding, globalization
of health services, as well as the shift toward intensive
farming, besides their positive contribution to human well-
being, has rendered an increasing pollution by compounds with
pharmacological properties of natural ecosystems, particularly
water bodies, which may disrupt the stability of these ecosystems
(Oldenkamp et al, 2019). Among them, antibiotics are
considered the most relevant cause of AR selection. Despite
regulations for reducing their use (Van Boeckel et al., 2017),

a substantial increase in global antibiotic consumption has
occurred in the last years, and an even greater increase is
forecasted in the next years (Klein et al., 2018).

However, antibiotics are not the unique pollutants that can
prime the selection and spread of AR. In this regard, it is
important to highlight that heavy metals are one of the most
abundant pollutants worldwide (Panagos et al., 2013). Their
abundance results from anthropogenic-related activities, such as
mining, industry, agriculture, farming, or aquaculture and even
for therapeutic use in ancient times. Importantly, they may persist
in nature for long periods of time. Further, likely because metal
pollution occurred before the use of antibiotics, heavy metal
resistance genes were incorporated to MGE backbones before
ARGs (Mindlin et al., 2005; Staehlin et al., 2016). This means
that heavy metals may coselect for MGEs and the ARGs they
harbor (Partridge and Hall, 2004; Staehlin et al., 2016; Zhao et al.,
2019a). Even more, the presence of heavy metals, as well as of
biocides or sublethal antibiotic concentrations (Jutkina et al.,
2018; Zhang et al., 2018), may stimulate HGT, as well as modify
the dynamics of antibiotics, such as tetracyclines, in natural
ecosystems (Hsu et al., 2018). Coselection may also occur when
a single resistance mechanism, such as an efflux pump, confers
resistance to both heavy metals and antibiotics (cross-resistance)
(Pal et al., 2017).

Although most published works analyze the effect of different
pollutants on their capacity to select ARBs or ARGs, it is
important to highlight that ARGs should also be considered
pollutants themselves. Actually, a recent work indicates a
close relationship between the abundance of ARGs and fecal
pollution (Karkman et al., 2019). In this respect, it is worth
mentioning that, differing to classic pollutants, ARGs/ARBs are
not expected to disappear along time and space, but rather,
their abundance may even increase as the consequence of
selection and transmission (Martinez, 2012). While the direct
selection of AR by antibiotics or the coselection mediated
by other pollutants, as the aforementioned heavy metals, has
been discussed (Wales and Davies, 2015), the effect of other
types of human interventions on the dissemination of ARGs
and ARBs through natural ecosystems has been analyzed
in less detail. As an example, it has been proposed that
wastewater treatment plants, where commensals, ARBs, ARGs,
and antibiotics coexist, could act as bioreactors favoring the
selection and transmission of ARGs between different organisms
(Rizzo et al., 2013; Su et al., 2017; Manaia et al., 2018), although
evidences supporting this statement are scarce (Munck et al,
2015; Azuma et al., 2019).

In addition to the aforementioned pollutants with a direct
effect in AR selection, it is worth noting that there are other
abundant contaminants, such as sepiolite (present in cat litters
or used as a dietary coadjuvant in animal feed) or microplastics,
present in almost all aquatic ecosystems, which can favor
the transmission of ARGs or MGEs between bacterial species
(Rodriguez-Beltran et al., 2013; Kotnik and Weaver, 2016;
Arias-Andres et al., 2018), hence amplifying the AR problem
at a global scale.

Finally, the possible effect of climate change on the spread of
AR is worth mentioning. Indeed, it modifies the biogeography
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of vectors (such as flies, fleas or birds) involved in the spread
of infectious diseases (Fuller et al., 2012; Beugnet and Chalvet-
Monfray, 2013). In addition, the increase of local temperatures
seems to correlate with an increased AR abundance in common
pathogens (MacFadden et al., 2018). Besides, climate change
is affecting ocean currents (Martinez-Urtaza et al, 2016),
which may allow the intercontinental distribution of ARBs and
ARGs (Martinez, 2009a,b). Although this phenomenon might
contribute to the globalization of AR, further research is needed
to clearly demonstrate a cause—effect relationship.

It is relevant to mention that increased pollution and climate
change are the unwanted consequences of human development.
It would then be worth discussing how human development in
general may impact (positively and negatively) AR, a feature that
is analyzed below.

