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Solubility of recombinant proteins (i.e., the extent of soluble versus insoluble expression
in heterogeneous hosts) is the first checkpoint criterion for determining recombinant
protein quality. However, even soluble proteins often fail to represent functional activity
because of the involvement of non-functional, misfolded, soluble aggregates, which
compromise recombinant protein quality. Therefore, screening of solubility and folding
competence is crucial for improving the quality of recombinant proteins, especially
for therapeutic applications. The issue is often highlighted especially in bacterial
recombinant hosts, since bacterial cytoplasm does not provide an optimal environment
for the folding of target proteins of mammalian origin. Antibody fragments, such
as single-chain variable fragment (scFv), single-chain antibody (scAb), and fragment
antigen binding (Fab), have been utilized for numerous applications such as diagnostics,
research reagents, or therapeutics. Antibody fragments can be efficiently expressed in
microorganisms so that they offer several advantages for diagnostic applications such as
low cost and high yield. However, scFv and scAb fragments have generally lower stability
to thermal stress than full-length antibodies, necessitating a judicious combination of
designer antibodies, and bacterial hosts harnessed with robust chaperone function. In
this review, we discuss efforts on not only the production of antibodies or antibody
fragments in microorganisms but also scFv stabilization via (i) directed evolution of
variants with increased stability using display systems, (ii) stabilization of the interface
between variable regions of heavy (VH) and light (VL) chains through the introduction of
a non-native covalent bond between the two chains, (iii) rational engineering of VH-VL

pair, based on the structure, and (iv) computational approaches. We also review recent
advances in stability design, increase in avidity by multimerization, and maintaining the
functional competence of chimeric proteins prompted by various types of chaperones.

Keywords: antibody fragments, solubility, stability, bacterial expression, scFv

INTRODUCTION

Antibodies are widely used for medical applications such as disease diagnosis and therapy (Grilo
and Mantalaris, 2019). Valuable pharmaceutical properties of antibodies such as high affinity
to their target molecules have led to them becoming constituted as key materials not only
in antibody-based biosensors, which offer the promise of in-depth target detection capacity
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(Holliger and Hudson, 2005; Saerens et al., 2008; Conroy et al.,
2009) but also in antibody-based proteomics, which provides
insights into cancer disease states via cancer biomarker discovery
(Brennan et al., 2010). In addition to the intrinsic property,
industrial applications require high productivity and long shelf-
life from thermal stress, organic solvents, and other stresses than
physiological conditions. However, production of full-length
antibodies cost extremely high, as they are typically expressed in
mammalian cell lines such as Chinese hamster ovary (CHO) or
NS0 murine myeloma cell lines (de la Cruz Edmonds et al., 2006;
Huang et al., 2007; Liu et al., 2008; Grilo and Mantalaris, 2019)
due to N-glycan heterogeneity among different species (Jefferis,
2009) and also the complex disulfide bond pattern; hence, the
biopharmaceutics industry has devoted immense resources on
its production processes (Chartrain and Chu, 2008). Instead,
the single-chain variable fragment (scFv, Figure 1), a rational
polypeptide design, consisting only of variable regions from
heavy (VH) and light (VL) chains, joined together by a linker,
not only maintains antigen binding capacity (Humphreys, 2003;
Andersen and Reilly, 2004) but also can easily be produced in
prokaryotes, such as Escherichia coli (E. coli) or Brevibacillus
choshinensis (B. chosinensis) (Hu et al., 2017), along with high
yield, which keeps the cost of production low (Power and
Hudson, 2000; Terpe, 2006; Rosano and Ceccarelli, 2014; Gupta
and Shukla, 2017). Despite the advantages of scFvs, they have
a few drawbacks that limit their therapeutic potential, such as
(i) deteriorated stability because of their propensity to readily
aggregate under thermal stress (Jager and Pluckthun, 1999a;
Demarest and Glaser, 2008); (ii) a short serum half-life of
<1 day compared to 3 weeks for full-length immunoglobulin
G (IgG)1, IgG2, and IgG4 antibodies (Kang and Jung, 2020);
and (iii) reduced affinity compared to the full-length antibody
counterpart. Therefore, scFv format is suitable for limited cases,
such as macular degeneration or blood-related diseases (Table 1).

