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Clostridioides difficile toxin A ( TcdA) has been shown to inhibit cellular Wnt signaling, the 
major driving force behind the proliferation of epithelial cells in colonic crypts, likely through 
the inhibition of β-catenin nuclear translocation. Herein, we aimed to advance the 
understanding of this mechanism by replicating the findings in vivo and by investigating 
the specific role of Rac1, a member of the Rho GTPase family, on the inhibition of the 
Wnt-induced β-catenin nuclear translocation triggered by TcdA. To investigate the effects 
of TcdA on the Wnt/β-catenin pathway in vivo, we injected the ileal loops of C57BL/6 
mice with TcdA [phosphate-buffered saline (PBS) as the control] to induce C. difficile 
disease-like ileitis. After 4 h post-injection, we obtained ileum tissue samples to assess 
Wnt signaling activation and cell proliferation through Western blotting, immunohistochemistry, 
and qPCR. To assess the role of Rac1 on Wnt signaling inhibition by TcdA, we transfected 
rat intestinal epithelial cells (IEC-6) with either a constitutively active Rac1 plasmid (pcDNA3-
EGFP-Rac1-Q61L) or an empty vector, which served as the control. We incubated these 
cells with Wnt3a-conditioned medium (Wnt3a-CM) to induce Wnt/β-catenin pathway 
activation, and then challenged the cells with TcdA. We assessed Wnt signaling activation 
in vitro with TOP/FOPflash luciferase assays, determined nuclear β-catenin translocation 
by immunofluorescence, measured cyclin D1 protein expression by Western blotting, and 
quantified cell proliferation by Ki67 immunostaining. In vivo, TcdA decreased β-catenin, 
cyclin D1, and cMYC expression and inhibited the translocation of β-catenin into the 
nucleus in the ileum epithelial cells. In addition, TcdA suppressed cell proliferation and 
increased Wnt3a expression, but did not alter Rac1 gene expression in the ileum tissue. 
In vitro, constitutively active Rac1 prevented Wnt signaling inhibition by enabling the 
β-catenin nuclear translocation that had been blocked by TcdA. Our results show that 
TcdA inhibits Wnt/β-catenin pathway in vivo and demonstrate that this inhibition is likely 
caused by a Rac1-mediated mechanism.
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INTRODUCTION

Clostridioides difficile (C. difficile), a gram positive, spore forming 
anaerobic bacterium, is a major cause of nosocomial diarrhea 
(Zhu et  al., 2018). The two major virulence factors responsible 
for C. difficile infection are C. difficile toxin A (TcdA) and C. 
difficile toxin B (TcdB). TcdA and TcdB enter cells through 
receptor-mediated endocytosis and inhibit the small Rho 
guanosine triphosphatases (GTPases), such as Rho, Rac1, and 
Cdc42 (Chen et  al., 2019). The Rho family of small GTPases 
is a branch within a superfamily of Ras-related small GTPases. 
Twenty mammalian genes encoding Rho GTPases have been 
identified of which Rac1, Cdc42, and RhoA are the prototypes 
and therefore the best characterized (Jaffe and Hall, 2005). 
These signaling proteins regulate all the actin-dependent process 
like cell migration, phagocytosis, and cell contraction. They 
are also involved in various other signaling pathways, regulating 
gene expression, cell cycle, and apoptosis. Most Rho GTPases 
cycle between a GTP-bound active conformation and a 
GDP-bound inactive conformation (Wennerberg and Der, 2004), 
acting as molecular switches. Not surprisingly, this family of 
molecules plays central roles in maintenance of health, and 
their dysregulation often results in disease. Anomalous signaling 
of Rho GTPases is found in many human cancers and may 
be  attributed to several mechanisms, such as overexpression 
of Rho GTPases with oncogenic activity or alterations of upstream 
regulators or downstream effectors (Vega and Ridley, 2008).

GTPases are known to be critically involved in the regulation 
of intestinal epithelial barrier functions, since inhibition of Rho 
GTPases results in actin cytoskeleton disruption, apoptosis, and 
impairment of intestinal cell proliferation (Welsh et  al., 2001; 
Brito et  al., 2002; Lica et  al., 2011; D’Auria et  al., 2012; Chen 
et  al., 2019). Most of these cellular processes are also regulated 
by the activated Wnt/β-catenin signaling pathway (Gao et  al., 
2017; Steinhart and Angers, 2018). A previous study from our 
research group showed that TcdA inhibits the Wnt/β-catenin 
signaling pathway in intestinal epithelial cells (IECs; Lima et al., 
2014); however, its mechanism remains unknown.