ANTIBIOTIC RESISTANCE AS A GLOBAL
DEVELOPMENT PROBLEM

Human development is a necessity of our human behavior,
although different models of development have been and are
proposed, each one producing different impacts in the structure
of human societies and on the preservation and stability of
natural ecosystems (Fenech et al, 2003; Farley and Voinov,
2016; Seddon et al., 2016). Nevertheless, even for different
socioeconomic models, there are some social norms that tend
to be widely accepted, in particular those aiming to improve
individual well-being. This implies the establishment of a society
of welfare, understood as a right of any human on Earth, a
feature that depends on the economic development, and can
be particularly relevant in the case of transmissible infectious
diseases in general and of AR in particular.

A continuously repeated mantra in worldwide AR policies is
that the abusive consumption of antibiotics for the treatment
or prevention of infections in humans and animals constitutes
the major driver of AR. However, we should keep in mind
that antibiotics constitute an important example of human
progress supporting individual and global human health. In
fact, the origin of the massive production of antimicrobials
was a consequence of the needs resulting from World War II
in the 1940s. This was followed by many decades of human
progress, most importantly by the common understanding of
equal human rights, which was followed by the economic and
social development (including medicine and food industry)
of densely populated regions in the planet, including India
and China. These countries are currently among the leaders
in the production and consumption of antimicrobial agents.
Notwithstanding, as in any area of economy, progress bears
a cost that, in this case, is antibiotic pollution of the
environment, globally accelerating the process of the emergence,
the transmission, and the persistence of ARBs (Martinez et al.,
2007; Baquero et al., 2011).

The non-controlled use of antibiotics is facilitated in
LMICs with disparate economic growth by different factors.
Heterogeneous regulation of antibiotic sales and prescriptions
(often weak or missing) and the increase of online on-bulk sales

in recent years contribute to their overuse (Mainous et al., 2009).
Most of live-saving medicines represent out-of-pocket costs in
most LMICs, which led to an exacerbated use of cheap (usually
old and less effective) antibiotics, phasing out their efficacy and
increasing the demands and prices for the most expensive ones,
eventually resulting in treatment unavailability (Newton et al.,
2011). Further, the cost of treating AR infections is much higher
than that of treating susceptible ones, which is increasing the
cost of health services (Wozniak et al., 2019). Conversely, the
growing economic capability of LMICs in the BRICS category
triggers the access of the population to health services and
last-resort antibiotics. These countries also face a sudden high
demand for meat and thus a prompt industrialization of animal
production that has favored the misuse of antibiotics for growth
promotion facilitated by their online availability (Mainous et al.,
2009). In addition, counterfeit or substandard antibiotics recently
become a serious global problem (Gostin et al.,, 2013), which
is exacerbated in LMICs, where they represent up to a third
of the available drugs. Noteworthy, 42% of all reports received
by the WHO Global Surveillance and Monitoring System on
substandard and falsified medicines worldwide come from
Africa, and most of them correspond to antimalarials and
antibiotics (Newton et al., 2011; Gostin et al., 2013; Hamilton
et al., 2016; Petersen et al., 2017).

Despite this situation, it is important to highlight that human
consumption of antibiotics is an unavoidable need to preserve
human health. In fact, most health problems dealing with
infections in LMIC:s are still caused by a poor access to antibiotics,
not by an excessive use of them. Proof of this is the fact that
the distribution of antibiotics has reduced endemic illnesses
and children mortality in Sub-Saharan Africa (Keenan et al,
2018). This means that, while a global decline in the use of
antibiotics would be desirable to diminish the problem of AR,
there are still several parts in the globe where antibiotic use
should still increase to correctly fight infections. In fact, our
primary goal should not be to reduce the use of antibiotics,
but to ensure the effective therapy of infectious diseases for
the long term. This does not mean that AR is not a relevant
problem in LMICs; it means that reducing antibiotic use is not
enough to solve the problem. Indeed, the current high morbidity
and mortality due to infectious diseases (malaria, tuberculosis,
low respiratory infections, sepsis, and diarrhea) in LMICs will
be worsened in the absence or low efficiency of therapeutic
treatments. Further, AR has economic consequences. According
to World Bank, 24.1 million people could fall into extreme
poverty by 2050 because of AR, most of them from LMICs
(Jonas and World Bank Group Team, 2017).