Immunoglobulin G, the most abundant monoclonal antibody
(mAb) isotype in serum is composed of two antigen binding
fragments (Fab) and one homodimeric fragment crystallizable
(Fc) domain that contribute to the overall stability of the molecule
(Figure 1; Kang and Jung, 2019; Saunders, 2019). Since Fab of
an IgG becomes more sensitive to the heat denaturation when Fc
region is removed (Tischenko et al., 1982; Vermeer and Norde,
2000; Ionescu et al., 2008), researchers have tried to engineer
Fab to stabilize the interactions between constant heavy 1 (CH1)
and constant light (CL) chains in order to obviate the need for
using mammalian host cells for the expression of full-length
antibodies because of N-glycan on the Fc region. This requires
immense resources such as expensive media, facilities to maintain
germfree conditions, and time. However, limited successes have
been made (Demarest et al., 2006; Teerinen et al., 2006). Further
elimination of CH1-CL pair in Fab, resulting in fragment variable
(Fv), significantly discounts thermodynamic stability (Webber
et al., 1995; Jager and Pluckthun, 1999b). This is presumably
due to the unnatural exposure of the lower VL and VH regions,
flanking CH1 and CL, where hydrophobic interaction used to
contribute to the stability as a whole as well as the absence of
the contribution of CH1, which controls the assembly of heavy
and light chains of the whole IgG molecule (Feige et al., 2009).

The only light-heavy intermolecular disulfide bond in native
IgG antibodies on the residues Cys220 in CH1 and Cys214 in
CL of Fab region (Figure 2 in canakinumab; PDB ID of 5BVJ)
contributes to the thermodynamic stability of the whole Fab
fragment. In addition, intramolecular disulfide bonds in both the
VH and VL regions (Figure 2) is critical in the thermodynamic
stability because elimination of them significantly enhanced the
propensity of scFv aggregation (Montoliu-Gaya et al., 2017). In
this article we review efforts on increasing expression yield as
well as protein stability of antibody fragment and recent diverse
designs of antibody fragments.

PRODUCTION OF ANTIBODY OR
ANTIBODY FRAGMENTS IN BACTERIA

To reduce the cost of production of antibodies, researchers
in both academia and industry put enormous efforts on
elevating expression yield of IgG antibody or its fragment by
(i) engineering expression plasmids, i.e., rhamnose-inducible
expression system (Petrus et al., 2019) or comprehensive
optimization via high-throughput screening (Makino et al.,
2011), (ii) engineering global sigma factor RhoD, which regulates
more than 1,000 gene expressions (McKenna et al., 2019), and
(iii) devising bacterial strains capable of forming disulfide bonds
in cytoplasm such as CyDisCo (Gaciarz and Ruddock, 2017) or
SHuffle (Lobstein et al., 2012; Robinson et al., 2015; Yusakul
et al., 2017). Despite the advantages, drawbacks limiting its
potential are (i) the low stability of scFvs, known for their
propensity to readily aggregate under thermal stress (Jager and
Pluckthun, 1999a; Demarest and Glaser, 2008), (ii) absence
of glycosylation machinery, (iii) lack of efficient secretory
mechanism as compared to yeast or animal cells, functionally
limited protein trafficking machinery from the cytoplasm to
the periplasmic space or to the outside of the cells, and (iv)
overproduction of acetic acid byproduct during fermentation
(Holms, 1986; Wong et al., 2008).

ENGINEERING INTRINSIC STABILITY OF
scFvs: DIRECTED EVOLUTION,
RATIONAL DESIGN, AND
COMPUTATIONAL APPROACHES

Antibody fragments can be expressed in several compartments
in E. coli: mostly as inclusion bodies in the cytoplasm,
or as soluble forms displayed on (i) the inner membrane,
(ii) in the periplasmic space, (iii) on the outer membrane,
and/or (iv) outside the bacterium, facilitated by various signal
sequences, such as outer membrane protein A (OmpA),
pectate lyase B (PelB), or new lipoprotein A (NlpA) (Tseng
et al., 2009; Frenzel et al., 2013; Khodabakhsh et al., 2013;
Levy et al., 2013; DePalma, 2014; Mizukami et al., 2018).
To overcome the drawbacks of scFvs, which comprise only
VH and VL antigen-binding domains, to reduce the protein
size in order to increase protein production but maintain
high target molecule affinity, researchers have engineered
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FIGURE 1 | Schematic representations of full-length IgG1 antibody and antibody fragments. Fab, fragment antigen binding; Fv, fragment variable; Fc, fragment
crystallizable; scFv, single-chain Fv; dsFv, disulfide-stabilized Fv.

scFvs with resistance to aggregation and enhanced intrinsic
stability of antibody fragments. Table 2 summarizes the
engineering efforts.

