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Objective: To investigate the incidence and susceptibilities of non-fermenting bacteria
isolates from Chinese respiratory (RTI), intra-abdominal (IAI) and urinary tract (UTI)
infections to antimicrobial agents between 2015 and 2017.

Methods: In total, 3,246 non-fermentative bacteria were collected from 21 hospitals
and 9 hospital departments across 7 regions of China. A central testing laboratory
was employed to determine antimicrobial susceptibilities using appropriate standards
of interpretation.

Results: The majority of the isolates were Acinetobacter baumannii (n = 1,360, 41.9%)
and Pseudomonas aeruginosa (n = 1,341, 41.3%). Overall multidrug resistance (MDR)
and carbapenem resistance (CR) rates of Acinetobacter baumannii were 80.1 and
78.7% with MDR and CR rates in RTIs, IAIs, and UTIs of 82.0 and 81.0%, 82.6
and 81.0% as well as 53.1 and 46.9%. Overall MDR and CR rates of Pseudomonas
aeruginosa isolates were 36.2 and 38.9% with 41.8 and 44.3%, 29.3 and 36.1% as
well as 24.2 and 20.2% MDR and CR rates in RTIs, IAIs, and UTIs. Overall susceptibility
rates to imipenem, meropenem, amikacin, ciprofloxacin, cefepime and piperacillin-
tazobactam were 21.1, 21.3, 33.0, 18.4, 19.2, and 19.6% for Acinetobacter baumannii
and 56.5, 58.5, 88.4, 63.1, 63.1, and 55.63% for Pseudomonas aeruginosa isolates,
whereas for colistin they were 95.7 and 94.6%, respectively. In all departments and
regions of China, susceptibility rates of Pseudomonas aeruginosa and Acinetobacter
baumannii isolates to colistin were constantly above 80%.

Conclusion: Due to the high MDR and CR rates for Pseudomonas aeruginosa and
Acinetobacter baumannii, isolates obtained from RTIs, IAIs, and UTIs only maintained
high susceptibility rates to colistin between 2015 and 2017.
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INTRODUCTION

Non-fermenting bacteria are a group of aerobic or facultative
anaerobic, spore-free, Gram-negative bacteria that do not use
glucose or use only oxidized forms; most are conditional
pathogens, which mainly cause nosocomial infections, and
clinical treatment is very difficult (Mesaros et al., 2007; Perez
et al., 2007). In recent years, due to the extensive application of
various medical invasive examinations, diagnosis and treatment
techniques, as well as broad-spectrum antibacterial drugs, the
number of nosocomial infections caused by non-fermentation
bacteria has gradually increased, with Acinetobacter baumannii
(A. baumannii) and Pseudomonas aeruginosa (P. aeruginosa)
being the most common.

Acinetobacter baumannii is an opportunistic pathogen and
is one of the most common nosocomial pathogens in clinical
practice in China (Chen et al., 2012). Due to the widespread use of
antibacterial drugs, especially β-lactam antibiotics, the isolation
rates of A. baumannii in clinical trials are on the rise, and its drug
resistance has also shown an upward trend. Indeed, multi-drug
resistant and even pan-resistant strains are common (Chopra
et al., 2013). A. baumannii often causes respiratory, urinary,
skin, soft tissue and bloodstream infections. It is one of the
main pathogens causing ventilator-associated pneumonia in the
United States and Europe (Fernández-Barat et al., 2017; Koulenti
et al., 2017). The pathogenicity and drug resistance mechanism
of P. aeruginosa have recently been extensively investigated
(Dimopoulos et al., 2020). An investigation into healthcare
associated infections in the US revealed that P. aeruginosa was the
6th most commonly found pathogen in infections as well as the
2nd most common organism causing pneumonia (Magill et al.,
2014). Furthermore, this organism has evolved various defenses
that render it resistance to various classes of antibiotics including
the β-lactams; P. aeruginosa is often cited as being multidrug
resistant (MDR) (Castanheira et al., 2014). This has serious
consequences as antibiotic therapy to treat MDR P. aeruginosa
are severely limited, particularly in areas of China where MDR
organisms are widely dispersed (Ruiz-Garbajosa and Canton,
2017; El Chakhtoura et al., 2018).

As MDR P. aeruginosa and A. baumannii infections
are increasing, available antibiotics to treat infections are
limited (Karageorgopoulos and Falagas, 2008; Pachon and
Vila, 2009; Towner, 2009). Colistin may be one of the most
effective antibiotics against P. aeruginosa or A. baumannii
resistant to carbapenems (Yuan and Tam, 2008), but as a
last line of defense the colistin sensitivities of P. aeruginosa
and A. baumannii is a major concern. The Study for
Monitoring Antimicrobial Resistance Trends (SMART) is a
global surveillance project designed to collect and monitor
in vitro antimicrobial susceptibilities of isolates obtained from
patients with intra-abdominal infections (IAIs), respiratory tract
infection (RTIs) and urinary tract infections (UTIs).