Consequently, besides a Global Health problem, AR has an
important economic impact (Rudholm, 2002), hence constituting
a Global Development Problem, endangering not only the
achievements toward the Millennium Development Goals but
also the Sustainable Development Goals (van der Heijden et al.,
2019). World Bank estimates that AR could impact the gross
domestic product from 1 to 3.8%, which is even higher than
what is estimated for the climate change (Jonas and World Bank
Group Team, 2017). These economic foresights are linked to the
threads of increased poverty, food sustainability, Global Health

Frontiers in Microbiology | www.frontiersin.org

August 2020 | Volume 11 | Article 1914


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Hernando-Amado et al.

Antibiotic Resistance in Global World

deterioration (associated with both food safety and affordability
to health care), and environment protection. All these issues are
also impacted by the overuse and misuse of antibiotics, its lack of
effectiveness, and the affordability to medicines and health care
(van der Heijden et al., 2019).

When talking about reducing antibiotic consumption, it is
important to remind that up to two-thirds of overall antibiotic
usage is for animal husbandry (Done et al., 2015). Further, recent
work states that the use of antibiotics in crops, particularly
in LMICs, might have been largely underestimated (Taylor
and Reeder, 2020). Despite that evidences on the presence of
common ARGs distributed among animals and humans were
published decades ago (Bager et al., 1997; Wegener et al,
1997; Aarestrup, 1998; Aarestrup et al., 1998), and although
the use of antibiotics as growth promoters has been banned
in different countries (Cox and Ricci, 2008), they are still
allowed in many others (Mathew et al., 2007). Of relevance
is the fast increase of antibiotic consumption for animal food
production in China (23% in 2010) and other BRICS countries
(Van Boeckel et al, 2015). As stated previously, in these
countries, increased income has produced a fast increase in meat
products demand, due to changes in diet of their population.
In addition, the increasing international competitiveness in
meat production of these countries has fostered the rampant
development of their industrial farming. Together with the
fact that legislation on antibiotics use remains weak, this
situation increases the risk of emergence of AR linked to animal
production. Nevertheless, the problem is not restricted only to
LMICs, because antibiotics consumption rose as well in the high-
income countries as the United States (13%) (Van Boeckel et al.,
2015), where approximately 80% of the antimicrobials purchased
in 2011 were applied in livestock production as non-therapeutic
administration (Done et al., 2015). The development of intensive
methods of fish production has also contributed to the rise in the
use of antimicrobials and the selection of resistance determinants
that can be shared among fish and human bacterial pathogens
(Cabello et al., 2013).

Economic development has facilitated as well more global
transport, waste disposal, and tourism, favoring AR spread
within and between different geographical areas (Ruppe et al.,
2017a; Ruppe and Chappuis, 2017). However, economic
growth can also reduce the AR burden, especially when it
enables the development of regulations and infrastructures
that might reduce the risks of infection and AR spread. This is
particularly relevant in the case of public health interventions
on food, water, and sewage. Because AR pathogens are mainly
introduced in natural ecosystems through the release of
human/animal stools (Karkman et al, 2019), the best way
of reducing this impact is through the use of wastewater
treatment plants, which are still absent in several places
worldwide. Indeed, it has been described that drinking water
is a relevant vehicle for the spread of ARBs in different
countries (Walsh et al., 2011; Fernando et al., 2016) and that
raw wastewater irrigation used for urban agriculture may
increase the abundance of mobile ARGs in the irrigated soil
(Bougnom et al, 2020). Notably, the analysis of ARGs in
wastewaters has shown that the prevalence of ARGs in the

environment in each country might be linked to socioeconomic
aspects mainly related to economic development, as general
sanitation, particularly the availability of drinking and
wastewater treatments, malnutrition, number of physicians
and health workers, human overcrowding, or external debt
grace period (Hendriksen et al, 2019). The field of AR has
mainly focused in the mechanisms of selection; the main
driver for the increased burden of AR would be then the
use of antibiotics itself. However, these results indicate that
transmission, even in the absence of direct human-to-human
contact, might be, at least, equally relevant. In this situation, an
important element to reduce the AR burden will be to break the
transmission bridges among different ecosystems that could be
reservoirs of ARGs.