The Wnt/β-catenin signaling pathway is a well-conserved and 
complex signaling cascade that plays an important role in 
development, homeostasis, and disease (Gough, 2012; Tortelote 
et  al., 2017). This signaling pathway dictates intestinal epithelial 
layer self-renewal through a complex cellular process that includes 
cell proliferation, cell differentiation, and apoptosis (Ring et  al., 
2014). Pathway activation depends on the secretion of Wnt 
family proteins, which in turn bind to frizzled (FZD) receptors 
and low-density receptor-related protein (LRP) 5/6 coreceptors 
on the cell membrane (Wu et  al., 2009). In the absence of Wnt 
ligands, the level of intracellular β-catenin is regulated by a 
multiprotein cytoplasmic degradation complex that consists of 
Axin and its interacting partners: tumor suppressor adenomatous 
polyposis coli (APC), glycogen synthase kinase 3 beta (GSK3β), 
and casein kinase 1 (CK1; Ring et  al., 2014). The destruction 
complex phosphorylates β-catenin, leading to subsequent 
proteasomal degradation. When Wnt ligands bind their FZD 
and LRP5/6 receptors, the destruction complex is disassembled, 
allowing for β-catenin accumulation in the cytoplasm and its 

translocation to the nucleus. Then, nuclear β-catenin binds to 
the transcription factors of the T cell factor/lymphocyte enhancer 
factor (TCF/LEF) family (Kimelman and Xu, 2006; Ring et  al., 
2014) and promotes the transcription of Wnt/β-catenin pathway 
target genes, including cMYC, cyclin D1, survivin, bcl-2, Rac1, 
Rho, and Cdc42 (Daniels and Weis, 2005; Lima et  al., 2014).

Previous studies demonstrated that both TcdA and TcdB 
inhibit the Wnt/β-catenin pathway. Whereas TcdB inhibits this 
pathway by binding to the frizzled-7 (FZD-7) receptor in the 
colonic epithelium (Tao et al., 2016; Chen et al., 2019). However, 
whether TcdA impairs Wnt/β-catenin signaling transduction 
in vivo and the mechanism underlying its inhibitory action 
remain unknown. Given that Rac1 plays an important role in 
β-catenin translocation to the nucleus, we  hypothesized that 
its inactivation by TcdA is crucial for Wnt/β-catenin signaling 
inhibition. Here, we  investigated the role of Rac1  in the TcdA-
mediated inhibition of the Wnt/β-catenin signaling pathway 
in IECs in vitro and characterized the impact of TcdA on 
Wnt/β-catenin signaling in a mouse ileal loop model.

MATERIALS AND METHODS

Animals
All experimental protocols were approved by the Federal 
University of Ceará Committee on the Ethical Treatment of 
Research Animals (CEUA. N. 2727150218) and were performed 
in accordance with the Guide for Care and Use of Laboratory 
Animals (National Institutes of Health, Bethesda, MD, 
United States). Male C57BL/6 mice (8 weeks old) were obtained 
from the vivarium of the Department of Physiology and 
Pharmacology of the Federal University of Ceará. The mice 
were maintained in a temperature-controlled environment 
(22  ±  1°C) with a 12-h light/dark cycle and had a free access 
to drinking water and standard diet.

Clostridioides difficile Toxin A-Induced 
Ileitis
TcdA-induced murine ileitis was induced as previously described 
(De Araújo Junqueira et  al., 2011) with some modifications. 
Mice (n  =  6  in each group) were fasted for 4  h and had a 
free access to water before being anesthetized (80 mg/kg ketamine 
and 10  mg/kg xylazine administered intraperitoneally). After 
midline laparotomy, a 4-cm ileal loop was ligated, and 10  μg 
of TcdA (TechLab) in 200 μl of phosphate-buffered saline (PBS) 
was injected at the site of the ligations. Control loops were 
injected with only 200  μl of PBS. After 4  h, the mice were 
euthanized (240  mg/kg ketamine and 15  mg/kg xylazine 
administered intraperitoneally), and the ileal loops were removed 
for subsequent analysis of the parameters defined in this study.

Quantitative Real-Time PCR
Quantitative real-time PCR (qPCR) analysis of the gene expression 
of β-catenin, cyclin D1, cMYC, Wnt3a, and Rac1 was performed 
in mouse ileum tissue stored in RNAlater solution (Qiagen), 
an RNA stabilizer, at −80°C. Total RNA was extracted by an 
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RNA isolation system (Promega) according to the manufacturer’s 
protocol. The RNA was quantified by a NanoDrop spectrometer 
(Thermo Fisher Scientific), and RNA quality was determined 
by examining the 260/280 ratio  >  1.8. A total of 1  μg RNA 
was then reverse transcribed using a high-capacity cDNA reverse 
transcription kit (Applied Biosystems) according to the 
manufacturer’s protocol. qPCR was performed using SYBR 
Green PCR Master Mix (Applied Biosystems), as described in 
the manufacturer’s instructions. The sequences of the primers 
are listed in Table 1. To compare gene expression under different 
conditions, the expression under each condition (normalized 
to GAPDH, the endogenous control) was quantified relative 
to the control condition. For β-catenin, cyclin D1, cMYC, 
Wnt3a, and Rac1, qPCR amplification was performed in a 
CFX Connect system (Bio-Rad) under the following conditions: 
50°C for 2  min and 95°C for 10  min, followed by 40  cycles 
of 95°C for 15  s and 60°C for 60  s. The relative expression 
levels of the genes were calculated using the threshold cycle 
(2−ΔΔCT) method (Livak and Schmittgen, 2001).