The present study is the first to investigate and analyze the
rate of non-fermenting bacteria isolates in IAIs, UTIs and RTIs,
as well as the rates of MDR and carbapenem resistance (CR)
A. baumannii and P. aeruginosa isolates and their sensitivities to
colistin using data collected by SMART China from 2015 to 2017.

MATERIALS AND METHODS

Non-fermenting Isolates Obtained From
7 Regions of China (2015 – 2017)
Our hospital’s Human Research Ethics Committee accepted the
protocols for the present inquiry (Et Number: S-K238) and
waived the requirement for consent.

In total, 3,246 non-fermentative bacteria (2015, n = 2,203;
2016, n = 2,375; 2017, n = 2,535) isolates were collected in 7
distinct regions of China from 21 hospitals (northeast, north,
central south, southwest, east Jiangzhe, and east non-Jiangzhe
areas) between 2015 and 2017 inclusively. The total number of
samples collected yearly from each hospital ranged between 77
and 250. Each sample was identified and dispatched for analysis
in Peking Union Medical College Hospital; re-identification
employed MALDITOF MS as the main tool. Duplicate isolates
from the same patient were not included in the analysis. The
detailed collection criteria for isolates from IAI, UTI, and RTI are
as follows:

Sample Collection Criteria for IAIs
The isolate must meet the laboratory criteria of “significant
pathogen” and be considered the probable causative agent of
infection. Only Gram-negative aerobic and facultative anaerobic
bacteria from abdominal infection sites such as the appendix,
peritoneum, colon, bile, pelvis and pancreas were included
and the strains needed to be pathogenic bacteria associated
with clinical infections, while Gram-positive and anaerobic
bacteria were excluded. The specimens were mainly obtained
through surgical procedures, but puncture specimens such as
intraperitoneal puncture fluid were also included and different
Gram-negative bacteria that were combined in one sample were
also accepted. Exclusion criteria were isolates from drainage
liquid or drainage bottles, as well as isolates from feces or perianal
abscess environmental samples (not a patient source) or cultures
for infection control purposes.

Sample Collection Criteria for UTIs
The isolate must meet the laboratory criteria of a “significant
pathogen” and be considered the probable causative agent
of infection. The UTI isolates were obtained from clean
catch midstream urine, the urinary bladder, kidney, and
the prostate gland.

Sample Collection Criteria for RTIs
The isolate must meet the laboratory criteria of a “significant
pathogen” and be considered the probable causative agent
of infection. Gram-negative aerobic and facultative bacteria
cultured from specimens from lower respiratory tract body
sites [e.g., sputum, bronchoalveolar lavage (BAL), thoracentesis,
bronchial brushing, endotracheal aspirate, and lung biopsy].

Testing of Organism Susceptibility to
Antibiotics
Antimicrobial susceptibility testing was performed according
to the Clinical and Laboratory Standards Institute (CLSI) broth
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microdilution method with custom-made dehydrated Trek
Diagnostic Systems panels (Thermo Fisher Scientific, Cleveland,
United States) between 2015 and 2017. The susceptibility
interpretations were based on the clinical breakpoints
recommended by the Clinical and Laboratory Standards Institute
[CLSI] (2017). The antimicrobial agents colistin, carbapenems
(imipenem, meropenem), an aminoglycoside (amikacin), a
cephalosporin (cefepime), a quinolone (ciprofloxacin) and
piperacillin/azobactam were tested according to the guidelines
of the Surgical Infection Society and Infectious Diseases
Society of America (Solomkin et al., 2010). Reference strains of
E. coli American Type Culture Collection (ATCC) 25922 and
P. aeruginosa (ATCC 27853) were used as quality controls for
each batch of MIC tests. Data were analyzed only when the quality
control test results were acceptable. In the present study, a CR
strain was defined as resistant to either imipenem or meropenem.
MDR was defined as a strain that was not susceptibility to
≥3 of 6 key antibiotics namely: amikacin; ciprofloxacin;
cefepime; colistin; imipenem; and piperacillin/tazobactam. These
antibiotics were chosen as they are usually employed in the clinic
to treat Gram-negative infections.