Directed Evolution
Greg Winter et al., utilized phage display directed evolution
methodology to isolate VH variants that are more resistant to
heat denaturation (Jespers et al., 2004). They further engineered
VH and identified a key residue, Arg28 in VH that renders
resistance to heat and acid aggregation (Famm et al., 2008).
Daniel Christ’s group at the Garvan Institute of Medical Research
selected critical residues for antigen binding in both VH and
VL and constructed a phage library introducing aspartate or
glutamate in those residues to screen for heat resistance. The
isolated variants resulted in not only enhanced biophysical
property but also structural conservation (Dudgeon et al.,
2012). Dane Wittrup’s group at MIT devised a yeast surface
display system to isolate scFv variants with high affinity to
antigen and increased stability by constructing yeast mutant
libraries, expressing scFv on the cell surface, followed by
successive rounds of flow cytometry sorting (Graff et al.,
2004; Chao et al., 2006). Brian Miller et al., at Biogen Idec,

Inc. used sequence- and structure-based analyses to devise
a high-throughput screening methodology that measure scFv
extracellularly expressed by E. coli. This screening methodology
resulted in enhanced melting temperature (Tm) by 14◦C and
additional Tm improvement by 12◦C through combination of the
resulting variants (Miller et al., 2010).

Rational Design
Unlike the presence of intermolecular CH1-CL disulfide bond,
there is not one in the native VH-VL (Figures 1, 2). Instead
of placing a linker between VH and VL (scFv in Figure 1)
creating non-native disulfide bond between VH and VL via
substituting amino acid residues in both framework 2 (FR2) in
VH and FR4 in VL (dsFv; disulfide-stabilized Fv in Figure 1)
led to indistinguishable specificity to antigen and similar
cytotoxic activity when fused with exotoxin but exhibited
superior protein stability at 37◦C, compared to scFv counterpart
(Brinkmann et al., 1993). Similarly, substitution of Val84 in
VH to aspartic acid led to not only improved periplasmic
production by 25-fold but also decreased the rate of thermally
induced aggregation reaction (Nieba et al., 1997). In another
study, introduction of Cys44 in VH and Cys100 in VL in
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TABLE 1 | FDA approved therapeutic antibody fragments.

Name1 Brand name2 Company3 Target Format Indication4 Year
approved5

Host6

Abciximab Reopro Janssen Biotech,
Inc.

GPIIb/IIIa Chimeric IgG1
Fab

Prevention of blood clots in
angioplasty

1994 Mammalian

Ranibizumab Lucentis Genentech, Inc. VEGF Humanized
IgG1 Fab

Macular degeneration 2006 E. coli

Certolizumab
pegol

Cimzia UCB, Inc. TNF Humanized
Fab, pegylated

Crohn disease 2008 E. coli

Blinatumomab Blincyto Amgen Inc. CD19, CD3 Murine
bispecific

tandem scFv

Acute lymphoblastic leukemia 2014 E. coli

Idarucizumab Praxbind Boehringer
Ingelheim

Pharmaceuticals,
Inc.

Dabigatran Humanized Fab Reversal of dabigatran-induced
anticoagulation

2015 CHO7

Moxetumomab
pasudotox

Lumoxiti AstraZeneca
Pharmaceuticals LP

CD22 Murine IgG1
dsFv

immunotoxin

Hairy cell leukemia 2018 E. coli

Caplacizumab Cablivi Ablynx N.V. von Willebrand
factor

Humanized
Nanobody

Acquired thrombotic
thrombocytopenic purpura

2019 E. coli

Brolucizumab Beovu Novartis
Pharmaceuticals

Corporation

VEGF-A Humanized
scFv

Neovascular
age-related macular degeneration

2019 E. coli

1Name: International non- proprietary names. 2Brand name: commercial names. 3Company: companies developed the antibody fragment drugs. 4 Indication: indication
first approved by the FDA. 5Year approved: the first year approved by the FDA. 6Host: expression cell-lines. 7CHO: Chinese Hamster Ovary cell-line. This table was
classified using data from “The Antibody Society (2020)” (Antibody Society, 2020).