Even when wastewater-treatment plants are available, the
presence of ARBs in drinking, fresh, and coastal waters, as
well as in sediments nearby industrial and urban discharges,
has been described in several countries (Ma et al, 2017;
Leonard et al., 2018). As in the case of fecal contamination
markers, a reduction in the amount of ARGs to non-detectable
levels would be extremely difficult even when advanced water
treatment procedures are applied. A standard definition of
polluting ARB/ARG markers, as well as their acceptable levels,
is then needed. This would be required not only for potable
water, but also for water reutilization, as well as for land
application and release of sewage effluents, because in all cases the
reused water/sewage may carry ARBs and ARGs, together with
pollutants, such as antibiotics, metals, biocides, or microplastics,
which, as above stated, may select for AR (Baquero et al., 2008;
Moura et al., 2010; Yang et al.,, 2017; Zhu et al., 2017; Larsson
et al, 2018; Imran et al, 2019; Wang et al, 2020) and may
even induce HGT.

The examples discussed above justify that human health
in general and AR in particular are closely interlinked with
economic development (Sharma, 2018). Economic differences
are also found at individual level, because there is a positive
relationship between economic status and health (Tipper, 2010).
In addition, social behavior might also impact AR, a feature
discussed in the following section.

SOCIAL NORMS AND TIPPING POINTS
IN ANTIBIOTIC RESISTANCE: A
SOCIOECOLOGICAL APPROACH

Different socioeconomic factors can modulate the spread of
infective bacteria in general and of AR in particular. Among
them, the increasing crowding of humans and foodborne animal
populations favors transmission at the local level (One Health),
whereas trade of goods and human travel (Figure 2) favor
worldwide transmission (Global Health) (Laxminarayan et al.,
2013; Hernando-Amado et al., 2019).

Besides these global changes in social behavior, linked to
economic development, more specific socioeconomic factors
(income, education, life expectancy at birth, health care
structure, governance quality), sociocultural aspects (inequalities,
uncertainty avoidance, integration of individuals into primary
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groups, gender biases, cultural long-term orientation), and
personality dimension highly influence antibiotic use and AR
transmission (Gaygisiz et al, 2017). For instance, although
the governance quality seems to be the most important factor
associated with a proper antibiotic use, Western countries
with distinct national culture patterns show different levels
of antibiotics consumption (Kenyon and Manoharan-Basil,
2020). A better understanding of human social responses
facing ailments, especially epidemics and antibiotic use, requires
then a more detailed analysis of the differences between
collectivistic (individuals living integrated into primary groups)
and individually long-term oriented societies (oriented to future
individual rewards) (Hofstede, 2001; Gaygisiz et al., 2017; Kenyon
and Manoharan-Basil, 2020).

Consistent with the sociological elements of AR, many of
the aspects influencing AR reviewed above depend on social
norms (Figure 1). In the classic view of the psychoanalyst Erich
Fromm presented in his book “Escape From Freedom” (Fromm,
1941), human individual behavior is oriented to avoid being
excluded from a higher social group. Indeed, not following
social common rules can be eventually considered as a mental
disorder; a sociopathology. A social norm is defined as a
predominant behavioral pattern within a group, supported by
a shared understanding of acceptable actions and sustained
through social interactions within that group (Nyborg et al.,
2016). In democratic societies, laws usually derive from already
accepted social norms; otherwise, they would be changed, and
in that sense, the establishment of accepted social norms for
fighting AR is a prerequisite to implement the global approaches,
based on worldwide rules, which are required for tackling this
relevant problem.

Interestingly, the AR problem is a bottom-up process, where
small emergent changes (in some type of individual patients,
in some groups, in some locations) cumulatively escalate to
gain a global dimension. Frequently, that occurs by crossing
tipping points, that is, points where the local AR incidence
becomes significant enough to cause a larger, eventually Global,
Health problem. Because of that, the implementation of solutions
should be adapted to the control of critical tipping points
in the small groups of individuals to disrupt the bottom-up
processes. However, as AR spread can occur everywhere and
at any time, global surveillance and mechanisms of control
should be implemented to prevent a top-down process of
global AR expansion.

Individual selfishness for AR is the cornerstone of social
norms. This concept was coined and developed by one of us over
a decade ago (Baquero, 2007). Let us imagine that each individual
is aware that each consumption of an antibiotic increases the
personal risk of himself/herself or for his/her closer relatives
(frequently exchanging microorganisms) of dying because of an
antibiotic-resistant infection. The situation is analogous to the
consumption of cholesterol-rich or highly salted food, or drinks
with excess of sugar, concerning individual health. However, in
the case of AR, it requires the understanding of the impact of
individual actions at the global level. In this respect, anti-AR
social actions should resemble more antitobacco and even general
pollution/ecological campaigns.