RESULTS

Composition of Non-fermenting Bacteria
From 2015 – 2017
From 2015 to 2017, a total of 3,246 non-fermentative bacteria
were collected, of which P. aeruginosa and A. baumannii
were major isolates of non-fermentative bacteria with similar
proportions (41.3 and 41.9%, respectively), with the majority
isolated from RTIs. However, the overall percentages of MDR
and CR in A. baumannii isolates were as high as 80.1 and
78.7%, respectively, which was almost two times that of MDR
P. aeruginosa (36.2%) and CR P. aeruginosa (38.9%) rates.
A. baumannii, CR and MDR phenotypes were particularly found
in abundance in isolates taken from the respiratory tract (81.0
and 82.0%) and in IAIs (81.0 and 82.6%). Similarly, MDR and
CR rates of P. aeruginosa strains were essentially highest in
isolates from RTIs (41.8 and 44.3%) followed by IAI isolates (29.3
and 36.1%) and lowest in UTI isolates (24.2 and 20.2%). Apart
from somewhat lower MDR P. aeruginosa and CR P. aeruginosa
rates in 2015 there was otherwise an almost constant pattern
throughout the years 2015–2017 (Table 1).

Susceptibility Analysis of A. baumannii
and P. aeruginosa to 7 Antimicrobial
Agents (2015 – 2017)
The susceptibility rates to carbapenems of A. baumannii isolates
were only about 20% and that of P. aeruginosa was <60%.
Susceptibility rates of P. aeruginosa isolates were relatively high
to amikacin (88.4%), but the MIC90 values were >32 mg/L, while
A. baumannii isolates exhibited only 33.04% susceptibility. The
susceptibility rates to ciprofloxacin, cefepime and piperacillin
tazobactam were higher in P. aeruginosa isolates (55 – 63%)
than in A. baumannii isolates (<20%). The susceptibility rates to

TABLE 1 | The overall distribution of non-fermentative bacteria, MDR
non-fermentative bacteria and CR non-fermentative bacteria collected in
2015, 2016, and 2017.

2015-2017 No. isolated
N (%)

MDR
N (%)

CR
N (%)

Non-fermentative bacteria 3246 (100.0) 1754 (54.0) 1699 (52.3)

A. baumannii 1360 (41.9) 1090 (80.1) 1070 (78.7)

IAI 327 (24.0) 270 (82.6) 265 (81.0)

UTI 96 (7.1) 51 (53.1) 45 (46.9)

RTI 933 (68.6) 765 (82.0) 756 (81.0)

P. aeruginosa 1341 (41.3) 486 (36.2) 522 (38.9)

IAI 321 (23.9) 94 (29.3) 116 (36.1)

UTI 198 (14.8) 48 (24.2) 40 (20.2)

RTI 815 (60.8) 341 (41.8) 361 (44.3)

Other non-fermentative bacteria 545 (16.8) 178 (32.7) 107 (19.6)

2015

Non-fermentative bacteria 742 380 (51.2) 363 (48.9)

A. baumannii 283 (38.1) 230 (81.3) 224 (79.2)

IAI 115 (40.6) 98 (85.2) 97 (84.3)

UTI 25(8.8) 14(56.0) 10 (40.0)

RTI 141 (49.8) 116(82.3) 115 (81.6)

P. aeruginosa 320 (43.1) 88 (27.5) 104 (32.5)

IAI 118 (36.9) 32 (27.1) 42 (35.6)

UTI 53 (16.6) 4 (7.5) 4 (7.5)

RTI 149 (46.6) 52(34.9) 58 (38.9)

Other non-fermentative bacteria 139 (18.7) 62 (44.6) 35 (25.2)

2016

Non-fermentative bacteria 1091 616 (56.5) 599 (54.9)

A. baumannii 492 (45.1) 393 (79.9) 384 (78.0)

IAI 111 (22.6) 91 (82.0) 87 (78.4)

UTI 37 (7.5) 19 (51.4) 17 (45.9)

RTI 343 (69.7) 282 (82.2) 279 (81.3)

P. aeruginosa 449 (41.2) 176 (39.2) 184 (41.0)

IAI 108 (24.1) 37 (34.3) 44 (40.7)

UTI 46 (10.2) 11 (23.9) 10 (21.7)

RTI 290 (64.6) 125 (43.1) 125 (43.1)

Other non-fermentative bacteria 150 (13.7) 47 (31.3) 31 (20.7)

2017

Non-fermentative bacteria 1413 758 (53.6) 737 (52.2)

A. baumannii 585 (41.4) 467 (79.8) 462 (79.0)

IAI 101 (17.3) 81 (80.2) 81 (80.2)

UTI 34 (5.8) 18 (52.9) 18 (52.9)

RTI 449 (76.8) 367 (81.7) 362 (80.6)

P. aeruginosa 572 (40.5) 222 (38.8) 234 (40.9)

IAI 95 (16.6) 25 (26.3) 30 (31.6)