Measurement of Nuclear β-Catenin by 
Western Blotting
To obtain the nuclear extract from the ileum tissue samples, 
a nuclear extract kit (Abcam) was used according to the 
manufacturer’s protocol. Protein concentrations were determined 
through bicinchoninic acid assay according to the protocol of 
the kit manufacturer (Thermo Fisher Scientific). Fifty micrograms 
of reduced protein in Laemmli sample buffer with 
β-mercaptoethanol (Bio-Rad) was run on an SDS-PAGE gel 
(10%) and transferred onto PVDF membrane for 2  h. Then, 
the membranes were blocked with 5% blotting-grade blocker 
(Bio-Rad) for 1 h at room temperature and incubated overnight 
with anti-β-catenin (Abcam, 1:200) and anti-B23 (Santa Cruz 
Biotechnology, 1:1000) at 4°C. Then, the membranes were 
incubated with secondary antibody conjugated with horseradish 
peroxidase (HRP; Invitrogen, 1:1000) for 2 h at room temperature. 
The fluorescence of a chemiluminescent signal system was 
detected by a ChemiDoc™ XRS+ system (Bio-Rad, Life 
Technologies), and the bands were quantified by densitometry 
using Image Lab 5.0 software (Bio-Rad).

Immunohistochemistry Assay for β-Catenin, 
Cyclin D1, cMYC, Ki67, and Wnt3a
Sections (4  μm thick) were prepared from paraffin-embedded 
ileum tissue. Then, the samples were deparaffinized, dehydrated, 
immersed in retrieval solution (DAKO, pH 6.0 or pH 9.0) for 

30 min in PT Link (DAKO), incubated with 3% (v/v) hydrogen 
peroxide to block endogenous peroxidase for 20  min at room 
temperature, and washed in PBS. The sections were then 
incubated with β-catenin (Abcam, 1:400), cyclin D1 (DAKO 
Flex), cMYC (Abcam, 1:200), Ki67 (Abcam, 1:200), and Wnt3a 
(Invitrogen, 1:800) antibodies diluted in diluent antibody solution 
(DAKO) for 1  h at room temperature. Next, the sections were 
washed with wash buffer and incubated with polymer (HRP 
DAKO) for 30  min. The slides were then washed and stained 
with chromogen 3,3′-diaminobenzidine peroxide (DAB), followed 
by counterstaining with Mayer’s hematoxylin, dehydrated in a 
graded alcohol series, cleared with xylene, and placed on a 
coverslip. The negative controls were processed simultaneously 
as described above, with the primary antibody being replaced 
by the diluent antibody. The images were captured by means 
of a light microscope coupled to a camera with an LAZ 3,5 
acquisition system (LEICA DM1000, Germany). One hundred 
epithelial cells were counted from each field to quantify the 
percentage of cells showing positive immunostaining for 
each protein.

Cell Culture, Transfection and Wnt3a-
Conditioned Medium Production
The rat intestinal epithelial cell (IEC-6) line was obtained from 
the repository of cells in Rio de Janeiro. IEC-6 cells were 
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) 
supplemented with 10% fetal bovine serum (FBS), 1% antibiotics 
(100 μg/ml penicillin and 100 μg/ml streptomycin, Gibco) and 
0.1  U/ml bovine insulin (Sigma) at 37°C in a humidified 
incubator under 5% CO2 conditions for 21–30 passages. For 
all the experiments, the IEC-6 cells were released using 0.25% 
trypsin-EDTA for 5  min.

The IEC-6 cells were transfected with pcDNA3-EGFP-Rac1-
Q61L [Addgene, the vector pcDNA3 contains the mutant Rac1 
encoding cDNA (Rac1) in its active form and the green 
fluorescent protein (GFP);  Subauste et  al., 2000] or an empty 
vector with Lipofectamine 3000 reagent (Thermo Scientific), 
as described in the manufacturer’s instructions. After 18  h, 
the transfection medium was removed, and the cells were 
incubated with 50% Wnt3a-conditioned medium (Wnt3a-CM) 
and/or TcdA (TechLab, 50 ng/ml). Then, after 24 h of incubation, 
the cells were collected for evaluation.

Wnt3a-CM was obtained from L cells stably transfected 
with the Wnt3a plasmid cultured in DMEM supplemented 
with 10% FBS for 4  days. The medium was collected and 
filtered using a 0.22  μm filter, and fresh medium was added 
to the cells and cultured for 3  more days. After this period, 
the medium was collected and mixed with the previous medium 
at a 1:1 ratio. As a control, the CM was similarly generated 
with an untransfected parental cell line.

TCF Reporter Assay
The IEC-6 cells were cotransfected with TOPflash (Millipore)/
FOPflash (Millipore) and the pRL-TK vector (Promega) in 
combination with the pcDNA3-EGFP-Rac1-Q61 or an empty 
vector with Lipofectamine 3000 reagent (Thermo Scientific) 

TABLE 1 | Primers used in qPCR.