anti-aflatoxin B(1) scFv resulted in improved stability and
resistance to protein aggregation (Zhao et al., 2010). Introduction
of the disulfide bond to anti-FGF2 diabody (ds-diabody, see
section “multimerization” for diabody) also improved biological
activity (Cai et al., 2016). This is presumably due to its lower
propensity to the open state of VH-VL pair, in contrast to the
presence of both assembled and disassembled state in case of
scFv where VH and VL domains are simply connected by a
G4S linker. These results indicate that bridging VH and VL
by establishing intermolecular disulfide bond formation via
cysteine residue incorporation can be a decent strategy for Fv
stabilization (Trivedi et al., 2009). Another recent approach
incorporating closed state of VH-VL pair is a cyclization
of scFv using an enzyme sortase A, which ligate the pair,
leading to cyclic scFv: this methodology markedly suppressed
aggregation tendency without affecting affinity to antigen
(Yamauchi et al., 2019).

Alexey Lugovskoy et al., at Merrimack Pharmaceuticals, Inc.
showed that both essential and non-essential tyrosine residues
for antigen binding in either CDR or FR can improve the
biophysical property of scFv (Zhang et al., 2015). An-Suei
Yang et al., at the National Defense Medical Center, Taipei,
elucidated the nature of intra- and inter-hydrophobic domains
of scFv: the former is flexible and indirectly affects antigen
binding, as opposed to the latter affecting antigen binding directly
(Hsu et al., 2014). Robin Curtis’s group at the University of
Manchester investigated the aggregation propensity of arginine-
rich scFv under denaturing condition: substitution of arginine
residues in scFv with lysine significantly reduced aggregation
(Austerberry et al., 2019). This diverse knowledge of protein

nature in scFv may assist engineers with consensus-based design
of antibody fragment for generating stabilizing mutations to
pre-existing scFvs (Steipe, 2004) or bispecific antibody fragments
(Jordan et al., 2009).

Computational Approaches
Andreas Plückthun’s group at University of Zurich designed
a stabilized scFv from human VH germline sequences by
analyzing hydrophobic core, pairing of hydrogen bonds,
clusters of charge, and packing of β-sheets, leading to
reduction of 1G = 20.9 kJ/mol as well as improvement
of scFv expression yield by 4-fold (Ewert et al., 2003).
Furthermore, they could stabilize scFv by CDR grafting
to more stable framework, using a structure-based analysis
(Ewert et al., 2004).

Computational web servers, such as Prediction of
Immunoglobulin Structure (PIGS) (Marcatili et al., 2008)
or Web Antibody Modeling (WAM) (Whitelegg and Rees,
2000), made computational modeling of antibody variable
regions possible. Importantly, recent advances in structural
knowledge and computational protein modeling such as
RosettaDesign accelerated antibody design toward improved
antigen affinity as well as physicochemical properties (Borgo
and Havranek, 2012; Buck et al., 2012). The homology
modeling provides with guidance on not only prediction
on the conformations of CDR loops but also VH-VL orientations
via energy calculations such as antibody-antigen docking,
comparing with known crystal structures (Kuroda et al.,
2012). For example, a computational homology modeling
significantly improved resistance of scFvs to heat inactivation
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FIGURE 2 | A crystal structure of fragment antigen binding (Fab) region of canakinumab, a human monoclonal antibody neutralizing IL-1β (PDB ID: 5BVJ). VH

regions are colored in light green; CH1 in light blue; VL in orange; CL in cyan. Cysteine residues involved in disulfide bonds are partially depicted in red ball and stick
model. The only intermolecular disulfide bonds between heavy and light chain of IgG molecule is present on the cysteine residues in CH1 (Cys220) and CL (Cys214),
respectively. The positions of the cysteine residues vary among different VH and VL due to the differences in CDR length.

by supercharging the protein through energy calculations
(Lawrence et al., 2007; Miklos et al., 2012). In addition,
combinatorial engineering approach, including CDR grafting
onto stable frameworks, VH-VL interface stabilization, and
in vitro somatic hypermutation significantly increased thermal
stability of full-length antibody by 10◦C, compared to the native
IgG1 antibody (McConnell et al., 2013, 2014).