At the individual level, there is inertia that precludes changing
habits, until a tipping point is crossed and health is compromised.
The conclusions of studies mainly based on long-term cohort
analysis, such as the Framingham program for the influence of
diet or smoking on personal cardiovascular disease (Mahmood
etal.,, 2014), have become social norms that are naturally imposed
by the ensemble of individuals. This creates a kind of societal
culture, leading to appropriate individual behaviors, in occasions
without the need of specific laws (diet), in occasion favoring the
implementation of such laws (antismoking). However, we lack
similar studies on issues such as these dealing with personal-
familiar risks that have successfully shifted social norms, driven
by groups of individuals and based on the promotion of
individual behaviors in the case of AR.

Despite that quantitative models on how individual antibiotic
use may impact AR at the population level are still absent, it
is worth mentioning that a reduced antibiotic consumption has
also begun to occur in a number of countries just as a result
of a change in individual behavior (Edgar et al., 2009), and
some tools and indicators to address these changes have been
suggested (Ploy et al., 2020). The “tragedy of the commons”
metaphor, first proposed in the XIX century (Lloyd, 1833) and
later on discussed in 1968 (Hardin, 1968), has been used for
addressing the sociology of AR, by showing how individual
selfishness promotes antibiotic use, increases resistance, and
influences the health of the community by impairing antibiotic
efficacy (Baquero and Campos, 2003; Foster and Grundmann,
2006). Ensuring the prestige of individuals that follow the social
rules is needed to counteract the tragedy of the commons.
Nevertheless, it is important noticing that the tension between
individual freedom and social rules that is inherent to the
construction of democratic societies (Tocqueville, 1838; Hobbes,
1968; Rousseau, 1974; Spinoza, 2007) also applies here. One
example of this situation is vaccination, considered in the
last century as one of the most important advances to fight
infectious diseases and now being the focus of antivaccination
campaigns (Megget, 2020), a movement that has been considered
by the WHO as one of the top 10 Global Health threats of
2019'. It is commonly accepted that social norms are mainly
created by learning and education, a rational path that promotes
health (Chen and Fu, 2018). Also, the increasing activities
of “personalized medicine,” including antibiotic stewardship,
follow the same trend (Gould and Lawes, 2016). However, the
antivaccination movement is an example of how the narrative,
as well as the use of decentralized, social information channels
such as the Internet search, blogs, and applications to facilitate
communication such as Twitter, Facebook or WhatsApp, is of
particular relevance in the construction of social norms, not
necessarily based on scientific and rational grounds (Jacobson
et al., 2020; Scott and Mars, 2020).

The impact of social norms goes beyond human societies
as human activities alter natural ecosystems; consequently,
humans cannot be aliens of nature. We should then shape a
socioecological system, linking the individuals, the groups, and

Thttps://www.who.int/news-room/feature- stories/ten- threats- to- global- health-
in-2019
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the entire society, as well as natural ecosystems, also potentially
damaged by AR, in a common multilevel adaptive system
based on social norms and policies at the individual, local
(One Health), and global (Global Health) scale (Levin et al,
2013). The recent crisis of COVID-19 illustrates the influence
of social norms in the individual behavior. Each one of the
individuals, protecting himself/herself, also protects the others.
A person not wearing on face mask is frowned upon, and on the
contrary, somebody attaching to the rules increases reputation.
The individual adopts the right behavior being influenced
by the judgment. of others. In addition, different political
regimes (democracy or autocracy), as well as their organization
(centralized, federal), together with the capacity of the health
services to support the norms and their efficacy to communicate
the chosen policy to the citizenry, may shape the individual
responses to social norms (Greer et al, 2020; Hayry, 2020;
Kavanagh and Singh, 2020).

Notwithstanding, two reasons that have been proposed
to explain the low prevalence of COVID-19 in Japan
were related with social norms more than with biological
issues. These reasons, which are not common to other
countries, were the socially accepted use of face masks and
the mandatory vaccination of all the population against
tuberculosis, which might protect from SARS-CoV-2 infection
(Iwasaki and Grubaugh, 2020), a feature that is still to
be confirmed.