UTI 99 (17.3) 33 (33.3) 26 (26.3)

RTI 376 (65.7) 164 (43.6) 178 (47.3)

Other non-fermentative bacteria 256 (18.1) 69 (27.0) 41 (16.0)

Other non-fermentative bacteria include: Acinetobacter junii; Aeromonas
hydrophila; Aeromonas caviae; Acinetobacter lwoffii; Alcaligenes faecalis;
Alcaligenes xylosoxidans; Alcaligenes xylosoxidans ssp.; Morganella morganii;
Pseudomonas putida; Stenotrophomonas maltophilia; Flavobacterium
meningosepticum; Burkholderia cepacia; Pseudomonas fluorescens.

colistin of both P. aeruginosa and A. baumannii were >90% (94.6
and 95.7%, respectively) and both MIC50/MIC90 values were
≤1 mg/L (Table 2). The susceptibilities of both P. aeruginosa and
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TABLE 2 | Susceptibility rates of A. baumannii and P. aeruginosa to 7 antimicrobial agents.

Organism/antimicrobial agent N MIC (mg/L) MIC interpretation

MIC50 MIC90 MIC range Susceptible (%) Intermediate (%) Resistant (%)

A. baumannii

Colistin 1356 ≤1 ≤1 ≤1–>8 95.7 0 4.4

Imipenem 1356 32 >32 ≤0.5–>32 21.1 0.7 78.2

Meropenem 1075 >16 >16 ≤0.12–>16 21.3 0.7 78.0

Amikacin 1356 >32 >32 ≤4–>32 33.0 0.7 66.3

Ciprofloxacin 1356 >2 >2 ≤0.25–>2 18.4 0.6 81.0

Cefepime 1356 >32 >32 ≤1–>32 19.2 2.3 78.5

Piperacillin Tazobactam 1356 >64 >64 ≤2–>64 19.6 1.2 79.2

P. aeruginosa

Colistin 1341 ≤1 2 ≤1–>8 94.6 0 5.4

Imipenem 1341 2 32 ≤0.5–>32 56.5 6.0 37.5

Meropenem 1021 1 >16 ≤0.12–>16 58.5 6.5 35.1

Amikacin 1341 ≤4 >32 ≤4–>32 88.4 0.8 10.8

Ciprofloxacin 1341 0.5 >2 ≤0.25–>2 63.1 6.0 31.0

Cefepime 1341 8 >32 ≤1–>32 63.1 11.1 25.8

Piperacillin Tazobactam 1341 16 >64 ≤2–>64 55.6 13.3 31.1

According to CLSI Performance Standards for Antimicrobial Susceptibility Testing, 27th Edition in 2017, MIC breakpoints (mg/L) to colistin for A. baumannii are ≤2 for
susceptibility and >2 for resistance, while MIC breakpoints (mg/L) to colistin for P. aeruginosa are ≤2 for susceptibility and ≥4 for resistance.

FIGURE 1 | Trends of antimicrobial susceptibilities of P. aeruginosa and A. baumanni isolates collected from 2015 to 2017 in China. ∗Means no data available.

A. baumannii to colistin has been changing in the shape of a “U”
curve over the 3 years of the study (Figure 1).

Susceptibility Analysis of MDR
A. baumannii, CR A. baumannii, MDR
P. aeruginosa and CR P. aeruginosa to
Colistin for Different Infection Types
From 2015 to 2017
Colistin (96.1 and 95.4%) demonstrated highest susceptibility
in CR A. baumannii and MDR A. baumannii isolates while
susceptibilities to the other antimicrobial agents, with the

exception of amikacin (16.8%), including imipenem as well
as ciprofloxacin were <3%. Colistin susceptibility rates of CR
and MDR A. baumannii isolates were 95.4 and 95.4% for
respiratory tract 98.1 and 97.0% for IAIs, as well as 95.6
and 92.2% for UTIs. Susceptibility rates of CR and MDR
A. baumannii isolates to amikacin were in the range of
17 – 18% for RTI, 14 – 15% for IAIs and 7 – 9% for
UTIs, whereas with the exception of MDR A. baumannii
from UTIs with susceptibility rates of 2 – 12%, all CR
and MDR A. baumannii isolates from RTIs, IAIs and UTIs
exhibited < 3% susceptibilities to all other tested antimicrobial
agents (Table 3).
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TABLE 3 | In vitro activity of 7 antimicrobial agents against CR and MDR A. baumannii collected in China from 2015 to 2017.

