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When bacteria experience growth-limiting environmental conditions, the synthesis of the 
hyperphosphorylated guanosine derivatives (p)ppGpp is induced by enzymes of the RelA/
SpoT homology (RSH)-type protein family. High levels of (p)ppGpp induce a process called 
“stringent response”, a major cellular reprogramming during which ribosomal RNA (rRNA) 
and transfer RNA (tRNA) synthesis is downregulated, stress-related genes upregulated, 
messenger RNA (mRNA) stability and translation altered, and allocation of scarce resources 
optimized. The (p)ppGpp-mediated stringent response is thus often regarded as an all-or-
nothing paradigm induced by stress. Over the past decades, several binding partners of 
(p)ppGpp have been uncovered displaying dissociation constants from below one 
micromolar to more than one millimolar and thus coincide with the accepted intracellular 
concentrations of (p)ppGpp under non-stringent (basal levels) and stringent conditions. 
This suggests that the ability of (p)ppGpp to modulate target proteins or processes would 
be better characterized as an unceasing continuum over a concentration range instead 
of being an abrupt switch of biochemical processes under specific conditions. We analyzed 
the reported binding affinities of (p)ppGpp targets and depicted a scheme for prioritization 
of modulation by (p)ppGpp. In this ranking, many enzymes of e.g., nucleotide metabolism 
are among the first targets to be affected by rising (p)ppGpp while more fundamental 
processes such as DNA replication are among the last. This preference should be part 
of (p)ppGpp’s “magic” in the adaptation of microorganisms while still maintaining their 
potential for outgrowth once a stressful condition is overcome.
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THE METABOLISM OF (p)ppGpp

Bacteria must adapt to fluctuations in their ever-changing surroundings to survive. In order 
to accomplish optimal resource allocation upon facing environmental shifts, the pathways 
through which microorganisms rewire their metabolism need to be  finely and promptly tuned. 
An efficient control of metabolism senses stress, adjusts growth accordingly, mandates which 
genes – and to which extent – are expressed, and ultimately provides a fitness advantage over 
poorly-adapted microbial competitors. The second messenger molecules (p)ppGpp are compounds 
that can accomplish all this.

More than 50 years ago, the “magic spots”, which were identified as guanosine 5'-diphosphate 
3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and collectively 
referred to as (p)ppGpp or “alarmones”, were discovered by Cashel and Gallant (1969). Since 
then, the synthesis and degradation of (p)ppGpp as well as the (p)ppGpp-mediated response 
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to nutrient limitations, a phenomenon known as the “stringent 
response”, have been subject of extensive studies. Central in 
the metabolism of (p)ppGpp are members of the RelA/SpoT 
homology (RSH)-type protein family (Atkinson et  al., 2011). 
Briefly, when bacteria encounter nutrient-limiting conditions, 
RSH proteins utilize ATP as a donor substrate and, through 
transfer of its β‐ and γ-phosphates onto the 3'-hydroxy group 
of the acceptor substrate guanosine 5'-diphosphate (GDP) or 
guanosine 5'-triphosphate (GTP), generate ppGpp or pppGpp, 
respectively (Sy and Lipmann, 1973). RSH proteins also degrade  
(p)ppGpp through removal of the 3'-pyrophosphate moiety 
of (p)ppGpp, thereby regenerating GDP/GTP (Hogg et al., 2004). 
“Long” RSH proteins harbor (p)ppGpp hydrolase and synthetase 
domains whose reciprocal activities are controlled by further 
regulatory domains (Atkinson et  al., 2011). “Short” RSH 
proteins consisting only of a (p)ppGpp synthetase or hydrolase 
domain constitute the class of small alarmone synthetases (SAS) 
and hydrolases (SAH), respectively (Atkinson et al., 2011). Enzymes 
of the GppA/PPX family are able to convert pppGpp to ppGpp 
opening the avenue for more intricate differential regulation by 
the two alarmone species (Keasling et al., 1993; Kuroda et al., 1997; 
Kristensen et  al., 2008).

