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Cold seeps are characterized by high biomass, which is supported by the microbial
oxidation of the available methane by capable microorganisms. The carbon is
subsequently transferred to higher trophic levels. South of Svalbard, five geological
mounds shaped by the formation of methane gas hydrates, have been recently
located. Methane gas seeping activity has been observed on four of them, and
flares were primarily concentrated at their summits. At three of these mounds, and
along a distance gradient from their summit to their outskirt, we investigated the
eukaryotic and prokaryotic biodiversity linked to 16S and 18S rDNA. Here we show
that local methane seepage and other environmental conditions did affect the microbial
community structure and composition. We could not demonstrate a community
gradient from the summit to the edge of the mounds. Instead, a similar community
structure in any methane-rich sediments could be retrieved at any location on these
mounds. The oxidation of methane was largely driven by anaerobic methanotrophic
Archaea-1 (ANME-1) and the communities also hosted high relative abundances of
sulfate reducing bacterial groups although none demonstrated a clear co-occurrence
with the predominance of ANME-1. Additional common taxa were observed and their
abundances were likely benefiting from the end products of methane oxidation. Among
these were sulfide-oxidizing Campilobacterota, organic matter degraders, such as
Bathyarchaeota, Woesearchaeota, or thermoplasmatales marine benthic group D, and
heterotrophic ciliates and Cercozoa.

Keywords: Arctic, methane seeps, prokaryotes, methanotrophs, ANME, Sulfate-reducing bacteria, eukaryotes,
foraminifera

INTRODUCTION

Cold seep microbial communities thrive where geofluids, characterized by high concentrations of
hydrocarbons, in particular methane (CHy), provide a primary energy source for these organisms
(Boetius et al., 2000; Orphan et al., 2002; Niemann et al., 2013). These geofluids and/or free gas
migrate upward through faults, cracks, and sediment pores that provide a transport vector from
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sub-seafloor reservoirs to the seafloor. The origin of methane
can be either from the geological cracking of organic matter at
high temperature or from biologically mediated decomposition
of organic matter (Schoell, 1988; Joye et al., 2010). Under certain
thermobaric conditions, CHy forms gas hydrates, i.e., an ice-
like lattice comprising molecules of CHy4 trapped in crystalline
cages of water molecules. The formation or the dissociation of gas
hydrates can modify the seafloor morphology, and subsequently
can lead to the genesis of pockmarks, craters, and gas domes
(Vogt et al., 1994; Hovland and Svensen, 2006; Koch et al., 2015;
Portnov et al., 2016; Serov et al., 2017; Waage et al., 2019).

The CHy4 present in the fluid can be oxidized aerobically
or anaerobically (Kriger et al, 2005; James et al, 2016).
In aerobic environments, the oxidation of CHy is driven by
methane oxidizing bacteria that utilize oxygen as an electron
acceptor. Most of them are associated with the alpha and gamma
proteobacteria, but also with Verrucomicrobia or Crenothrix
(Hanson and Hanson, 1996; Knief, 2015). Nevertheless, microbial
activity at the cold seep seafloor rapidly depletes the available
oxygen in marine sediments and limits its penetration depth
to a small surface layer, usually of a few millimeters thickness
at most (Niemann et al.,, 2006, 2009; Reeburgh, 2007; Boetius
and Wenzhofer, 2013). In the absence of oxygen, methane
is oxidized anaerobically through a process that has been
termed the anaerobic oxidation of methane (AOM; Reeburgh,
2007). Anaerobic oxidation of methane is driven by anaerobic
methanotrophic Archaea (ANME) and so far, three main ANME
clades of phylogenetically distinct groups were detected: ANME-
2 and ANME-3 are placed within the methanosarcinales, while
ANME-1 forms a distinct group within the Halobacterota
(Knittel and Boetius, 2009; Quast et al., 2012; Yilmaz et al.,
2014). The phylogenetic dissimilarity of these ANME groups
suggests different levels of tolerance to various environmental
parameters. Previous study results suggested that ANME-2
might be more sensitive than ANME-1 to high concentrations
of sulfide and low concentrations of sulfate (Timmers et al.,
2015; Bhattarai et al., 2018). The ANME-2 group would then
often be limited to the layers at the sulfate-methane transition
zone (SMTZ) and ANME-1 would dominate in more sulfidic
sediments, at deeper layers (Knittel et al, 2005; Roalkvam
et al., 2012). Nevertheless, ANME-2 groups were also retrieved
in sulfide-rich sediments (for example at the Hydrate Ridge;
Knittel et al., 2003), insinuating the impact of other factors
on the observed stratification of ANME groups. Additional
environmental conditions that were suggested to select for
differential ANME groups include temperature (Nauhaus et al,,
2005; Rossel et al., 2011), salinity (Maignien et al., 2013), or
CHy flux rates (Girguis et al, 2005; Yanagawa et al., 2011;
Marlow et al., 2014).

Most ANME use sulfate, but some were also found to use
iron, manganese, and nitrite/nitrate as electron acceptors (Beal
et al., 2009; Ettwig et al., 2010, 2016; Hu et al., 2014). Reduction
of sulfate at the SMTZ generally requires sulfate reducing
bacteria (SRB) and a syntrophic consortium with ANME that are
commonly found as AOM drivers (Boetius et al., 2000; Wegener
et al., 2015). However, in the last decade, community studies
of methanotrophs have shown evidence of free-living ANME

cells particularly assigned to the ANME-1 group, but also to
the ANME-2 group, that might perform sulfate reduction alone
(Orphan et al., 2002; Knittel et al., 2005; Roalkvam et al., 2011;
Milucka et al., 2012; Stokke et al., 2012; Griindger et al., 2019).

The AOM coupled with sulfate reduction generates HS™
which can subsequently be oxidized by sulfide-oxidizing
bacteria, such as the bacterial mat forming Beggiatoa or
Campilobacterota species. Some chemoautotrophs can also be
present as intracellular and extracellular symbionts within larger
fauna, but also in the eukaryotic euglenozoans and ciliates (Buck
etal., 2000; Rinke et al., 2006). Additionally, a higher bacterial and
archaeal biomass becomes a trophic basis for grazing megafauna
or microbial eukaryotes, including diverse bacterivore ciliates,
Cercozoa, and stramenopiles (Werne et al, 2002; Takishita
et al.,, 2007, 2010; Niemann et al., 2013). Potentially parasitic or
pathogenic eukaryotes, such as Apicomplexa, Ichthyosporea, and
fungi, are also likely to benefit from the denser faunal community
(Atkins et al., 2002; Takishita et al., 2006).