Organism/specimen source/antimicrobial agent N MIC (mg/L) MIC interpretation

MIC50 MIC90 MIC range Susceptible (%) Intermediate (%) Resistant (%)

CR-A. baumannii, all sources

Colistin 1070 ≤1 ≤1 ≤1 to >8 96.1 0 3.9

Amikacin 1070 >32 >32 ≤4 to >32 16.8 0.8 82.3

Cefepime 1070 >32 >32 2 to >32 1.3 2.1 96.6

Ciprofloxacin 1070 >2 >2 ≤0.25 to >2 1.8 0.6 97.7

Imipenem 1070 32 >32 1 to >32 0.4 0.1 99.5

Meropenem∗ 846 >16 >16 1 to >16 0.5 0.2 99.3

Piperacillin Tazobactam 1070 >64 >64 ≤2 to >64 1.0 0.6 98.4

CR-A. baumannii, RTI

Colistin 756 ≤1 ≤1 ≤1 to >8 95.4 0 4.6

Amikacin 756 >32 >32 ≤4 to >32 18.0 0.5 81.5

Cefepime 756 >32 >32 2 to >32 1.6 2.7 95.8

Ciprofloxacin 756 >2 >2 ≤0.25 to >2 2.1 0.8 97.1

Imipenem 756 32 >32 1 to >32 0.4 0.1 99.5

Meropenem∗ 641 >16 >16 1 to >16 0.6 0.3 99.1

Piperacillin Tazobactam 756 >64 >64 ≤2 to >64 1.1 0.7 98.3

CR-A. baumannii, IAI

Colistin 265 ≤1 ≤1 ≤1 to >8 98.1 0 1.9

Amikacin 265 >32 >32 ≤ 4 to >32 14.3 1.9 83.8

Cefepime 265 >32 >32 4 to >32 0.4 0.8 98.9

Ciprofloxacin 265 >2 >2 ≤0.25 to >2 0.8 0 99.3

Imipenem 265 32 >32 2 to >32 0.4 0 99.6

Meropenem∗ 168 >16 >16 8 to >16 0 0 100.0

Piperacillin Tazobactam 265 >64 >64 16 to >64 0.8 0.4 98.9

CR-A. baumannii, UTI

Colistin 45 ≤1 ≤1 ≤1 to >4 95.6 0 4.4

Amikacin 45 >32 >32 ≤4 to >32 6.7 0 93.3

Cefepime 45 >32 >32 4 to >32 2.2 0 97.8

Ciprofloxacin 45 >2 >2 >2 to >2 0 0 100.0

Imipenem 45 >32 >32 8 to >32 0 0 100.0

Meropenem∗ 35 >16 >16 8 to >16 0 0 100.0

Piperacillin Tazobactam 45 >64 >64 16 to >64 2.2 0 97.8

MDR-A. baumannii, all sources

Colistin 1090 ≤1 ≤1 ≤1 to >8 95.7 0 4.3

Amikacin 1090 >32 >32 ≤4 to >32 16.7 0.8 82.5

Cefepime 1090 >32 >32 2 to >32 1.0 2.4 96.6

Ciprofloxacin 1090 >2 >2 ≤0.25 to >2 1.1 0.6 98.3

Imipenem 1090 32 >32 ≤0.5 to >32 2.8 0.3 97.0

Meropenem∗ 860 >16 >16 ≤0.12 to >16 2.3 0.7 97.0

Piperacillin Tazobactam 1090 >64 >64 ≤2 to >64 1.3 0.5 98.3

MDR-A. baumannii, RTI

Colistin 765 ≤1 ≤1 ≤1 to >8 95.4 0 4.6

Amikacin 765 >32 >32 ≤4 to >32 17.5 0.5 82.0

Cefepime 765 >32 >32 2 to >32 1.1 3.0 96.0

Ciprofloxacin 765 >2 >2 ≤0.25 to >2 1.2 0.8 98.0

Imipenem 765 32 >32 ≤0.5 to >32 2.4 0.3 97.4

Meropenem∗ 649 >16 >16 ≤0.12 to >16 2.2 0.8 97.1

Piperacillin Tazobactam 765 >64 >64 ≤2 to >64 0.9 0.5 98.6

MDR-A. baumannii, IAI

Colistin 270 ≤1 ≤1 ≤1 to >8 97.0 0 3.0

Amikacin 270 >32 >32 ≤4 to >32 14.8 1.9 83.3

Cefepime 270 >32 >32 8 to >32 0.4 1.1 98.5

Ciprofloxacin 270 >2 >2 ≤0.25 to >2 0.4 0 99.6

(Continued)
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TABLE 3 | Continued

Organism/specimen source/antimicrobial agent N MIC (mg/L) MIC interpretation

MIC50 MIC90 MIC range Susceptible (%) Intermediate (%) Resistant (%)