Recent advances in computational methodologies for
both antibody sequencing and backbones (Goldenzweig
and Fleishman, 2018) and for multistage processing of
antibody engineering, capitalizing on computational design
and experimental validation cycles (Baran et al., 2017),
have enabled successful de novo antibody engineering
(Chevalier et al., 2017), such as anti-influenza antibodies
(Strauch et al., 2017; Sevy et al., 2019). Of note, Georgiou
and Ellington at the University of Texas at Austin used
the Rosetta modeling program (Sircar et al., 2009; Adolf-
Bryfogle et al., 2018) to predict amino acid substitutions
for anti-HA33 scFv stabilization and confirmed a melting

temperature increase of 4.5◦C by antigen-binding enzyme-linked
immunosorbent assay (ELISA) after thermal stress for 2 h at
70◦C (Lee et al., 2019).

A FUSION PARTNER

Tagging of anti-FGFR3 scFv with a solubilizing partner small
ubiquitin-related modifier (Sumo), followed by removal of the
Sumo protein using Sumo protease, enabled over 95% purity
with the yield of 4 mg/L bacterial culture. The resulting anti-
FGFR3 scFv has exhibited complete biological activity (Liu
et al., 2015). Another example is an “Fv-clasp,” where scFv was
fused with anti-parallel coiled coil structure, SRAH domain of
human Mst1 with scFv. In addition, introduction of disulfide
bond to the Fv greatly enhanced thermal stability and tendency
of crystallization. This is presumably due to the shielding of
hydrophobic residues exposed in Fv, according to the X-ray
crystallography (Arimori et al., 2017). Alternatively, approaches
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TABLE 2 | Summary of stability and avidity engineering of scFvs in bacteria.

Classification Group Institute Methodology References

Directed evolution Gregory Winter University of Cambridge Phage display Jespers et al., 2004

Daniel Christ Garvan Institute of Medical
Research

Phage display Dudgeon et al., 2012

Dane Wittrup MIT Yeast display Graff et al., 2004; Chao et al., 2006

Scott Glaser Biogen Idec Bacterial screening Miller et al., 2010

Rational design Ira Pastan NIH Non-native disulfide bond Brinkmann et al., 1993

Andreas Plückthun University of Zurich Disrupting the hydrophobic patches Nieba et al., 1997

Wei Chen Jiangnan University Non-native disulfide bond Zhao et al., 2010

Ning Deng Jinan University Non-native disulfide bond Cai et al., 2016

Hiroshi Morioka Kumamoto University Cyclization of scFv Yamauchi et al., 2019

Alexey Lugovskoy Merrimack Pharmaceuticals Tyrosine substitution Zhang et al., 2015

An-Suei Yang National Defense Medical Center in
Taipei

Hydrophobic domains Hsu et al., 2014

Robin Curtis University of Manchester Substitution of Arginine Austerberry et al., 2019

Boris Steipe University of Toronto Consensus-based Steipe, 2004

Alexey Lugovskoy Biogen Idec Consensus-based Jordan et al., 2009

Computation Andreas Plückthun University of Zurich Structure-based Ewert et al., 2003, 2004

David R. Liu Harvard University Supercharging Lawrence et al., 2007

Andrew Ellington University of Texas at Austin Supercharging Miklos et al., 2012

Peter Bowers AnaptysBio Integrative approach McConnell et al., 2013; McConnell
et al., 2014

George Georgiou and Andrew
Ellington

University of Texas at Austin Rosetta modeling Lee et al., 2019

Fusion partner Yechen Xiao Jilin University SUMO Liu et al., 2015

Junichi Takagi Osaka University Fv-clasp Arimori et al., 2017

Chaperone coexpression Shihua Wang Fujian Agriculture and Forestry
University

Skp Wang et al., 2013

Multimerization Sergey Kipriyanov Affimed Therapeutics AG Diabody: bispecific Le Gall et al., 2004

C Ronald Geyer University of Saskatchewan SpyCatcher: trispecific Alam et al., 2018

based on the chaperone function of RNAs could also be
considered (Choi et al., 2008). Fusion with an RNA-interaction
domain (RID) greatly enhances the solubility (i.e., the ratio
of soluble versus insoluble expression in heterogeneous hosts)
and the overall yield of soluble proteins, harnessed with unique
properties of RNAs as chaperone (chaperna; chaperone + RNA)
(Kim et al., 2018; Yang et al., 2018), although this approach has
not yet been documented for recombinant antibody fragments.