Gene Forward Reverse

β-catenin ACGCACCATGCAGGAATACA CTTAAGATGGCCAGCAAGC
Cyclin D1 GCGTACCCTGACACCAATCT AATCTCCTTCTGCACGCACT'
cMYC AGCTGCTTCGCCTAGAATTG 'CCTATTCAGCACGCTTCTCC
Wnt3a TTCTTACTTGAGGGCGCAGA AAGGAACCCAGATCCCAAAT
Rac1 GACCAGCCGACTAGCTTTTG3 CAGCACACCCACAACTAGGA
GAPDH AGAACATCATCCCTGCATCC CACATTGGGGGTAGGAACAC
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according to the reagent manufacturer’s instructions. TOPflash 
is a TCF reporter plasmid containing two sets of three 
copies of wild-type TCF-binding sites and is driven by a 
minimal promoter of thymidine kinase inserted upstream 
of the luciferase reporter gene. FOPflash contains mutated 
TCF-binding sites driven by the same thymidine kinase 
promoter and upstream luciferase open reading frame as 
used in TOPflash. FOPflash is used as a negative control 
for TOPflash activity. The pRL-TK vector contains the Renilla 
gene under the control of the constitutively active herpes 
simplex virus thymidine kinase promoter and was used as 
a normalizer (MAJOR, 007; Kumar, 2008). After transfection, 
the medium was removed, and 50% Wnt3a-CM with or 
without TcdA was added to the cells and incubated for 
24  h. Next, the cells were lysed, and luciferase and Renilla 
activities were measured by a dual-luciferase reporter system 
(Promega) with a microplate luminometer. This assay is as 
a gold standard to evaluate β-catenin translocation into 
the nucleus.

Immunofluorescence Staining and 
Confocal Microscopy
Immunofluorescence assays were performed as previously 
described (Lima et  al., 2014). Briefly, IEC-6 cells were fixed 
in 4% paraformaldehyde in PBS at pH 7.6, washed with PBS, 
and permeabilized with 0.1% Triton X-100  in PBS for 5  min. 
The samples were then blocked for 1  h with PBS containing 
5% bovine serum albumin (BSA). The cells were incubated 
with an anti-β-catenin antibody (1:200, Abcam) overnight at 
4°C, and a secondary antibody conjugated with Alexa Fluor 
596 (1:1000) for 1  h at room temperature. Then, the cells 
were incubated with 4′,6-diamidino-2-phenylindole (DAPI, 
Thermo Scientific) for 5 min, washed with PBS, and mounted 
with Prolong Gold mounting medium (Thermo Scientific). 
Images were captured using a CoolSNAP-Pro digital camera 
(Media Cybernetics, Bethesda, MD, United  States). The 
percentage of cells showing positive immunostaining for 
β-catenin in the nucleus or cytoplasm and the percentage of 
unstained cells were determined by counting 100 DAPI-
stained nuclei.

Measurement of IEC-6 Cell Proliferation
IEC-6 cell proliferation was evaluated by Ki67 
immunocytochemistry, as previously described by Tinoco-
Veras et  al. (2017). Briefly, 3  ×  105 cells/well in a 24-well 
plate were fixed with 4% paraformaldehyde solution for 
30  min, washed with PBS, and permeabilized with 0.1% 
Triton X-100 for 5  min. The samples were then blocked 
for 1 h with 5% BSA and incubated with anti-Ki67 antibody 
(1: 200, Abcam) for 1  h at room temperature. The samples 
were then incubated with the HRP polymer (DAKO) for 
30  min at room temperature. Then, the cells were stained 
with DAB chromogen (DAKO) and counterstained with 
hematoxylin. The coverslips were placed on slides using 
Faramount (DAKO). The percentage of cells showing positive 
immunostaining for Ki67 was determined by counting 100 
hematoxylin-stained nuclei.

Western Blot Analysis
Lysate samples from the treated IEC-6 cells were harvested in 
RIPA buffer (Thermo Scientific) by the procedure described 
by the manufacturer. Protein concentrations were determined 
through bicinchoninic acid assay according to the protocol of 
the kit manufacturer (Thermo Fisher Scientific). Thirty 
micrograms of reduced protein in Laemmli sample buffer with 
β-mercaptoethanol (Bio-Rad) was run on an SDS-PAGE gel 
(10%) and transferred onto PVDF membrane for 2  h. Then, 
the membranes were blocked with 5% blotting-grade blocker 
(Bio-Rad) for 1 h at room temperature and incubated overnight 
with anti-cyclin D1 (Abcam, ab32572, 1:200), anti-Rac1 (BD 
Bioscience, 610651, 1:500), and anti-β-actin (Santa Cruz 
Biotechnology, 1:1000) at 4°C. Then, the membranes were 
incubated with secondary antibody conjugated with HRP 
(Invitrogen, 1:1000) for 2 h at room temperature. The fluorescence 
of a chemiluminescent signal system was detected by a 
ChemiDoc™ XRS+ system (Bio-Rad, Life Technologies), and 
the bands were quantified by densitometry using Image Lab 
5.0 software (Bio-Rad).

Statistical Analysis
All quantitative results are expressed as the means  ±  standard 
error of the mean (SEM). Statistical analysis of the data was 
performed using GraphPad Prism software, version 6.0. Student’s 
t-tests were used to compare two groups, and analyses of 
variance (ANOVAs) followed by Bonferroni’s multiple comparison 
test were used for comparisons of more than two groups. A 
value of p  <  0.05 was considered significant.

RESULTS

TcdA Inhibits Wnt/β-Catenin Signaling 
in vivo
Given that TcdA had previously been shown to inhibit Wnt/β-
catenin signaling in the IEC-6 cells (Lima et al., 2014), we asked 
whether Wnt/β-catenin signaling could be inhibited in a mouse 
model of TcdA-induced ileitis, particularly since epithelial cells 
interact with other cells in vivo. We  found that TcdA 
downregulated (p  <  0.02) β-catenin gene expression in ileum 
tissue compared to the level in the control (Figure 1A). Similarly, 
β-catenin protein expression in the TcdA-challenged ileum 
tissue was notably reduced compared to that in control ileal 
tissue (Figure 1B). TcdA reduced the levels of β-catenin protein 
in the epithelial cell nuclei from ileal crypts (Figure  1C).