Imipenem 270 32 >32 ≤0.5 to >32 2.2 0.4 97.4

Meropenem∗ 172 >16 >16 ≤0.12 to >16 2.3 0.6 97.1

Piperacillin Tazobactam 270 >64 >64 ≤2 to >64 1.1 0.4 98.5

MDR-A. baumannii, UTI

Colistin 51 ≤1 ≤1 ≤1 to >4 92.2 0 7.8

Amikacin 51 >32 >32 ≤4 to >32 9.8 0 90.2

Cefepime 51 >32 >32 4 to >32 3.9 0 96.1

Ciprofloxacin 51 >2 >2 1 to >2 2.0 2.0 96.1

Imipenem 51 32 >32 ≤0.5 to >32 11.8 0 88.2

Meropenem∗ 37 >16 >16 ≤0.12 to >16 5.4 0 94.6

Piperacillin Tazobactam 51 >64 >64 4 to >64 7.8 0 92.2

∗There was no meropenem tested in 2015. The data are expressed as n (%). MIC breakpoint (mg/L) of colistin to A. baumannii for susceptibility is ≤2; resistance is >2
according to Clinical and Laboratory Standards Institute [CLSI] (2017) Performance Standards for Antimicrobial Susceptibility Testing, 27th Edition, 2017.

Colistin (94.1 and 90.7%) had the highest susceptibility rates
against CR and MDR P. aeruginosa, followed by amikacin
(73.4 and 68.7%). Colistin susceptibility rates of CR and MDR
P. aeruginosa isolates were 95.6 and 91.79% for respiratory
tract, 89.7 and 87.2% for intra-abdominal as well as 92.5
and 89.6% for urinary tract infections. Susceptibilities of CR
P. aeruginosa to cefepime and ciprofloxacin were 32.7% for RTIs
and in the range of 46.6 – 53.5% for IAIs and 20 – 27.5% for
UTIs, whereas for MDR and CR P. aeruginosa RTI, IAI and
UTI isolates susceptibilities to the other tested antibiotics were
≤35% (Table 4).

Difference in Sensitivity of P. aeruginosa
and A. baumannii to Colistin in Different
Departments
Overall, sensitivity rates of P. aeruginosa and A. baumannii
to colistin were >85% in all departments. There was no
pattern of increased resistance rates over the study period in
any department and the susceptibilities in 2017 were mostly
higher or equal to the rates in 2015 and 2016 in all included
departments (Figure 2).

Difference in Sensitivity of P. aeruginosa
and A. baumannii to Colistin in Different
Regions
Similarly to departments, in all regions of China tested,
A. baumannii and P. aeruginosa sensitivities to colistin were
constantly above 80% and apart from a slight tendency of
P. aeruginosa and A. baumannii in east Jiangzhe there was
no visible sensitivity decrease over the years in all other
regions (Figure 3).

DISCUSSION

MDR has become a worldwide problem (WHO, 2014).
Since the rise of extended spectrum β-lactamase-positive

Enterobacteriaceae, carbapenems have served as the gold
standard for empirical treatment of ESBL-producing
Enterobacteriaceae infections over decades (Papp-Wallace
et al., 2011; Vardakas et al., 2012; Tamma et al., 2015). However,
since carbapemase-producing Enterobacteriaceae have become
increasingly prevalent in the last decade, susceptibility rates,
particularly for hospital acquired infections, dropped to levels
which urge the need for alternative treatments (Routsi et al.,
2013; Zurawski, 2014; Sheu et al., 2018).

In recent years, A. baumannii isolates have developed
resistances to carbapenems, amikacin, ciprofloxacin, cefepime
and piperacillin-tazobactam (Labarca et al., 2016; Ren et al.,
2019). It is noteworthy that CR A. baumannii and CR
P. aeruginosa are listed as priority pathogens posing the
greatest threat to human health by the WHO (Willyard,
2017). In a survey including 312,075 Gram-negative isolates
collected in the US in 2017, A. baumannii and P. aeruginosa
comprised the most common CR isolates mainly from ICU
settings, with rates of 36.6 and 14.6% (Mccann et al., 2018),
which was essentially lower than CR rates of 78.7% for
A. baumannii and 38.9% for P. aeruginosa in the present study,
indicating that the situation in China is by far more dramatic
compared to the US. However, in our study P. aeruginosa
and A. baumannii isolates were predominantly obtained from
RTIs in which the CR and MDR rates of both strains
were essentially highest, in good agreement with previously
published findings (Mccann et al., 2018). These results may
be attributed to the fact that P. aeruginosa and A. baumannii
predominantly cause ventilator-associated pneumonia especially
in critically ill patients in ICUs in which CR and MDR
rates are generally high (Shete et al., 2010; Tao et al.,
2011; Ding et al., 2016; Borgatta et al., 2017; Gupta et al.,
2017; Du et al., 2019). However, airborne transmission has
also been postulated for the transmission of A. baumannii
pneumonia (Whitman et al., 2008; Munoz-Price et al., 2013;
Spellberg and Bonomo, 2013).