The loss of social prestige of individuals taking antibiotics
without prescription, as well as the pharmacies delivering these
drugs or do not respect environmental protection, or the
overconsumption of antibiotics in hospitals or in farms, or even
in certain countries, is progressively constituting a “social norm,”
converted in rules able to reduce AR emergence and spread. Of
course, family and school education, as well as governmental
campaigns, including the use of social media (Grajales et al., 2014)
reinforces such social norms, which could allow the support of the
society for the implementation of different interventions, some of
them described below.

CONTROLLING RESISTANCE: LOCAL
AND GLOBAL INTERVENTIONS

Controlling resistance not only requires establishing local
interventions, which could be relatively easily implemented, but
would also require global interventions that every country should
follow, despite their disparate regulatory systems. Local and
global interventions are necessarily intertwined; for example,
the use of a new drug to treat a single individual depends
on regulations at the county level (One Health approach), but
the worldwide prevalence and transmission of resistance to this
drug, as well as the regulations of its use, should be established
internationally (Global Health approach).

Three main interventions to tackle AR have been historically
considered: first, reduction of the antibiotic selective pressure by
decreasing antimicrobials use; second, reduction of transmission
of ARBs using improved hygienic procedures that prevent spread;
third, development of novel antimicrobials with limited capacity

to select ARBs or the design of new treatment strategies based
on use of non-antibiotic-based approaches or, more recently,
on the exploitation of trade-offs associated with AR evolution
(Imamovic and Sommer, 2013; Gonzales et al., 2015; Barbosa
etal., 2018; Imamovic et al., 2018). These interventions have been
basically limited to local initiatives, applied mainly to hospitals
and, more recently, to farms. However, AR has emerged and
spread globally, in bacteria from different environments, so the
health and dynamics of the global microbiosphere could be
affected by antibiotics. In a sense, AR is affecting the Planetary
Health (Lerner and Berg, 2017), and the needed interventions
for tackling this problem cannot be restricted to hospital
settings (Figure 3).

The proposed reduction in the use of antibiotics (Blaskovich,
2018) must be compensated with alternative approaches for
fighting infectious diseases. In this regard, strategies based on
improving the capability of the immune system for counteracting
infections (Levin et al., 2017; Traven and Naderer, 2019)
or the use of non-antibiotic approaches to prevent them,
such as vaccines (Jansen and Anderson, 2018), may help to
reduce the burden of AR infections. Indeed, vaccination against
Haemophilus influenzae and Streptococcus pneumoniae has been
demonstrated to be an effective intervention for reducing AR
(Jansen and Anderson, 2018). However, while vaccination has
been extremely useful to prevent viral infections, it has been
less promising in the case of bacterial ones. Recent approaches,
including reverse vaccinology, may help in filling this gap (Delany
et al.,, 2013; Ni et al., 2017). Moreover, vaccination should not
be restricted to humans, because veterinary vaccination can also
contribute to animal wealth and farm productivity (Francis,
2018). Besides, the use of vaccines in animal production reduces
the use of antibiotics at farms/fisheries, hence reducing the
selection pressure toward AR.

Other strategies to reduce antibiotic selective pressure include
the use of bacteriophages (a revitalized strategy in recent years)
(Viertel et al., 2014; Forti et al, 2018), not only in clinical
settings, but also in natural ecosystems (Zhao et al., 2019b), as
well as the use of biodegradable antibiotics (Chin et al., 2018)
or adsorbents, able to reduce selective pressure on commensal
microbiome (De Gunzburg et al., 2015, 2017). Besides reducing
the chances of selecting ARBs, the use of antibiotics adsorbents
may preserve the microbiomes, reducing the risks of infections
(Chapman et al., 2016). Importantly, the procedures for removing
antibiotics should not be limited to clinical settings, but their
implementation in wastewater treatment plants would reduce
selection of AR in non-clinical ecosystems (Tian et al., 2020).