In the Arctic, gas hydrate bearing domes were observed
50 km south of Svalbard in Storfjordrenna, at ~390 m below sea
level (Serov et al., 2017). They are referred to as pingos, after
similar terrestrial features observed in glacial valleys (Mackay,
1998), although they differ by their formation (i.e., gas hydrates
instead of regular water ice; Serov et al., 2017). At the water
depth of the gas hydrate pingos (GHP; ~390 m, ~0.5-2.5°C
bottom water T°C), the gas hydrates remain within the gas
hydrate stability zone (GHSZ), but are close to its upper limit
and are sensitive to even small changes of temperature and
pressure (Hong et al., 2018). Hydroacoustic observations have
revealed acoustic flares originating from methane gas bubbles
in the water column. These were primarily located at the
summit on four of the five Storfjordrenna pingos. The dating
of methane derived authigenic carbonates suggested that CHy
seepage has been active for several thousand years (Serov et al.,
2017). Visual observations have revealed a higher biomass in
sediments of the pingos compared to the surrounding seafloor
(Astrom et al.,, 2018). This can be explained by the presence
of a carbonate crust induced by AOM, which offers a hard
substrate for the attachment of benthic organisms, such as
sponges and anemones (Niemann et al., 2005; Cordes et al., 2010;
Vaughn Barrie et al., 2011).

Past investigations at the Storfjordrenna pingos have primarily
addressed the geochemical conditions (Serov et al., 2017; Hong
et al., 2018) or the biodiversity of larger fauna (Sen et al., 2018;
Astrom et al., 2018), but the microbial community structure
remains mostly unknown [with the exception of a biofilm
retrieved within deeper sediments at the pingos (Griindger et al.,
2019)]. At a circular seep further south, the Haakon Mosby
Mud Volcano (HMMYV), the composition of the bacterial and
archaeal communities varied between concentric zones around
the apex of the edifice, i.e., along a methane flux/concentration
gradient (Niemann et al, 2006; Losekann et al., 2007). In
Storfjordrenna, the gas flares at the summit of the structures
could suggest a similar concentric arrangement of microbial
habitats. However, these pingos contrast with HMMV by
presenting a multitude of small geological fractures and gas
hydrates chaotically distributed around the structures through
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which methane migrates to the seafloor surface (Hong et al., 2018;
Waage et al., 2019).

Our study aimed at determining spatial variations in the
microbial community structure along a gradient from the apex to
the edge of three pingos. We addressed key environmental factors
that are influencing the prokaryotic and eukaryotic community
structures and their spatial distribution. Finally, we identified
key taxa characteristics for these Arctic CHy-rich environments,
demonstrating the uniqueness of this ecosystem.

MATERIALS AND METHODS
Study Site

The sampling site was located in the Arctic Ocean at the mouth
of Storfjordrenna, 50 km south of Svalbard at approximatively
390 m water depth (Serov et al., 2017). A group of 5 GHPs
(~10 m high, 500 m in width) distributed on the seabed over
a 2.5 km? area were recently found'. Hydroacoustic surveys
and real time visually guided observations with a TowCam-
Multicore (see footnote 1) System (TC-MC) and Remotely
Operated Vehicle (ROV) dives® have revealed acoustic flares
of gas bubbles consisting predominantly of CH4 and being
emitted from 4 of the 5 GHPs. One structure (GHP 5)
did not show any visible flares or gas hydrate in sediments
(Serov et al, 2017). During the sampling campaigns for
this study, seep activity at the different sampling sites was
assessed by tracking flares through hydro acoustic surveys with
a multibeam echosounder (Kongsberg Simrad EM 302) or
by visual observations using a TC-MC system configuration
(Panieri et al., 2017).

Sampling Procedure

Field campaigns were conducted with RV Helmer Hanssen and
sediment cores at the GHP 3 and at GHPs 1 and 5 were taken
in June 2016(see footnote 2) and June 20177, respectively. Cores
were taken along a spatial gradient from the apex of the geological
feature to its edge. Core IDs MC_900 (apex), MC_902, MC_918,
and MC_919 (edge) were taken at GHP 1. Core IDs MC_1061
(apex), MC_1062, MC_1063, and MC_1065 (edge) were collected
at GHP 3 while core IDs MC_920 (apex), MC_922, and MC_923
(edge) were collected at GHP 5 (Figure 1). A reference core
(core ID 898) was retrieved at one kilometer away from the
closest GHP. The use of the multicore system KC Denmark
DK8000 integrated with a TC-MC with a real time transmission
of images (Daniel et al., 2003) allowed for the collection of six
60 cm long real time visually guided cores. The combined TC-
MC was used to visually survey and sample sediments from
the study site and the sediment recovery varied between 15
and 40 cm. Exceptionally, core ID BC_1029 was taken using
a blade core mounted on a Sperre Subfighter 30k ROV to

Uhttps://cage.uit.no/wp-content/uploads/2019/02/15-2.cage- cruise- report-
public- 1.pdf

Zhttps://cage.uit.no/wp-content/uploads/2019/02/16-5.cage- cruise- report-
public.pdf
3https://cage.uit.no/wp-content/uploads/2019/02/17-2.cage-cruise- report-
public.pdf

target directly sediments in close vicinity to a CHy gas flare at
GHP 3 in June 2016.

Porewater Geochemistry

Porewater geochemistry was measured for all cores, and data
for BC_1029 and MC_1063 were collected from Hong et al.
(2020). CH4 concentrations were measured with a head space
technique and gas chromatography (Thermoscientific Trace
1310) equipped with a flame ionization detector (Hoehler et al.,
2000; Panieri et al., 2017). For this, we extruded 3 mL of bulk
sediments per 2 cm intervals in all cores which were immediately
transferred to a 20 mL headspace vial with 7 mL of NaOH
solution (1 M) and two glass beads, and instantly capped. Samples
were analyzed subsequently to an equilibration period of 24 h and
are represented as concentration per sediment volume. Sediment
porosity was determined from weight and volume measurements
as presented in Boyce et al. (1973).

Dissolved iron (Fe?™), alkalinity, total sulfide (X HS), sulfate
(SO427), and dissolved inorganic carbon (DIC) were measured
from a neighboring core of the multicore system, recovered
during the same sampling round. Using rhizon samplers
(Seeberg-Elverfeldt et al., 2005), up to 18 mL of porewater was
collected at each cm in the upper 10 cm and at intervals of
4-10 cm in the lower part of the core. Alkalinity and Fe?™
were measured onboard by titration and by spectrophotometry,
respectively (Hong et al., 2017). SO42~ was measured onshore
using ion chromatography (Hong et al., 2017), while HS
was measured using a spectrophotometer at a wavelength of
670 nm (Cline, 1969). A detailed protocol on the measurement
of XHS can be found in the Supplementary Material of
Hong et al. (2020). Due to equipment availability on the
two field cruises, XHS and DIC concentrations were not
measured for all sediment cores while alkalinity and Fe?*
concentrations were only measured for a selection of sediment
layers (Supplementary Tables 1-5).