Susceptibilities of A. baumannii isolates to amikacin,
ciprofloxacin, cefepime and piperacillin-tazobactam were
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TABLE 4 | In vitro activity of 7 antimicrobial agents against CR and MDR isolates of P. aeruginosa collected in China from 2015 to 2017.

Organism/specimen source/antimicrobial agent N MIC (mg/L) MIC interpretation

MIC50 MIC90 MIC range Susceptible (%) Intermediate (%) Resistant (%)

CR-P. aeruginosa, all sources

Colistin 522 ≤1 2 ≤1 to >8 94.1 0 5.9

Amikacin 522 ≤4 >32 ≤4 to >32 73.4 1.5 25.1

Cefepime 522 16 >32 ≤1 to >32 35.4 16.3 48.3

Ciprofloxacin 522 2 >2 ≤0.25 to >2 36.2 8.1 55.8

Imipenem 522 16 >32 1 to >32 1.3 2.3 96.4

Meropenem∗ 418 16 >16 ≤0.12 to >16 4.3 10.1 85.7

Piperacillin Tazobactam 522 >64 >64 ≤2 to >64 25.1 15.9 59.0

CR-P. aeruginosa, RTI

Colistin 361 ≤1 2 ≤1 to >4 95.6 0 4.4

Amikacin 361 ≤4 >32 ≤4 to >32 73.4 1.4 25.2

Cefepime 361 32 >32 ≤1 to >32 32.7 17.2 50.1

Ciprofloxacin 361 >2 >2 ≤0.25 to >2 32.7 8.9 58.5

Imipenem 361 16 >32 1 to >32 0.8 2.8 96.4

Meropenem∗ 303 16 >16 0.25 to >16 3.0 8.6 88.5

Piperacillin Tazobactam 361 >64 >64 ≤2 to >64 22.7 15.5 61.8

CR-P. aeruginosa, IAI

Colistin 116 ≤1 4 ≤1 to >8 89.7 0 10.3

Amikacin 116 ≤4 >32 ≤ 4 to >32 75.9 1.7 22.4

Cefepime 116 16 >32 ≤1 to >32 46.6 10.3 43.1

Ciprofloxacin 116 0.5 >2 ≤0.25 to >2 53.5 6.0 40.5

Imipenem 116 16 >32 1 to >32 1.7 0 98.3

Meropenem∗ 74 8 >16 ≤0.12 to >16 8.1 17.6 74.3

Piperacillin Tazobactam 116 64 >64 ≤2 to >64 36.2 13.8 50.0

CR-P. aeruginosa, UTI

Colistin 40 ≤1 2 ≤1 to >4 92.5 0 7.5

Amikacin 40 ≤4 >32 ≤4 to >32 65.0 2.5 32.5

Cefepime 40 16 >32 ≤1 to >32 27.5 25.0 47.5

Ciprofloxacin 40 >2 >2 ≤0.25 to >2 20.0 7.5 72.5

Imipenem 40 16 >32 1 to >32 5.0 5.0 90.0

Meropenem∗ 36 16 >16 1 to >16 8.3 5.6 86.1

Piperacillin Tazobactam 40 >64 >64 4 to >64 15.0 22.5 62.5

MDR-P. aeruginosa, all sources

Colistin 486 ≤1 2 ≤1 to >8 90.7 0 9.3

Amikacin 486 8 >32 ≤4 to >32 68.7 2.1 29.2

Cefepime 486 32 >32 ≤1 to >32 11.1 19.6 69.3

Ciprofloxacin 486 > 2 >2 ≤0.25 to >2 28.8 6.6 64.6

Imipenem 486 16 >32 ≤0.5 to >32 23.1 5.1 71.8

Meropenem∗ 398 16 >16 ≤0.12 to >16 24.4 4.5 71.1

Piperacillin Tazobactam 486 >64 >64 ≤2 to >64 6.4 12.1 81.5

MDR-P. aeruginosa, RTI

Colistin 341 ≤1 2 ≤1 to >8 91.8 0 8.2

Amikacin 341 8 >32 ≤4 to >32 68.3 2.1 29.6

Cefepime 341 32 >32 ≤1 to >32 10.6 19.4 70.1

Ciprofloxacin 341 >2 >2 ≤0.25 to >2 25.5 7.9 66.6

Imipenem 341 16 >32 ≤0.5 to >32 20.5 6.5 73.0

Meropenem∗ 289 16 >16 ≤0.12 to >16 21.8 4.8 73.4

Piperacillin Tazobactam 341 >64 >64 ≤2 to >64 5.3 11.7 83.0

MDR-P. aeruginosa, IAI

Colistin 94 ≤1 >4 ≤1 to >8 87.2 0 12.8

Amikacin 94 8 >32 ≤4 to >32 69.2 2.1 28.7

Cefepime 94 >32 >32 ≤1 to >32 7.5 19.2 73.4

Ciprofloxacin 94 2 >2 ≤0.25 to >2 43.6 2.1 54.3

(Continued)