ENGINEERING THE HOST CELL:
CHAPERONE COEXPRESSION OR
GENOME-LEVEL SCREENING

The folding of nascent polypeptides is often assisted by molecular
chaperones (Hendrick and Hartl, 1995; Bukau and Horwich,
1998; Hartl and Hayer-Hartl, 2002), although their utility in
recombinant expression has been documented only in limited
cases (Structural Genomics Consortium et al., 2008). The stability
problem associated with VH-VL pair in the scFv molecule can be
circumvented through assistance with the chaperone of a pairing
vehicle. Coexpression of the chaperone Skp enhanced binding
activity of anti-TLH scFv by 3–4 fold, relative to the native
counterpart, expressed in E. coli (Wang et al., 2013).

MULTIMERIZATION

Diabodies not only render bivalency but also enhance stability
of Fv by linker design (Le Gall et al., 2004). Introducing
covalent bonds between VH1 and VL2 as well as VH2 and VL1
enables bispecific binding capacity of the two distinct scFv in
one molecule (diabody in Figure 1). One example in clinic is
blinatumomab (BLINCYTO,

R©

2014), a bispecific scFv for CD19
and CD3 (Table 1), which functions as a T lymphocyte engager to
cancerous B lymphocytes for the treatment of acute lymphoblastc
leukemia (Holliger et al., 1993; Mack et al., 1995; Suresh
et al., 2014; Wu et al., 2015). In addition, constructing anti-
HER3 trivalent scFv using SpyCatcher ligase system enhanced
affinity by 12-fold as compared to a monomeric anti-HER3
counterpart (Alam et al., 2018). Another general approach of
antibody fragments is the utilization of targeting ligands on
nanoparticles in nanomedicine (Richards et al., 2017). Several
antibody fragment-based nanoparticles are under clinical trials,
including Erbitux-EDVSpac, which is a bacteria-derived mini-cell
nanoparticle targeting EGFR currently under clinical phase II
(Richards et al., 2017). Multimerization of scFvs as nanoparticles,
using self-assembling scaffolds via chaperna approach (Kim et al.,
2018; Yang et al., 2018) holds promise for further enhancing the
avidity and thermostability of recombinant antibody fragments.
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CONCLUSION

Up to March 2020, the US Food and Drug Administration
(FDA) approved eight antibody fragments as drugs, six
of which are produced from E. coli (75%, Table 1). The
six therapeutic antibody fragments, produced by bacteria
include ranibizumab (LUCENTIS

R©

, 2006), certolizumab
pegol (CIMZIA

R©

, 2008), blinatumomab (BLINCYTO
R©

,
2014), moxetumomab pasudotox (Kreitman and Pastan,
2011; LUMOXITITM, 2018), caplacizumab (CABLIVI

R©

,
2019), and brolucizumab (BEOVU

R©

, 2019), while those
produced by mammalian hosts include abciximab
(ReoPro

R©

, 1994) and idarucizumab (PRAXBIND
R©

, 2015),
according to the data from “The Antibody Society”
(Antibody Society, 2020).

Microorganisms are favorable expression hosts for antibody
fragments, such as scFvs or Fab, in therapeutic applications
(Table 1), because of the low production cost and lack of a
carbohydrate chain. However, despite these advantages, scFvs
expressed in bacteria have neither comparable stability relative
to native full-length antibodies nor a comparable production
yield of ∼1 g/L in bioreactors (Petrus et al., 2019) relative
to mammalian hosts, that is, >10 g/L in CHO cells (Kunert
and Reinhart, 2016). Therefore, scientists and engineers in
both academia and industry put extensive efforts on increasing
production yield as well as protein stability of scFv expressed in
bacteria. To obtain improved yield various bacterial expression
systems have been developed in terms of vector systems or
engineered strains with engineered chaperone molecules.

The low intrinsic solubility and stability of native scFv
protein with a relatively shorter shelf-life is a bottleneck for
industrial application. To overcome the disadvantages there
have been enormous research attempts on stability design via
site-directed mutagenesis, generation of non-natural covalent
bonds between the heavy and light variable chains, rational
design, and recently computer-based engineering or chimeric
approaches. Engineering of scFv with respect to increasing the
stability lowers both the kinetic complexity in folding process
and subsequently the propensity to aggregate into non-functional
form. Folding into soluble, functional form with the desired level
of avidity is often aided by exploiting the chaperone function of
naturally existing molecular chaperones or artificial solubilizing
tags. Besides thermodynamic aspects on overall stability, due
consideration should be given to the kinetic aspects in de
novo folding pathway for designer antibody fragments toward
improved solubility, thermal stability, and productivity.
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