DNA Extraction, Sequencing, and

Sequences Analyses

Sediment cores were extruded and 2 cm thick layers were
transferred in Whirl-Pak® sterile sampling bags (Nasco,
United States) and stored at -80°C. Following the measurements
of the different environmental parameters in the laboratory,
55 of these samples were selected for amplicon libraries
sequencing. These samples were selected at regular depths
(surface, ~5, ~10, and ~15 cm) and at clear geochemical
interfaces as detected by porewater geochemical gradients
(e.g., SMTZ). In a cold room (4°C), sediments were manually
ground in liquid nitrogen using a sterilized mortar. The
DNA was extracted using the DNeasy PowerSoil Kit (Qiagen,
Germany). The manufacturer protocol was followed, except
that the samples were placed in G2 DNA/RNA Enhancer beads
tubes (Ampliqon, Denmark) for physical lysis (Jacobsen et al.,
2018) instead of the kit lysis tubes. Once the DNA samples
were quality checked using electrophoresis gels, the DNA
concentrations were measured using a NanoDrop™ 2000
spectrophotometer (Thermo Fisher Scientific, United States)
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sample in the vicinity of a methane gas flare.

FIGURE 1 | Geological dome structures referred to as Gas Hydrate Pingo (GHP) located at the mouth of Storfiordrenna, 50 km south of Svalbard. The upper panel
gives an overview of this area. The lower panels show the three selected GHPs for this study. White dots represent locations of the different sediment cores at GHPs
1, 3, and 5 using a multicore system. Core MC_898 was sampled as reference site and core BC_1029. GHP 3 was taken using a blade core mounted on a ROV to

and normalized before being sent to the IMGM Laboratories
GmbH for library preparation and amplicon sequencing. For
each sample, eukarya were amplified using 18S rDNA degenerate
primers to target the V4 region, and bacteria and archaea were
amplified using 16S rDNA degenerate primers to target the
V3-V4 region (Supplementary Table 6). Library generation
was conducted in accordance with the company’s protocols
before being sequenced using a Miseq System (Illumina inc.,
United States). Paired-end nucleotide reads were deposited
at Sequence Read Archive Genebank® as BioProject accession
number PRJNA593930.

*http://www.ncbi.nlm.nih.gov/sra

Paired-end reads were meticulously processed and the
workflow was derived from the USEARCH suggested protocol’.
Pairs were merged before being length trimmed and quality
filtered with USEARCH v10.0.240. Thereafter, operational
taxonomic units (OTUs) were constructed using the UPARSE-
OTU greedy algorithm at 97% pairwise sequence identity.
Singleton OTUs were removed and taxonomy was assigned using
the method Wang implemented in Mothur to the SILVA database
release 138 (Edgar, 2010; Quast et al., 2012; Yilmaz et al., 2014).
Sequences that were not classified to their domain were discarded
prior to further statistical analyses. Finally, sequences from

Shttp://drive5.com/usearch/manual/uparse_pipeline.html
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multicellular organisms are likely detected within the 18S rDNA
libraries and therefore OTUs that were assigned to Metazoan
groups and unclassified eukaryotes were discarded to focus only
on the microbial community.

Statistical Analyses

Archaeal, bacterial, and eukaryotic libraries were rarefied at
8900, 4700, and 1300 sequences, respectively, corresponding to
the lowest number of sequences in one sample. Preliminary
analyses of the libraries demonstrated a large fraction of OTUs
that contained just a few sequences in a sample, especially
for the bacterial communities (Figure 6). In this study, we
aimed to determine the distribution patterns of key microbes.
The inclusion of a large fraction of rarer taxa in the diversity
analyses, despite sharp gradients in the dominating OTUs,
prevented the visualization of these gradients of community
changes. Therefore, only OTUs containing at least 1% of
the overall sequences of one sample were kept for further
statistical analyses.

For the bacterial and archaeal communities, beta diversity,
measuring changes in the composition of communities between
different samples, was calculated on the relative abundance of
the selected abundant OTUs using the Bray-Curtis dissimilarity
index implemented in the Vegan v2.5-5 package on R (Oksanen
et al, 2019). Clusters of sediment samples sharing similar
OTUs abundance and composition for both domains of life
were formed at a dissimilarity index of ca. 0.5-0.6. For each
cluster, the relative abundance of each OTU was averaged
and used to build a doughnut diagram with the R package
ggplot2 v3.2.1. Thereafter, distance-based redundancy analyses
(dbRDA) were performed to reveal whether the environmental
parameters measured had an impact on the observed community
dissimilarity between the different sediment cores. A dissimilarity
matrix was built using the Bray-Curtis dissimilarity index. As
the environmental parameters differed between the GHPs, and
the fact that missing values can affect the outcome of the
analyses, the dbRDA were performed and presented for each
GHP separately. Environmental parameters were logarithmically
transformed and standardized through Z scoring (Legendre
and Legendre, 1998). The significance of the resulting axis
from the dbRDA was evaluated through permutation tests
(n = 999). Both functions for dbRDA and permutations
tests are implemented in the Vegan v2.5-5 package on R
(Oksanen et al., 2019).

For the eukaryotic libraries, biodiversity analyses were likely
affected by the removal of sequences assigned to Metazoa, as
in some samples they could represent on average 40% of the
sequences. Furthermore, a large fraction of the community
structure at the GHPs site was dominated by reads assigned
to photosynthetic eukaryotes that might have originated from
the sedimentation of phytoplankton cells, undermining any
subsequent attempts at describing the structure of the eukaryotic
communities thriving at the GHPs and evaluating the impact
of environmental factors on the biodiversity (Rey and Rune
Skjoldal, 1987). Therefore, a different approach was used
for the eukaryotic libraries and we emphasized instead on
the contrast of the abundant OTUs composition between

the reference site and CHy-rich sediments. To do so, once
sequences assigned to Metazoa or unclassified eukaryotes were
removed and eukaryotic libraries were rarefied, OTUs that were
abundant at the reference site were subtracted and presented
separately. We hypothesized that the remaining abundant
OTUs would be indicators of taxonomic groups influenced
by local conditions at the GHPs. Analyses on the relative
abundances of these taxonomic groups were calculated using
the Bray-Curtis dissimilarity index (Oksanen et al., 2019) and
clusters of sediment samples were formed at a dissimilarity
index of 0.5-0.6.