Nuclear translocation of β-catenin activates TCF4, leading 
to the transcription of target genes, such as cMYC and cyclin 
D1 (Chen et  al., 2019). To analyze whether TcdA-induced 
inhibition of β-catenin nuclear translocation alters cMYC and 
cyclin D1 expression in the ilea of the mice, we  performed 
a qPCR analysis of these genes. Notably, TcdA decreased 
cMYC (p  <  0.02) and cyclin D1 (p  <  0.04) gene expression 
in the ilea of the treated mice compared to that in the ilea 
of the control group mice (Figures  2A,B). As observed in 
Figure  2C, TcdA reduced (p  <  0.0001) cyclin D1 
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immunostaining in the ilea of the treated mice compared to 
that in the ilea of the control group mice. In the mouse 
ileum, cyclin D1 is mainly expressed by epithelial cells from 
ileal crypts (Figure  2D). TcdA also decreased (p  <  0.0001) 
the number of cells showing cMYC immunostaining in the 
ilea of the treated mice compared to the number in the ilea 
of the control group mice (Figure  2E). As cyclin D1, cMYC 
is predominantly expressed by cells in ileal crypts in normal 
tissues, and its expression is reduced by challenge with TcdA 
(Figure  2F). These results are consistent with those showing 
Wnt/β-catenin target gene inhibition by TcdA and may indicate 
TcdA influence on cell proliferation.

TcdA Decreases Cell Proliferation in 
Mouse Ileal Crypts
Because cMYC and cyclin D1 are proteins related to the cell 
proliferation cycle, we  used Ki67 immunohistochemistry to 
evaluate whether TcdA is able to alter cell proliferation in the 
ileal crypts. We  found that TcdA decreased the percentage of 
Ki67-positive cells in the ileal crypts of the treated mice 
compared with the percentage in the crypts of the control mice 

(p < 0.0001; Figure 3A). In the control mice, a greater number 
of Ki67-positive cells were found in intestinal crypts (Figure 3B), 
and they were considerably reduced by TcdA (Figure  3B).

TcdA Upregulates Wnt3a in the Mouse Ileum
Given that Wnt3a is an endogenous agonist that stimulates 
β-catenin translocation resulting in proliferation, we  asked 
whether TcdA could affect its expression in the mouse ileum. 
We  found that TcdA upregulated Wnt3a gene expression in 
the ilea of the treated mice compared to that in the ilea of 
the control group mice (p  <  0.01; Figure  4A). TcdA increased 
Wnt3a protein expression in the epithelial cells (Figure  4B).

TcdA Inhibition of β-Catenin Nuclear 
Translocation Induced by Wnt3a Is 
Reversed by Upregulation of Rac1 in the 
Epithelial Cells in vitro
Previously, it was demonstrated that Wnt3a does not affect 
TcdA-induced β-catenin nuclear translocation inhibition (Lima 
et  al., 2014). Because TcdA glucosylates Rho GTPases, such 
as Rac1 (without affecting Rac1 gene expression in vivo, as 
shown in Supplementary Figure  1), which induces the 
recruitment of β-catenin to the nucleus (Wu et  al., 2008; 
Pethe et  al., 2011; Jamieson et  al., 2015), we  investigated 
whether upregulation of Rac1 through transfection of 
pcDNA3-EGFP-Rac1-Q61L (as shown in Supplementary 
Figures  2, 3) could recover Wnt3a-induced β-catenin nuclear 
translocation in the intestinal epithelial (IEC-6) cells challenged 
with TcdA. We  found that Wnt3a alone induced β-catenin 
nuclear activity in a manner independent of pcDNA3-EGFP-
Rac1-Q61L transfection in the IEC-6 cells, while its 
transcriptional regulatory response (as demonstrated by the 
TOPflash/FOPflash, ratio) was inhibited by TcdA with either 
Wnt3a or Rac1 upregulation alone. Rac1 upregulation in the 
presence of Wnt3a-CM increased β-catenin nuclear activity 
in the IEC-6 cells challenged with TcdA (p < 0.001; Figure 5A). 
As observed in Figures  5B,C, in the IEC-6 cells transfected 
with pcDNA3-EGFP-Rac1-Q61L, Wnt3a alone increased the 
level of β-catenin immunostaining in the nucleus, and TcdA 
decreased the nuclear immunostaining in this epithelial cell 
line. Notably, Rac1 upregulation in the presence of Wnt3a-CM 
induced increased the level of β-catenin immunostaining in 
the nuclei of the IEC-6 cells challenged with TcdA 
(Figures 5B,C). As expected, the increased expression of Rac1 
caused by transfection with pcDNA3-EGFP-Rac1-Q61L reversed 
the inhibitory effect of TcdA on cyclin D1 protein expression 
in the IEC-6 cells induced by Wnt3a compared with the 
expression in the IEC-6 cells transfected with pcDNA (empty 
vector) and incubated with TcdA and Wnt3a (Figures  5D,E).