Concerning the development of new antimicrobials (Hunter,
2020), while there is a basic economic issue related to the
incentives to pharmaceutical companies (Sciarretta et al., 2016;
Theuretzbacher et al., 2017), the focus is on the possibility of
developing novel compounds with low capacity for selecting AR
(Ling et al., 2015; Chin et al., 2018). For this purpose, multitarget
(Li et al, 2014) or antiresistance drugs, such as membrane
microdomain disassemblers (Garcia-Fernandez et al., 2017), are
also promising. Furthermore, antimicrobial peptides, with a dual
role as immunomodulators and antimicrobials, may also help
fight infections (Hancock et al, 2016). In fact, some works
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FIGURE 3 | Local and global intervention strategies to tackle AR and knowledge gaps that could help improve existing ones. Most interventions for reducing
antibiotic resistance are based on impairing the selection of ARBs/ARGs, which is just the first event in AR spread. Our main goal, as for any other infectious disease,
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FIGURE 3 | Continued

would be reducing transmission. This does not mean that selective pressure is not relevant for transmission. Indeed, without positive selection, HGT events are not
fixed, allowing the enrichment of some ARGs that are consequently more prone to diversification, both because they are more abundant and more frequently
subjected to selection (Davies, 1997; Martinez, 2009a,b; Salverda et al., 2010) and because they can explore different landscapes when present as merodiploids in
multicopy plasmids (Rodriguez-Beltran et al., 2018). Therefore, reducing the selective pressure, either due to antibiotics or by other coselecting agents as heavy
metals, still stands as a major intervention against AR emergence and transmission. To address this issue, we need to know more on the amount of pollutants, their
selective concentrations, and their mechanisms of coselection and cross-selection in different ecosystems. This is a general example illustrating the gaps in
knowledge in the AR field that need to be filled as well as strategies that may help in tackling this problem. The figure includes several other examples of the gaps of
knowledge (red) that require further studies and the interventions (blue) that may help to tackle AR.

have shown that ARB frequently present collateral sensitivity to
antimicrobial peptides (Lazér et al., 2018) and that, importantly,
some antimicrobial peptides present limited resistance or cross-
resistance (Kintses et al., 2019; Spohn et al., 2019).

From a conservative point of view, based on the use of the
drugs we already have, it would be desirable to fight AR using
evolution-based strategies for developing new drugs or treatment
strategies. Regarding this, the exploitation of the evolutionary
trade-offs associated with the acquisition of AR, as collateral
sensitivity, could allow the rational design of treatments based on
the alternation or the combination of pairs of drugs (Imamovic
and Sommer, 2013; Gonzales et al., 2015; Barbosa et al., 2018;
Imamovic et al., 2018).

In addition to interventions that reduce the selective pressure
of antibiotics or that implement new therapeutic approaches,
reducing transmission is also relevant to fight infections. The
development of drugs or conditions (as certain wastewater
treatments) able to reduce mutagenesis or to inhibit plasmid
conjugation may also help in reducing the spread of resistance
(Thi et al., 2011; Alam et al., 2016; Lin et al.,, 2016; Lopatkin
et al., 2017; Valencia et al., 2017; Kudo et al., 2019). Besides
specific drugs to reduce the dissemination of the genetic elements
involved in AR, socioeconomic interventions to break the bridges
that allow transmission (Baquero et al., 2019) between individuals
and, most importantly (and less addressed), between resistance
entities (Hernando-Amado et al., 2019) are needed (Figure 3).
More efficient animal management, not only allowing less
antibiotics use but also reducing animal crowding (and hence
AR transmission), as well as improved sanitation procedures,
including the universalization of water treatment, will certainly
help in this task (Berendonk et al, 2015; Manaia, 2017;
Hernando-Amado et al., 2019). Notably, wastewater treatment
plants are usually communal facilities where the residues of the
total population of a city are treated. Hospitals are the hotspots
of AR in a city; hence, on-site hospital (and eventually on-
farm) wastewater treatment may help to reduce the pollution
of communal wastewater by antibiotics and ARBs (Cahill et al.,
2019; Paulus et al., 2019), hence reducing AR transmission.

Concerning trade of goods, it is relevant to remark that,
although there are strict regulations to control the entrance of
animals or plants from sites with zoonotic of plant epidemic
diseases (Brown and Bevins, 2018), there are no regulations on
the exchange of goods from geographic regions with a high AR
prevalence, a feature that might be taken into consideration for
reducing the worldwide spread of AR.