Benthic Foraminiferal Analyses

We observed that the relative abundances of certain prokaryotic
taxonomic groups, including the genus Sulfurimonas, increased
in CHy-rich sediments. To ensure that the changes in
relative abundances of these taxonomic groups were caused
by the presence of CHy, we compared results from DNA
sequences with an independent proxy for surface CHy-
rich sediments. Agglutinated foraminifera are often observed
in Arctic seas (Wollenburg and Mackensen, 1998; Jernas
et al, 2018) and are particularly sensitive to cold seeps
where they are very rare or even absent (Panieri and Sen
Gupta, 2008; Martin et al., 2010; Dessandier et al., 2019).
Accordingly, changes in their abundances can be used to
assess the impact of CHy seepage disturbance on the local
biological communities. Foraminiferal samples (0-1 cm sediment
depth) from GHP 1 were stored for 14 days at 4°C in a
2 g L7! Rose Bengal solution in ethanol 96%, in order to
identify the living (Schonfeld et al., 2012), or recently alive
individuals (Rose Bengal stained foraminifera; Corliss, 1991).
All samples were wet sieved using 63 and 125 pm mesh
sieves and dried at 40°C (48 h). We considered “living”
individuals as the ones characterized by a pink stain of all
chambers in their test, with the exception of the last one.
In case of doubt, the test was broken to investigate the
staining of the endoplasm (Schonfeld et al.,, 2012). All benthic
foraminiferal specimens from >125 pm size fraction were
handpicked, identified, and counted. The density was calculated
by dividing the number of agglutinated foraminiferal individuals
(Supplementary Table 10) in each core by the surface of the
core (5.02 x 10> m?). The relationship between the density
of agglutinated foraminiferal cells and the logarithm of the
number of resampled Sulfurimonas sequences was tested using
a linear model.

RESULTS

Environmental Characterization and

Geochemistry

At the reference site, CH4 was nearly absent, gas flares were not
detected on the echosounder, and CHy4 sediment concentrations
did not exceed 4 M (Figure 2). XHS remained undetectable
throughout the reference core, while measured concentrations
of SO42~ slightly decreased from 28 mM at the sediment
surface to 26 mM at 11 cm below seafloor (bsf), correlating
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to seawater concentration of the Barents Sea. The seafloor
was muddy and authigenic carbonates were not observed
(Supplementary Table 4).

At GHP 1, gas flares and high CHy4 sediment concentrations
were suggestive of high CHy seepage activity (Figures 1, 2).
Dense patches of chemosynthetic organisms, such as siboglinids,
as well as carbonate crusts colonized by anemones and
sponges, were scattered across GHP 1 (Supplementary Table 4).
Concentrations of CHy were low in the sediment surface layer,
ranging from 0.61 to 6.73 wM, and increased with depth in
cores taken at the GHP 1 apex, reaching a maximum of 169 uM
at 37 cmbsf in core MC_900 and 1109 puM at 19 cmbsf in
core MC_902 (Figure 2). MC_902 was also characterized by a
stronger depletion of SO42~ with depth than at the reference
site as concentration dropped below 5 mM at 15 cmbsf. With
the decrease in SO42~, ZHS concentrations increased, peaking
at 4558 and 2078 uM in MC_900 and MC_902, respectively.
MC_918 was collected close to the rim of the GHP, where
concentrations of CHy and XHS increased with depth, but at
lower concentrations than at cores taken near the apex of GHP
1. The SO4%~ concentrations values at MC_918 ranged from
27.8 mM at the surface to 25.9 mM at 19 cmbsf. MC_919 was
taken outside the GHP, but close to its edge. Here, environmental
parameters became more similar to the reference site. Low
concentrations of CHy (yet still slightly higher than at the
reference site) were detectable and SO42~ concentrations were
only slightly lower than at the reference site and remained above
26 mM within this core.

At GHP 3, BC_1029 had the highest CH, concentrations of
all sites, reaching up to 12.8 mM at 12 cmbsf (Figure 3). This
core was taken in the vicinity of a CHy gas flare (Figure 1). The
four other cores from GHP 3 had lower CH4 concentrations than
BC_1029 (<15 wM). Still, the cores MC_1061 and MC_1062,
located close to the GHP 3 apex, had higher CH4 concentrations
than cores MC_1063 and MC_1065, collected near the edge and
outside GHP 3, respectively. SO4>~ maximum concentrations in
the surface sediment layers were in the range of 27-28 mM for all
cores, but the SO42~ level decreased to 12.21 mM at 12 cmbsf and
at23.83 mM at 14 cmbsf for BC_1029 and MC_1061, respectively.
Within other cores taken at GHP 3, the decreasing concentrations
of SO42~ showed a similar pattern to the reference site. Fe™
concentrations were only measured in two cores (BC_1029 and
MC_1063) and showed a sharp decrease at the sediment surface
in core BC_1029, but remained high in core MC_1063, where it
was depleted only at 20 cmbsf (Supplementary Table 2).

At GHP 5, similar CH4 concentrations in the upper sediment
layer were measured in core MC_920 and at the apex of
GHP 3 (Figure 2). However, gas flares were not visible on
the echosounder at the apex of GHP 5. In addition, a CHy
concentration of ~18 pM was measured at 19 cmbsf in
core MC_922, occurring concomitantly with an increasing
concentration of XHS. The seafloor was covered with hard
surfaces, mostly ice raft debris, and colonized by anemones
and sponges (Supplementary Table 5). Complementary
information on visual observations at the sampling sites and
on concentrations of Fe?*, alkalinity, and DIC are available as
Supplementary Information (Supplementary Tables 4, 5).
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FIGURE 3 | Geochemical profiles of the sediment core BC_1029 collected at
GHP 3 near a CH, gas flare. Profiles for CH4 and SO42" at these sediment
depths are shown. Black bars correspond to the sediment layers from which
the DNA was extracted and sequenced.

Taxonomy and Abundant OTUs

Once pair-ends reads were quality filtered, 8 129, 36 301, and
8184 OTUs were successfully assigned to the archaeal, bacterial,
and eukaryotic domains, respectively (Supplementary Table 7).
After rarefaction, within the archaeal OTUs, 87 were found to be
abundant in at least one of the sediment layers collected from the
reference site or the GHPs. Among the bacteria and eukaryotes,
107 and 140 abundant OTUs were identified, respectively.