Frontiers in Microbiology | www.frontiersin.org 7 September 2020 | Volume 11 | Article 1966

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01966 September 3, 2020 Time: 18:26 # 8

Zhang et al. Colistin Against P. aeruginosa and A. baumannii

TABLE 4 | Continued

Organism/specimen source/antimicrobial agent N MIC (mg/L) MIC interpretation

MIC50 MIC90 MIC range Susceptible (%) Intermediate (%) Resistant (%)

Imipenem 94 16 >32 ≤0.5 to >32 27.7 1.1 71.3

Meropenem∗ 62 8 >16 ≤0.12 to >16 30.7 4.8 64.5

Piperacillin Tazobactam 94 >64 >64 ≤2 to >64 9.6 8.5 81.9

MDR-P. aeruginosa, UTI

Colistin 48 ≤1 4 ≤1 to >4 89.6 0 10.4

Amikacin 48 ≤4 >32 ≤4 to >32 70.8 2.1 27.1

Cefepime 48 32 >32 4 to >32 22.9 20.8 56.3

Ciprofloxacin 48 >2 >2 ≤0.25 to >2 25.0 6.3 68.8

Imipenem 48 8 >32 ≤0.5 to >32 33.3 4.2 62.5

Meropenem∗ 44 16 >16 ≤0.12 to >16 34.1 2.3 63.6

Piperacillin Tazobactam 48 >64 >64 4 to >64 8.3 20.8 70.8

∗Meropenem was not examined in 2015, only after 2016. The data are expressed as n (%). MIC breakpoint (mg/L) of colistin to P. aeruginosa for susceptibility is ≤2;
resistance is >2 according to Clinical and Laboratory Standards Institute [CLSI] (2017) Performance Standards for Antimicrobial Susceptibility Testing, 27th Edition, 2017.

FIGURE 2 | Changes in the susceptibility of colistin to A. baumannii and P. aeruginosa over time in different hospital departments in China (2015, 2016, 2017).
#Means the susceptibility data were not available.

only in the range 19.2 – 33.0% and for P. aeruginosa
55.6 – 63.1% to ciprofloxacin, cefepime and piperacillin-
tazobactam, but 83.4% to amikacin, indicating that for all
tested antimicrobial agents other than colistin, at best only
amikacin might serve as an empiric treatment option for
P. aeruginosa infections. In contrast, overall susceptibility
rates to colistin were 94.6 and 95.7% for P. aeruginosa
and A. baumannii in isolates obtained from IAIs, UTIs
and RTIs in the present study, which is in agreement with
previously reported high susceptibility rates of both species
in other countries (Ece et al., 2014; Malekzadegan et al.,
2019). In addition, there was no visible trend of decreasing

colistin susceptibilities toward 2017 in the different hospital
departments and Chinese regions, except for a slight decrease
in east Jiangzhe. The constant low resistant rates might be
explained by the fact that colistin has been mainly used
for human clinical medication in China since 2017 (WHO,
2018) and earlier colistin resistance of Enterobacteriaceae
in China has been attributed to veterinary use (Chen
et al., 2011; Yang et al., 2017; Wang et al., 2018). The
resistance mechanism to colistin of these small number of
isolates may be associated with chromosomal mutations
(Dafopoulou et al., 2015) or defective biofilm formation
(Azimi and Lari, 2019).
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FIGURE 3 | Changes in the susceptibility of colistin to A. baumannii and P. aeruginosa over time in different regions of China (2015, 2016, 2017).

Limitations
The present study presents only data from 2015 to 2017,
because the SMART surveillance program is retrospective.
In addition, we reported the susceptibility of A. baumannii
and P. aeruginosa to 7 commonly used antibiotics in China.
The susceptibilities of other non-fermenting bacteria such as
Stenotrophomonas, Burkholderia were not included due to the
limited number of strains.

CONCLUSION

Due to high MDR and CR rates of A. baumannii (80.1 and 78.7%)
and P. aeruginosa (36.2 and 38.9%) isolates from RTIs, IAIs and
UTIs, between 2015 and 2017 high susceptibility rates were only
detected for colistin.
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