TcdA-Induced Inhibition of IEC-6 Cell 
Proliferation Is Recovered by the 
Upregulation of Rac1
Given that activation of the Wnt/β-catenin pathway results in 
cell proliferation and that TcdA inhibits the proliferation of 

A

B

C

FIGURE 1 | Clostridioides difficile toxin A ( TcdA) decreases β-catenin 
expression and its nuclear translocation in mouse ileum. (A) CTNNNB1 
mRNA expression in the ileum of mice subjected to TcdA (10 μg)-induced 
ileitis as evaluated by qPCR. Bars represent the means ± SEM of five mice in 
each group; Student’s t-test. (B) The WB bands of each group showing 
β-catenin and B23 (a control protein) expression in the protein nuclear fraction 
in the ileum tissue. (C) Representative immunohistochemical images of 
β-catenin expression in mouse ileum control tissue and TcdA-treated ileal 
tissue.
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IECs, we  asked whether upregulation of Rac1 through the 
transfection of pcDNA3-EGFP-Rac1-Q61L could recover the 
proliferation of epithelial (IEC-6) cells challenged with TcdA, 
which we evaluated by immunostaining Ki67, which is a marker 
of cell proliferation. As shown in Figures  6A,B, neither Rac1 
upregulation nor exposure to Wnt3a-CM affected the TcdA-
induced inhibition of IEC-6 cell proliferation. However, the 
combination of Rac1 upregulation and Wnt3a-CM reversed 
the inhibitory effect of TcdA on IEC-6 cell proliferation 
(p  <  0.001; Figures  6A,B).

DISCUSSION

Herein, we  demonstrate that TcdA inhibits Wnt signaling 
in  vivo by decreasing the translocation of β-catenin to the 
nucleus, and thus downregulating its target genes  
(c-MYC and cyclin D1). Through this pathway, TcdA was 
shown to inhibit intestinal crypt cell proliferation in a  
mouse model of C. difficile-induced disease-like ileitis  
despite Wnt3a upregulation observed in the crypts and  
lamina propria cells, which were insufficient to induce  
Wnt/β-catenin activation.

A

C D

E F

B

FIGURE 2 | TcdA downregulates β-catenin target genes (cMYC and cyclin D1) and reduces cyclin D1 protein in the ileum of the treated mice. (A) CCND1 and (B) 
cMYC mRNA expression in the ileum of mice treated with phosphate-buffered saline (PBS; control) or TcdA (10 μg) for 4 h, as evaluated by qPCR. Bars represent 
the means ± SEM of five mice in each group; Student’s t-test. (C) Percentage of the cells showing positive cyclin D1 immunostaining. Data are the means ± SEM; 
Student’s t-test. (D) Representative immunohistochemical images of cyclin D1 levels in the ilea of mice challenged with PBS (control) or TcdA (10 μg). (E) Percentage 
of the cells showing positive cMYC immunostaining. Data are the means ± SEM; Student’s t-test. (F) Representative immunohistochemical images of cMYC 
expression in mouse ilea challenged with PBS (control) or TcdA (10 μg).

A

B

FIGURE 3 | TcdA decreases cell proliferation in mouse ileum crypts. 
(A) Percentage of the cells showing positive Ki67 immunostaining. Data are 
the means ± SEM in 6–8 microscope fields per sample (n = 5 mice per group); 
Student’s t-test. (B) Representative immunohistochemical images of Ki67 
levels in mouse ileum challenged with PBS (control) or TcdA (10 μg) for 4 h.
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Our laboratory had previously demonstrated that TcdA 
inhibits the Wnt/β-catenin pathway in IECs in vitro even when 
the cells are in the presence of the activator Wnt3a, an endogenous 
agonist; lithium chloride, a GSK3β inhibitor; and/or z-VAD-fmk, 
a nonspecific caspase inhibitor (Lima et  al., 2014). Here, 
we  demonstrated that Rac1 upregulation in the presence of 
Wnt3a-CM rescued TcdA-induced transcriptional inhibition 
(as demonstrated by the TOPflash/Renilla ratio), β-catenin 
nuclear translocation, cyclin D1 protein expression, and cell 
proliferation, implying that TcdA inhibits the Wnt/β-catenin 
pathway in a Rac1-dependent manner.

As shown previously, the inhibitory effects of TcdA on the 
Wnt/β-catenin pathway persist even in the presence of 
constitutively active β-catenin (Lima et  al., 2014), suggesting 
that its inhibitory effect may be  related to a defect in the 
process of β-catenin translocation to the nucleus, a process 
in which Rac-1 has been shown to play a crucial role (Buongiorno 
et  al., 2008; Wu et  al., 2008, 2009; Jamieson et  al., 2015). 
Rac1 activates JNK, which in turn phosphorylates β-catenin, 
promoting its translocation to the nucleus (Wu et  al., 2008).

Although Rac1 mRNA expression is not modified by 
TcdA, as shown in Supplementary Figure 1, it is well-known 
that TcdA, as well as TcdB, glucosylates Rho GTPases, such 
as, RhoA/B/C, Rac1/2, and Cdc42 promote Rac1 inactivation, 
decreasing the level of the active Rac1 isoform in the 
cytoplasm, and thus impeding its biological function (Reineke 
et  al., 2007; Gerhard et  al., 2008; Genisyuerek et  al., 2011; 
Chen et  al., 2016).