Composition Similarities of the Microbial

Communities

Based on the beta-diversity dissimilarity analyses in the GHP
sediments (Figure 4), six different community clusters designated
Al, A2, A3, A4, A5, and A6 were identified for the archaeal
domain. Cluster Al included nearly all surface sediment samples
and was dominated by the Crenarchaeota Nitrososphaera and
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the Nanoarchaeota Woeserchaeales, with 61.4 and 10.0% of
the total archaeal community, respectively. Sediment layers
associated to the cluster A2 were from different depths, although
most were collected between 4 and 10 cmbsf. The cluster A2
was characterized by a stronger dominance of Woeserchaeales
(21.86%), Bathyarchaeia (12.14%), Nitrososphaera (11.73%), the
marine benthic group D (MBG-D) within the Thermoplasmatota
(4.49%), and Asgardarchaeota (3.35%). In addition, 2.1% of
the sequences were associated to an unclassified archaeal OTU.
The community of the cluster A3 was driven by the MBG-D
(20.1%), the Bathyarchaiea (14.5%), and the Woesearchaeales
(12.7%). The Asgardaeota groups of Heimdallarchaeia (7.3%)
and Lokiarchaeia (1.1%), and the Halobacterota ANME-1 group
(1.3%) were also predominant. The cluster A4 had a similar
community composition to the cluster A3 and was dominated by
the MBG-D (18.5%), the Wosearchaeales (10.8%), and ANME-1
(8.8%). Bathyarchaeia (7.7%) and Asgardarchaeota (5.8%) were
also major components of the A4. The clusters A5 and A6
differed from the other groups particularly by a higher relative
abundance of sequences associated to ANME groups. The cluster
A5, representing sediment layers at the gas flare (core BC_1029)
was mainly composed of ANME-1 (17.9 %), ANME-2a/-2b (6.6
%), and ANME-2¢ (6.1%). Other abundant taxonomic groups
included Wosearchaeales (13.2 %) and the MBG-D (4.9%), in
addition to the Asgardarchaeota Heimdallarchaeia (6.1%) and
Lokiarchaeia (5.3%). The ANME communities of A6 was in
contrast to A5 by a stronger dominance of ANME-1 (60.7%;
Figure 7), in comparison to the ANME-2a-2b (2.9%) and ANME-
2c¢ (4.1%; Figure 5), were also abundant in the cluster A6
representatives from the MBG-D (8.3%).

For the bacterial domain, five community clusters, designated
B1, B2, B3, B4, and B5, were identified for the GHP sediments
(Figure 6). The rare biosphere represented by the non-
abundant OTUs composed of a large fraction of all the bacterial
communities and particularly for the clusters B1 and B2. Within
these two clusters, the rare biosphere composed of an average
of 76.7% of the bacterial sequences. Among the abundant
OTUs, sequences within the cluster B1 were mostly assigned
to the Gammaproteobacteria (5.2%), the Verrucomicrobiota
(3.2%), and the Campilobacterota Sulfurimonadaceae (1.6%).
The cluster B2 had stronger presence of Desulfobacterota
Desulfobacterales (4.5%), including sequences associated to the
cold seeps clade SEEP-SRB1 and Desulfobulbales (3.1%), in
addition of Bacteroidota (4.7%). Cluster B3 represented sediment
communities retrieved at the gas flare (core BC_1029) and
was dominated by the Campilobacterota Sulfurovaceae (20.2%)
and Sulfurimonadaceae (13.5%). Throughout all cores, the
Sulfurovaceae and Sulfurimonadaceae were strictly represented
by the genera Sulfurovum and Sulfurimonas, respectively.
Additionally, B3 was characterized by the occurrence of
Dissulfuribacterales (1.5%), mainly due to an OTU of the SEEP-
SRB2 group, Desulfatiglandales (1.6%) and Desulfobacterales
(2.9%). Remaining abundant taxa of the cluster B3 were
assigned to the Bacteroidota (7.8%) and the Chloroflexi
Anaerolinaeae (3.2%). It is also to be noted the presence
of the Gammaproteobacteria Methylococcales in cluster B3
(1.2%). Communities within the cluster B4 primarily hosted

sequences assigned to the Desulfobacterota (9.0%), largely
included within the Desulfobacterales (5.2%), and the Chloroflexi
Anaerolinaeae (6.1%) and Dehalococcoidia (3.6%). Additionally,
abundant OTUs characterizing the cluster B4 were assigned
to the Bacteroidota (4.3%), the Caldatribacteriota Japan Sea
1 (JS1) clade (4.8%), the Campilobacterota Sulfurimonadaceae
(2.2%), and Sulfurovaceae (1.6%). The cluster B5 was dominated
by the Desulfobacterota (19.6%), including representatives
of Desulfobacterales (6.0%), Desulfatiglandales (4.4%), and
Dissulfuribacterales (9.1%). One OTU assigned to SEEP-SRB2
and two OTUs assigned to SEEP-SRB1 composed 9.1 and
4.7% of the overall sequences, respectively (Figure 5). In
comparison to other bacterial clusters, the cluster B5 was
also characterized by a higher relative abundance of the
Caldatribacteriota JS1 (10.7%) in addition to the Chloroflexi
Dehalococcoidia (11.7%) and Anaerolinaeae (4.4%). Sediment
samples clustering within the groups B3-B5 were mostly
dominated by abundant OTUs, as the rare biosphere composed
ca. 43% of the overall sequences.

With the eukaryotic primers, 39 abundant OTUs were
retrieved at the reference core MC_898 and they composed
from 20 to 100% of the sequences in all sediment communities.
In Figure 7, these 39 OTUs are presented separately from
the 101 eukaryotic OTUs retrieved exclusively at the GHPs.
Beta diversity in the relative abundances of the taxonomic
groups of these 101 OTUs retrieved in sediment communities
at the GHPs site resulted in four clusters, designated as ElI,
E2, E3, and E4 (Figure 7). The proportions of sequences
assigned to these OTUs varied between clusters, where an
average of 8.5, 19.8, 29.8, and 24.1% of the sequences for
the clusters E1, E2, E3, and E4 were assigned to them,
respectively. In cluster E1, Cercozoa and ciliates corresponded
respectively to 2.7 and 1.5% of the overall sequences. Within
the cluster E2, these groups were more abundant, and their
relative abundances increased to 8.2% for the Cercozoa and
to 5.4% for the ciliates. For clusters Bl and B2, sequences
were primarily assigned to an unclassified group of Cercozoa,
while the class Spirotrichea primarily dominated the ciliates.
Within the cluster E3, the taxonomic diversity was higher than
for E1 or E2. Other cercozoan groups, such as Granofilosea,
Phytomyxea, and Thecofilosea, in addition to the ciliates classes
Armophorea and Conthreep, are frequently seen in higher
abundances. In addition to Cercozoa and ciliates, abundant taxa
exclusive to these sediment layers included representatives of the
Holozoa, uncultivated marine stramenopiles (MAST) groups 6
and 12, in addition to the fungi (Ascomycota, Basidiomycota,
and Chrytridiomycota). Sediment samples clustering within
the cluster E4 were characterized by a higher proportion of
Apicomplexa among the OTUs,

Similarly to the distribution of the 101 eukaryotic OTUs
presented above, the community structure of the 39 OTUs also
thriving at the reference site varied between the clusters. The
relative abundances of Ochrophyta were lower in clusters E2, E3,
and E4, which are more predominantly composed by Cercozoa
and ciliates. Finally, alpha diversity metrics that were used to
assess biodiversity richness and evenness and the taxonomic
composition for all domains within each sediment community
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are available as Supplementary Information (Supplementary
Tables 8, 9 and Figures 1-3).