Once ARBs are selected and disseminated, interventions based
on the ecological and evolutionary (eco-evo) aspects of AR

(Bengtsson-Palme et al,, 2018; Lehtinen et al., 2019) should
be applied to restore (and select for) susceptibility of bacterial
populations, as well as to preserve drug-susceptible microbiomes
in humans and in animals (Baquero et al., 2011, 2015). Eco-evo
strategies include the development of drugs specifically targeting
ARBs. For that, drugs activated by mechanisms of resistance,
vaccines targeting high-risk disseminating resistance clones or
the resistance mechanisms themselves (Kim et al., 2016; Ni et al.,
2017), or drugs targeting metabolic paths that can be specifically
modified in ARBs (Baquero and Martinez, 2017) might be
useful. The use of bacteriovores such as Bdellovibrio to eliminate
pathogens without the need for antibiotics has been proposed;
although its utility for treating infections is debatable, it might be
useful in natural ecosystems (Shatzkes et al., 2016). More recent
work suggests that some earthworms may favor the degradation
of antibiotics and the elimination of ARBs (Wikler, 2002), a
feature that might be in agreement with the finding that ARBs
are less virulent (and hence might be specifically eliminated when
the worm is present) in a Caenorhabditis elegans virulence model
(Sanchez et al., 2002; Ruiz-Diez et al., 2003; Paulander et al., 2007;
Olivares et al., 2012). However, the information on the potential
use of worms for reducing AR in the field is still preliminary and
requires further confirmation. Noteworthy, AR is less prone to be
acquired by complex microbiomes (Mahnert et al., 2019; Wood,
2019), a feature that supports the possibility of interventions on
the microbiota to reduce AR. Among them, fecal transplantation
(Chapman et al., 2016; Pamer, 2016) or the use of probiotics able
to outcompete ARBs (Keith and Pamer, 2019) has been proposed
as strategies for recovering susceptible microbiomes.

CODA: ANTIBIOTIC RESISTANCE, A
PANDEMIC TO WHICH A GLOBAL
WORLD SEEMS TO BE ACCUSTOMED

The recent crisis of COVID-19 (Garrett, 2020) resembles the
pandemic expansion of ARGs and clearly shows that pandemic
outbreaks cannot be solved by just applying local solutions.
Further, unless all population is controlled, and comprehensive
public-health protocols are applied to the bulk of the population,
such global pandemics will be hardly controlled. The case of
COVID-19 is rather peculiar, because we are dealing with a
novel virus. Very strict interventions have been applied, mainly
trying to control something that is a novel, unknown, disease;
we have been learning along the pandemic and still ignore
what will come further. AR is already a very well-known
pandemic affecting humans, animals, and natural ecosystems
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(Anderson, 1999; Verhoef, 2003). In this case, we have tools
that might predict the outcome, and likely because the degree
of uncertainty is lower than in the case of COVID-19, we have
not applied clear, common, and comprehensive procedures to
reduce the spread of AR. It is true that we know the evolution of
antibiotics consumption and AR prevalence in several countries,
and also interventions, mostly based on social norms, have been
applied. Social norms have reduced the unnecessary prescription
of antibiotics, or pharmacy sales without prescription, and the
use of antibiotics for fattening animals has been banned in several
countries, being still allowed in several others. Nevertheless, these
actions are not general, and more aggressive, global actions are
still needed. Coming back to the COVID-19 example, while
the aim of health services worldwide is to detect any possible
source of SARS-CoV-2, surveillance of infections (eventually by
ARBs) is not universal. In other words, it does not apply to all
citizens in all countries. The reasons can be just political such
as the inclusion of immigrants in public health services (Scotto
et al., 2017) or the consequence of limited financial resources
and technical capacity that countries such as those belonging
to the LMIC category can face (Gandra et al, 2020). The
problem is not only on citizens, because different non-human
reservoirs, such as wastewater, drinking water, or freshwater,
may jointly contribute to AR dissemination (Hendriksen et al,,
2019). In this regard, it is important to highlight that low quality
of water is regularly associated to poverty. Universalization of
health services, sanitization, access to clean water, and in general
reduction of poverty are relevant step-forward elements for
reduction of the burden of infectious diseases in general and
of AR in particular. The time has come to tackle AR, and
this cannot be done just by taking actions at the individual
or even country level, but by taking convergent actions across
the globe. As stated by John Donne (1923) in his poem,
“No Man Is an Island,” written after his recovery from an
infectious disease (likely typhus): “No man is an Iland, intire
of itselfe; every man is a peece of the Continent, a part of
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