Using a promoter of the active pcDNA3-EGFP-Rac1-Q61L 
plasmid to upregulate Rac1  in IEC-6 cells (as shown in 
Supplementary Figure  3), we  found that an increase in 

constitutively active Rac1 reverses both the inhibition of 
β-catenin translocation to the nucleus and the decrease in 
IEC-6 cell proliferation induced by TcdA in an extracellular 
Wnt3a-dependent manner. These data suggest that inhibition 
of the Wnt/β-catenin signaling pathway promoted by TcdA 
is a consequence of Rac1 glucosylation and inactivation by 
this toxin. The effect of EHop-016, a Rac inhibitor, on cell 
proliferation in mammary tumor growth reinforces our 
hypothesis (Montalvo-Ortiz et  al., 2012). In agreement with 
our data, a previous report demonstrated that a dominant-
negative Rac1 mutant drastically inhibits Wnt signaling in 
colon cancer followed by a decrease in its target gene 
transcription (Esufali and Bapat, 2004). Moreover, in Drosophila 
embryos, the deletion of RacGAP50C, a gene that negatively 
regulates Rac1, promoted the activation of Wnt/β-catenin 
(Jones and Bejsovec, 2005). Rac1 also plays an important 
role in the phosphorylation of LRP5/6, a coreceptor required 
for FZD activation by Wnt proteins, in a PIP2-dependent 
manner (Schlessinger et  al., 2009). PIP2 synthesis requires 
PIP4K and PIP5K, which are activated by Rho and Rac1 
(Schlessinger et  al., 2009). It is possible that inactivation of 
Rac1 by TcdA affects different stages of Wnt/β-catenin signaling, 
but further investigations are needed to determine the exact 
stages affected.

TcdA and TcdB can act in different Rho proteins, but 
previous study suggested that Rac1, rather than RhoA or 
Cdc42, is crucial for the cytopathic effects induced by TcdA 
and TcdB (Halabi-Cabezon et  al., 2008). Although, we  may 
not exclude the role of other Rho proteins, rather than 
Rac1, on TcdA inhibitory effect on Wnt/β-catenin signaling 
pathway, the reversion of this effect by Rac1 upregulation 
suggests that Rac1 is a main mediator in this inhibition. 
In addition, we cannot exclude the involvement of additional 
mechanisms to modulate the activity of Rac1  in the present 
study, considering that specific modification at a single 
threonine residue in the small GTPases leads these important 
key players of several signaling pathways to their functional 
inactivation. TcdA and TcdB glucosylate Rac1/Cdc42 at 
threonine-35 and RhoA, decreasing their active levels into 
the cells (Halabi-Cabezon et al., 2008; Schoentaube et al., 2009; 
Genth et  al., 2018).

Rac1 involvement in TcdB-induced cytopathic effects in 
epithelial cells has been demonstrated (Halabi-Cabezon et al., 
2008). In turn, inactivation of Rac1 is involved in the 
cytotoxic effect of high concentrations of TcdB (Beer et  al., 
2018). However, in our investigation, the upregulation of 
constitutively active Rac1 alone, without a Wnt3a conditioned 
medium, did not rescue the antiproliferative effect of TcdA 
or the inhibition of β-catenin translocation, suggesting that 
these toxins may act by different mechanisms. In addition, 
whereas TcdB has been shown to inhibit the activity of the 
Wnt/β-catenin signaling pathway by binding to the FZD-7 
receptor expressed by cells in the colonic epithelium (Tao 
et  al., 2016), thereby preventing its activation by Wnt3a, 
TcdA has not shown affinity for FZD2, FZD3, or FZD-7 
(Gupta et  al., 2017). Like TcdA, TcdB induces inactivation 
of Rho GTPases including Rac-1 (Halabi-Cabezon et al., 2008; 

A

B

FIGURE 4 | TcdA increases Wnt3a expression in the mouse ileum. 
(A) Wnt3a mRNA expression in the ilea of the mice treated with PBS (control) 
or TcdA (10 μg) for 4 h as evaluated by qPCR. Bars represent the 
means ± SEM of five mice in each group. Student’s t-test. 
(B) Immunohistochemical images of Wnt3a expression in the ilea of mice 
treated with PBS (control) or TcdA (10 μg) for 4 h.
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Schoentaube et  al., 2009; Genth et  al., 2018), which should 
cause Wnt/β-catenin signaling pathway inhibition. However, 
the investigation on TcdB effect in this pathway was not 
the aim of this study.

Wnt/β-catenin pathway activation with subsequent 
recruitment of β-catenin into the nucleus results in epithelial 
cell proliferation due to the increased expression of key 
cell cycle proteins, such as cyclin D1 and c-MYC (Clevers, 2006; 