Distribution and Co-occurrence of the

Domain Clusters

The community clusters showed particular patterns of co-
occurrence between each domain, especially for the prokaryotes
(Supplementary Figure 4). For instance, 12 of the 13 sediments
communities within cluster A1 were associated with the bacterial
cluster B1l. The pairs A2/B2, A3-A4/B4, and A6/B5 were
also commonly co-occurring. However, concomitance patterns
between prokaryotic and eukaryotic clusters were less supported.
Still, the eukaryotic cluster E1 usually fell together with the pairs
A1/B1 or A2/B2. The clusters E2 and E3, instead, coincided with
the pairs A3-A4/B4 and A6/B5, respectively. The paired clusters
A1/B1 were retrieved at the surface of nearly all sediment cores
while the clusters A2/B2 generally corresponded to the subsurface
communities at the reference site and at cores taken toward
the edge of a GHP. Pairs of A3/B4 or A4/B4 occurred below
the sediment surface at the apex of GHP 1 (cores MC_900 and
MC_902) and of GHP 3 (MC_1061 and MC_1062). The pair
A6/B5 occurred in subsurface sediments at the apex of GHP
1, but also toward the outskirt of the GHPs at the surface of
MC_918 (GHP 1) and in subsurface sediments of GHP 5 (core
MC_922). Finally, the microbial communities retrieved at the gas
flare (core BC_1029) of the GHP 3 could not be related to other
communities at the GHPs site for all domains of life and clustered
separately. Communities from all sediment depths at BC_1029
clustered within A5, B3, and E4.

Impact of Environmental Conditions on

the Microbial Community Structure

The community clusters for the two prokaryotic domains
demonstrated a profile primarily related to sediment depth
and methane availability (Figure 8). The impact of measured
environmental parameters on the dissimilarity between the
different prokaryotic communities, observed through the
formation of six archaeal and five bacterial community types, was
assessed through dbRDA. Overall, the unconstrained proportions
of the two principal axes (RDA 1 and 2) explained 43.71-
62.52% of the dissimilarity between the different prokaryotic
communities and were all significant (Figure 8). Depth correlated
negatively with the prokaryotic community types Al and Bl
while CHy concentrations drove the dissimilarity between the
other community types. At all GHPs, A2 and B2 correlated
negatively with CHy4 concentrations, while A3-4-5-6 and B3-4-5
correlated positively. At GHP 1, these community types were
also impacted by higher concentrations of £ZHS, while types A2
and B2 thrived in sediments richer in Fe? and SO42~.

Sulfurimonas and Agglutinated
Foraminifera Relationship

In general, we found lower numbers of agglutinated foraminifera
at habitats characterized by higher densities of the sulfide-
oxidizing Suflurimonas. The relationship between the logarithm
of the number of resampled Sulfurimonas sequences at the

sediment surface and the density of agglutinated foraminiferal
species showed a significant (F = 43.122, p-value = 0.007183),
negative, and linear correlation (Supplementary Figure 5).

DISCUSSION

Community Types Distribution Across
the Pingos

Our first objective was to test the hypothesis that variations in
the community structure occur along a radial gradient from
the apex of the GHPs, which was expected to concentrate most
of the gas seeping activity (Serov et al., 2017). Investigating
the microbial communities thriving along spatial and depth
pingos gradients led to the distinction of different community
clusters for each domain of life (Figures 4, 6, 7). CHy-rich
sediments hold distinct community clusters (A3-A6, B3-B5, E2-
E4) while communities retrieved in CH4-poor sediments were
more similar to the reference site (Figure 8). According to our
hypothesis, CHy-rich sediments were recovered from coring
locations close to the apex of GHP 1 (MC_900 and MC_902)
or GHP 3 (BC_1029) where active gas flares were visible.
However, we did also find high dissolved methane concentrations
sediments hosting the CHy-rich community clusters we have
described at the edge of GHPs 1 (MC_918) and 5 (MC_922;
Supplementary Figure 4). This unpredicted spatial distribution
of the different microbial community types at the GHPs was
further supported through the observed significant negative
correlation between the relative abundance of Sulfurimonas
and the density of agglutinated foraminifera on the seafloor
(Supplementary Figure 5). While Sulfurimonas is a genus that
is often retrieved in higher relative abundances in CHy-rich
sediments (Figure 6; Niemann et al., 2013; Bomberg et al., 2015),
agglutinated foraminifera are known to be sensitive to CHy-rich
environments (Panieri and Sen Gupta, 2008; Martin et al., 2010;
Dessandier et al., 2019).

The use of these two independent methods further confirmed
that there was no radial gradient at the GHPs. This contrasted
thereby with earlier studies on active mud volcanoes where
the community composition and the nature of the dominating
methane oxidizers varied along concentric zones around the
apex of the structure (Niemann et al., 2006; Losekann et al,
2007; Lee et al., 2019). Instead, across the GHPs, community
types were scarcely distributed and mainly depth and the
availability of CHy4 appeared to drive the transition between them
(Figure 8). Furthermore, changes in community composition
at the GHPs occurred on a smaller scale than at the HMMYV,
where the identified concentric zones extended over tenth
to hundreds meters. In our study, nearby sediments cores
MC_918 and MC_919, or BC_1029 and MC_1061, were less
than 40 m apart, but the first hosted a community type
dominated by ANME-1 while the latter was more similar to
the reference site. This suggests that the microbial community
spatial succession at these pingos is still not yet fully grasped.
Thereby, further investigations on the variability of the microbial
community composition should be addressed at a higher
site resolution.
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and axes with a * were found significant.
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Microbial Biodiversity Across the Study

Area

Our second objective was to describe the microbial biodiversity
at the GHPs and to identify key taxa influenced by this CHy-
rich environment. Overall, the communities presented different
assemblages, depending on their vertical positioning in the
sediment matrix; i.e., surface, a few cm below the seafloor, in
CHy-rich sediments, or at the gas flare (BC_1029). The variability
in the structure of eukaryotic communities and the nature and
quantities of Foraminifera at the GHPs were analyzed differently
than for prokaryotes. We therefore discuss the composition of
the prokaryotic and eukaryotic communities within the different
sediment habitats separately.