Humphries and Wright, 2008). These protein expression 
levels were reduced by TcdA followed by a decrease in 
epithelial proliferation in the mouse ileum, as demonstrated 
in the present study. Consistently, TcdA critically affected 
three of the most important aspects of the intestinal mucosal 
repair process: epithelial cell migration, apoptosis, and cell 
proliferation (Brito et  al., 2005). In addition, another report 
demonstrated that β-catenin‐ and TCF4-knockdown mice 
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FIGURE 5 | Upregulation of Rac1 reverses the TcdA inhibitory effect on β-catenin nuclear translocation induced by Wnt3a in intestinal epithelial cells (IEC-6). 
(A) Relative reporter activity of β-catenin/T cell factor (TCF) signaling in the IEC-6 cells cotransfected with pcDNA (empty vector) or pcDNA3-EGFP-Rac1-Q61L, and 
TOPflash luciferase reporter constructs followed by incubation with TcdA (50 ng/ml), Wnt3a-conditioned or L-cell medium for 24 h. Renilla luciferase constructs were 
used as an internal control for transfection efficiency. Bars represent the means ± SEM (n = 5). One-way ANOVA, followed by Bonferroni’s test, was used; 
**p < 0.001. (B) Percentage of cells showing positive β-catenin immunostaining in the nucleus. Data are the means ± SEM. One-way ANOVA, followed by 
Bonferroni’s test, was used; **p < 0.001. (C) Representative photomicrographs of immunostained β-catenin (red) and DAPI, a nuclear dye (blue), in IEC-6 cells 
transfected with pcDNA (empty vector) or pcDNA3-EGFP-Rac1-Q61L followed by 24 h incubation with TcdA (50 ng/ml) alone or Wnt3a-conditioned medium 
(Wnt3a-CM). (D) The WB bands of each group showing cyclin D1 and β-actin (a control protein) protein expression from lysed IEC-6 cells after 24 h of incubation. 
(E) Analysis of the relative band densities of cyclin D1 normalized to β-actin. Bars represent the means ± SEM (n = 5). One-way ANOVA, followed by Bonferroni’s 
test, was used; **p < 0.001.
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exhibited decreased cell proliferation in intestinal crypts 
(Tao et  al., 2014). Multiple pathways, including the Wnt/β-
catenin pathway and the expression of their target genes, 
are essential for maintaining epithelial barrier function and 
epithelial cell repair after injury. In C. difficile infection, 
the accumulation of TcdA and TcdB is associated with 
Wnt/β-catenin pathway inhibition, although this 
downregulation is induced, at least in part, by different 
mechanisms, and together with pro-inflammatory cytokine 
production within the intestinal mucosa, this accumulation 
likely results in intestinal epithelial stem cell niche 
degeneration and suppression of repair (Farin et  al., 2014; 
Leslie et  al., 2015; Liu et  al., 2019).

Interestingly, the inhibition of β-catenin translocation to 
the nucleus and the subsequent downregulation of β-catenin 
target genes were maintained even during TcdA-induced 
Wnt3a upregulation in the mouse ileum, suggesting that a 
TcdA intracellular mechanism is involved in its inhibitory 
effect on the Wnt/β-catenin pathway. According to our data, 
increased Wnt3a expression was found in patients with 
ulcerative colitis compared to the level found in patients 
with noninflammatory bowel disease, but no difference was 
found in the expression of a panel of Wnt target genes 
(You et  al., 2008). Although Paneth cells are an important 

source of Wnt ligands (Wnt3a) needed to sustain the 
self-renewal of intestinal epithelial stem cells, Paneth cells 
are impaired upon C. difficile infection (Liu et  al., 2019). 
In the present study, the expression of Wnt3a was found 
mainly in lamina propria cells, suggesting that immune-
induced inflammatory cells are involved in the release of 
Wnt3a. According to this premise, several studies have 
reported the synthesis of Wnt ligands by macrophages, which 
are related to mucosal healing (Loilome et  al., 2014). There 
is a possibility that increased if Wnt3a upregulation may 
result in simultaneous upregulation of Wnt3a inhibitors, 
such as DKK and SFRP, which in turn additionally could 
contribute to pathway inhibition.

In addition to the importance of the clarification of this 
pathway inhibition mechanism by TcdA in C. difficile 
infection, targeting Rac-1 with TcdA, which resulted in the 
Wnt/β-catenin pathway and cell proliferation inhibition, 
may be  one strategy to control tumor growth. According 
to this hypothesis, new findings suggest that TcdA may 
be  able to inhibit proliferation and apoptosis and partially 
reverse multidrug resistance in a human chronic myeloid 
leukemia cell line (Xi et  al., 2018).

Taken together, our data suggest that Rac1 inactivation is 
one of the mechanisms behind the impairment of Wnt/β-catenin 

A

B

FIGURE 6 | Upregulation of Rac1 reverses the TcdA inhibitory effect on Wnt3a-induced proliferation of the IEC-6 cells. (A) Percentage of IEC-6 cells showing 
positive Ki67 immunostaining after being cotransfected with pcDNA (empty vector) or pcDNA3-EGFP-Rac1-Q61L upon incubation with TcdA (50 ng/ml), Wnt3a-CM 
or L-cell medium for 24 h. Data are the means ± SEM (n = 6). One-way ANOVA, followed by the Bonferroni’s test, was used; **p < 0.001. (B) Representative 
immunohistochemical images of the Ki67-immunostained IEC-6 cells transfected with pcDNA (empty vector) or pcDNA3-EGFP-Rac1-Q61L, followed by 24 h 
incubation with TcdA alone or Wnt3a-CM or L-cell medium.
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signaling pathway by TcdA (Figure  7). The clarification of the 
involvement of Rac-1  in the mechanism of C. difficile TcdA 
inhibition reveals a potential target for future research on the 
modulation of Wnt/β-catenin signaling for therapeutic interventions.
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