Prokaryotes

Sediment characterized by a CHy depletion and X HS increase
hosted a microbial community dominated by ANME and SRBs,
strongly suggesting ongoing AOM. The archaeal community
was primarily dominated across all GHPs by the anaerobic
CHy4 oxidizing group ANME-1 (Figures 4, 5). Interestingly,
methanotrophic communities primarily driven by ANME-1 have
been less frequently observed than by ANME-2, or were found
only in deeper sediments (Girguis et al., 2005; Ruff et al., 2015;
Griindger et al., 2019). Our understanding of the factors favoring
the growth of the different ANME groups is still limited. Their
tolerance levels to various environmental factors and the impact
of CHy flux rates on their growth rate have been two common
orientations used by studies to investigate their biogeography.
Within the first orientation, it is suggested that the ANME-
1 would be more tolerant to broader ranges of environmental
conditions, and could predominate over ANME-2 in low SO4>~
and high HS™ environments (Timmers et al, 2015). These
different tolerances to the presence of SO42~ and HS™ has
been suggested to explain vertical successions in dominance
of these groups along different SMTZ (Roalkvam et al., 2011;
Biddle et al., 2012; Ruff et al., 2015). However, at the GHPs,
although ANME-2 and ANME-3 were also detected, their relative
abundances remained low, and there was no clear vertical
transition in the nature of the dominant ANME group along
the SMTZ in cores MC_900 and MC_902. This could suggest
that other factors at the GHPs favor the growth of ANME-1
and/or inhibit the proliferation of ANME-2. Within the second
orientation, observations were made at the Hydrate Ridge or
the Gulf of Mexico that ANME-2 groups were more commonly
retrieved in areas with highly active CHy4 seepage (Vigneron et al.,
2013, 2019). In our study, although ANME-1 still predominated
the methanotrophic community near the gas flare (BC_1029),
the relative abundances of ANME-2 groups were in contrast
higher than in other clusters. However, this hypothesis would
contradict previous observations where ANME-2 demonstrated
higher growth rates than ANME-1 at low CHy4 flux rates
(Girguis et al., 2005). Beyond these two hypotheses presented
above, the hydrographic conditions above the GHPs could also
induce an additional set of environmental constraints, as the
bottom-water temperature seasonally varies (Ferré et al., 2020).
This creates fluctuations in both CHy seeping activity from

the sediments and subsequently CH4 oxidation rates in the
water column. This seasonality in CHy4 seepage activity could
potentially also impact the selection of the ANME groups. The
biogeography of ANME groups remains therefore still unclear.
With its five GHPs presenting different CHy flux history and its
multiple ecological niches, the GHPs, combined with the usage
of appropriate tools for sampling sediments at a higher precision,
present thereby an ideal site to provide further insights into the
distribution of ANME groups.

Furthermore, to mediate AOM, ANME groups require an
electron acceptor, such as sulfate, and have therefore been
frequently observed in consortia with microorganisms capable of
reducing these compounds. The ANME-1 group have regularly
been assigned to the uncultured groups of SEEP-SRB1 and SEEP-
SRB2, where both are detected in CHy-rich sediments at the
GHPs. In our study, the relative abundance of Desulfobacterota
was higher in microbial communities dominated by ANME
groups (Figure 6). Furthermore, the decreasing concentration
of SO42~ with depth in CHy-rich sediments, combined with
an increasing availability of X HS, strongly suggested the use
of sulfate as the electron acceptor for AOM. However, across
all the GHPs, there was no positive correlation between the
relative abundance of ANME-1 and a particular SRB group,
either SEEP-SRB 1 or 2, further supporting the hypothesis that
ANME-1 could metabolize CH4 alone (Figures 4-6). Indeed,
it was observed that ANME-1 could perform both AOM and
sulfate reduction within the same cell (Milucka et al., 2012) and
the detection of F420-dependent sulfite reductase in ANME-
1 communities may be part of this novel pathway (Vigneron
et al, 2019). Nevertheless, a previous study could not find
a correlation of ANME-1 and the abundance of dissimilatory
sulfite reductase, an essential enzyme for active SRB (Vigneron
et al,, 2019), demonstrating that ANME-1 may not be able
to perform SR. Finally, a different explanation of the absent
correlation between ANME-1 and SRB groups could be due to
the usage of intercellular wires forming cell-to-cell connections
for electron transfers, a hypothesis supported by the detection
of genes expressing for extracellular cytochrome production,
between distanced ANME-1 and SRB cells (Wegener et al., 2015).
Our results, based on the sulfate and sulfide profiles, advocate an
anaerobic oxidation of CHy supported by the reduction of sulfate,
but the role of Desulfobacterota and its relation with the ANME
groups remain unclear.

While AOM is mediated by ANME in anaerobic environment,
methanotrophy in an aerobic environment is primarily
performed by distinct bacterial groups (Hanson and Hanson,
1996; Knief, 2015). In our study, higher concentrations of CHy4
than at the reference site were detected at the surface of some
sediment cores collected at the GHPs. However, despite the
availability of oxygen suggested by the presence of aerobic
taxonomic groups, aerobic bacterial methanotrophs were barely
detected. We retrieved abundant Verrucomicrobiales OTUs at
the surface of most sediment cores, but their assigned family
Rubritaleaceae is not known to include aerobic methanotrophs.
Aerobic methanotrophs (Methyloccocales) could only be
detected at the surface of BC_1029, collected near the gas
flare, but this OTU was composed of only 1.2% of all bacterial
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sequences. Surprisingly, the apparent rarity of aerobic CHy
oxidizers is contrasting to most seep sites where they were found
when both CH4 and O, are present (Losekann et al., 2007;
Roalkvam et al., 2011; Ruff et al., 2015). Nevertheless, we cannot
disregard that the near absence of aerobic methanotrophs in
our amplicon libraries could be caused by the choice of primers
used (McDonald et al., 2008). Different approaches, including
the use of primers targeting functional genes such as pmoA,
would be required to improve the study of the biodiversity of
aerobic methane oxidizers. Finally, CHy-rich sediments also
harbored higher relative abundances of other groups, but which
are likely not directly involved in the AOM. Chloroflexi, the
Caldatribacteriota JSI, and Campilobacterota groups were
also in higher abundance in CHy-rich sediments than at other
sediment layers. Similarly to the distribution of ANME groups,
these bacterial groups showed different relative abundances
between CHjy-rich sediments collected at the gas flare to the
other samples. While most communities in CHy-rich sediments
demonstrated high proportions of Chloroflexi and JS1, the
bacterial communities at the gas flare was primarily dominated
by sulfide oxidizing bacteria (Figure 6). More precisely, two
Campilobacterota genera mediating the oxidation of sulfur,
sulfide or thiosulfate, Sulfurimonas and Sulfuvorum, were
found in abundance. These genera are commonly found in
abundance near hydrothermal plumes and in diffusive flow
sediments, as well as at cold seeps (Yamamoto and Takai,
2011; Adams et al., 2013), while sulfide oxidization in marine
sediments tends to be driven primarily by Alphaproteobacteria or
Gamma proteobacteria (Lenk et al., 2011). In our study, similar
observations suggest that these bacteria play an important role in
sulfur cycling and largely dominated the bacterial communities
at the gas flare, in comparison to the other sites.

In the absence of CHy, the sediment microbial composition
at the GHPs was highly similar to the reference site and
was primarily driven by depth (Figure 8). Depth is likely
influencing the shape of microbial communities at the GHPs
through the presence or absence of oxygen, a parameter well-
known to shape the structure of microbial communities in
sediments (Fenchel and Finlay, 2008). Surface sediments were
primarily dominated by the aerobic ammonia-oxidizing archaea
(AOA) Nitrosopumilaceae that plays, along with ammonia-
oxidizing bacteria, an important role in the transformation of
nitrogen compounds in marine systems, including cold seeps
or at hydrothermal vents (Konneke et al., 2005; Dang et al.,
2009; Miyazaki et al., 2009; Stahl and de la Torre, 2012). In
deeper sediments, the archaeal community (A2) was dominated
by Woesearchaeales and Bathyarchaeia (Figure 4). The most
abundant OTU of the 38 associated to the Woeserchaeia across
all clusters was found predominantly at nearly all sediment layers
below the seafloor, including in the CHjy-rich sediments. As
oxygen availability is suggested to be the main factor determining
the nature of the thriving Wosearchaeales (Liu et al., 2018), its
detection in deeper sediments likely suggest an anoxic ecotype
that may be involved in a fermentation-based lifestyle (Castelle
etal., 2015). Bathyarcheia, previously known as the Miscellaneous
Crenarchaeotal Group (MCG), and the thermoplasmatales MBG-
D are globally abundant in marine sediments. The detection

of protein-degrading enzymes suggest a role in organic matter
anaerobic degradation (Webster et al, 2010; Kubo et al,
2012; Lloyd et al, 2013). The relative abundance of OTUs
assigned to the Desulfobacterota within the bacterial community
increased with depth, but remained lower than in CHjy-rich
sediments (cluster B5). The presence of these Desulfobacterota
groups are common in marine sediments as they play a major
role in mineralizing organic matter through sulfate reduction
(Jorgensen, 1982; Abu Laban et al., 2015; Robador et al., 2016).

Eukaryotes

Microbial eukaryotic communities at cold seeps have received
less attention than the prokaryotes, despite their active role as
part of bacterial mat type habitats for instance, or the capacity of
some to harbor sulfur oxidizing bacteria (Buck and Barry, 1998;
Buck et al., 2000). In this study, we investigated protists and fungi
based on the V4 region of the 18S rDNA and have identified key
taxonomic groups thriving at the GHP sites. Across all sediments
layers, large fractions of sequences that clustered into OTUs were
assigned to Metazoa and to sedimenting allochthonous cells. The
removal of these sequences likely affected the following analyses
of the GHPs eukaryotic communities. Therefore, we assessed
separately the 39 OTUs proliferating at the reference site from
the 101 OTUs found in abundance only at the GHPs to highlight
eukaryotic taxa thriving in CHy-rich sediments. Communities
clustering in E1 demonstrated high similarity to the reference site
and could be retrieved at different distances from the apex of all
GHPs, but were limited to sediments characterized by low CHy
concentrations. We thereby demonstrated that in the absence
of CHy, eukaryotic communities across the GHPs have similar
composition than to the reference site. In contrast, clusters E2-E4
were retrieved in or near CHy-rich sediments and demonstrated
higher relative abundances of OTUs that are absent or barely
found at the reference site.

Within the cluster E2, these OTUs were primarily assigned to
ciliates and Cercozoa. We also noted that within the 39 subtracted
OTUs, the fraction of alveolates and Cercozoa increased and
even surpassed their relative abundances in E3 and E4. Higher
densities of prokaryotes involved directly or indirectly in AOM
can be a food source for these potential heterotrophic eukaryotes,
but their growth in communities clustering in E3 and E4
may be limited by the toxicity of sulfidic conditions (Massana
et al., 1994; Coyne et al.,, 2013). Communities clustering in E3
occurred primarily in CHy-rich sediments with the prokaryotic
communities of clusters A4-A6/B5, composed of taxa involved in
AOM and sulfate reduction (Supplementary Figure 4). Nearly
all communities within the cluster E3 hosted the highest relative
abundances of sequences associated to the 101 OTUs that are
exclusively found in abundance at the GHPs (Figure 7). The
contrast in these relative abundances, in comparison to the cluster
E1, demonstrates the impact of CHy4 on the eukaryotic diversity.
The assignment of these OTUs was strongly heterogeneous as
several taxonomic groups, such as the Protoalveolata Syndiniales,
were present only in few communities (Figure 7). The eukaryotic
communities within this cluster were also characterized by the
emergence of fungal taxonomic groups. Communities within the
cluster E3 were especially affected by the proportion of sequences
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associated to Metazoa, as on average 40% of the sequences were
assigned to this taxon and had to be removed. Thereby, while
the heterogeneity in the structure of the communities clustering
in E3 could be caused by local conditions, we cannot rule
out that it may be due to limitations in the coverage of the
eukaryotic biodiversity. Communities at the gas flare (BC_1029),
similarly as for the prokaryotes, hosted a distinctive eukaryotic
biodiversity clustering exclusively in E4. Among the sequences
assigned to the OTUs exclusively abundant at the GHPs within
E4, most were primarily assigned to Apicomplexa (up to 15%).
Apicomplexa are parasitic alveolates, but the nature of potential
hosts at the gas flare remains unknown. Overall, our results
demonstrated that changes in the eukaryotic biodiversity occur
in CHy-rich sediments. Using different approaches, such as
targeting specific genes or using blocking primers, may provide
a more accurate profile of eukaryotic biodiversity at the GHPs.
These investigations would further improve our understanding
on the role of these protists and fungi at the GHPs site on
the microbial community, the biogeochemical cycles, and on
food web structures.

Overall, our approach suggests that CH4 and oxygen
are two key factors influencing the microbial community
structure. Nevertheless, communities within a cluster had
up to approximately 60% similarity and the dendrograms
(Figures 4, 6, 7) present additional sub-clusters at higher
thresholds. It advocates therefore for additional factors
influencing the distribution patterns of the microbial taxonomic
groups at the GHPs site. Thereby, our study revealed that the
GHP ecosystem has to be considered in further investigations as
a myriad of ecological niches. In this perspective, the distance
between the cores (approx. 20 m) at a GHP is likely too long to
investigate gradual changes in microbial communities in relation
to fluxes of CHy. Designing an approach at a small scale may
better fill these gaps of knowledge.

SUMMARY AND CONCLUDING
REMARKS

This study shows that both prokaryotic and eukaryotic
communities at the GHPs formed a unique structure influenced
by the complex distribution of CHy seepage. The distribution
of the community types presented similar chaotic patterns
and methane oxidizing communities could be retrieved at
different locations over a GHP. In CHy-rich sediments, AOM
seemed to be primarily driven by a single OTU associated
to ANME-1 and had no correlation with a group of SRB.
This further supports the hypotheses that ANME-1 can
mediate AOM alone or use different sources of electron
receptors. Our approach also illustrated that at the GHPs site,
metabolites of AOM, such as sulfide and organic compounds,
likely explain the predominance of additional taxa, including
the Campilobacterota, the thermoplasmatales MBG-D, and
the Bathyarchaeia. Eukaryotic communities in the CHjy-rich
sediments had a dominance of heterotrophic ciliates and
Cercozoa, likely benefiting from the higher abundances of
prokaryotes as a food source. The retrieval of these taxa,

distributed specifically among the GHPs, suggests a complex
functional microbial system supported by, or contributing to, the
local oxidation of CHy.
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