The activity of RSH proteins is subject to regulation by 
various mechanisms, and (p)ppGpp-inducing conditions 
include, e.g., the presence of stalled ribosomes (Rel/RelA; 
Haseltine and Block, 1973; Wendrich et  al., 2002), fatty acid 
starvation, and carbon downshifts (SpoT; Battesti and Bouveret, 
2006, 2009), enhanced transcription of (p)ppGpp synthetases 
through cell wall stress stimuli (SAS2/RelP; Zweers et  al., 
2012; Geiger et  al., 2014) or allosteric stimulation through 
the alarmone pppGpp itself (SAS1/RelQ; Gaca et  al., 2015; 
Steinchen et  al., 2015). The intracellular concentrations of 
(p)ppGpp during growth of Escherichia coli amount 
approximately 10–40  μM during logarithmic growth – 
unfortunately those basal levels are still not robustly 
determined because they typically fall beneath or close to 
the limit of quantification as in two recent studies (Varik 
et  al., 2017; Zbornikova et  al., 2019) – and peak at 800  μM 
at the onset of stationary phase. Full induction of the stringent 
response during acute amino acid starvation [e.g., induced 
by a transfer RNA (tRNA) synthetase inhibitor] gives rise 
to an increase of the intracellular (p)ppGpp concentrations 
to approximately 1  mM (Haseltine and Block, 1973; 
Kuroda et  al., 1997; Kriel et  al., 2012; Varik et  al., 2017), 
ultimately causing growth arrest (Schreiber et  al., 1991; 
Svitil et  al., 1993; Potrykus and Cashel, 2008).

A PRIORITY PROGRAM OF (p)ppGpp 
SHUTDOWN IS ADVISED BY ITS 
BINDING AFFINITIES

Substantial progress has been made in the identification and 
characterization of (p)ppGpp binding targets (reviewed in: 
Kanjee et  al., 2012; Steinchen and Bange, 2016; recent original 
works: Corrigan et al., 2016; Zhang et al., 2018; Wang et al., 2019), 
which fall into different cellular processes such as DNA 

replication, transcription, translation, ribosome biogenesis, or 
nucleotide metabolism (Srivatsan et al., 2008; Liu et al., 2015a; 
Corrigan et  al., 2016; Bennison et  al., 2019). Firstly, these 
studies provide insights as to how (p)ppGpp affect virulence, 
pathogenicity, persister cell and biofilm formation, heat shock 
response, and cell growth (Dalebroux and Swanson, 2012; 
He et  al., 2012; Bager et  al., 2016; Strugeon et  al., 2016; 
Schafer et  al., 2020). Secondly, they supply a wealth of 
biochemical data that quantitatively describe (p)ppGpp/
protein interactions.

We were wondering whether any prioritization in the order 
of regulation between those targets/processes would exist. 
We  collected and analyzed binding affinities (exemplified by 
the dissociation constants, Kd, of the (p)ppGpp/protein 
complexes), inhibitory constants (Ki) and EC50/IC50 values for 
the targets of (p)ppGpp and depicted a scheme of prioritization 
in (p)ppGpp modulation (Figure 1 and Supplementary Table S1). 
Proteins involved in the metabolism of amines and amino 
acids exhibit very high-affine (p)ppGpp binding with Kd’s as 
low as 0.01  μM (E. coli LdcI, Kanjee et  al., 2011a,b). They 
are followed by a multitude of enzymes involved in the 
metabolism of nucleotides featuring Kd values below 10  μM 
(Zhang et al., 2018; Wang et al., 2019), the tRNA modification 
GTPase TrmE and riboswitches of the YkkC type 2a 
(Peselis and Serganov, 2018; Sherlock et  al., 2018). Notably, 
their Kd values below the assumed basal levels of (p)ppGpp 
imply a certain degree of regulation by (p)ppGpp even under 
non-stringent conditions (see below). (p)ppGpp binding to 
targets involved in transcription [i.e., E. coli RNA polymerase 
(RNAP); Bhardwaj et al., 2018] and Francisella tularensis MglA-
SspA (Cuthbert et  al., 2017) proceeds between 2 and 25  μM. 
It shall be  noted that (p)ppGpp elicit control over E. coli 
RNAP through modulation of relative transcription rates from 
different promoters instead of a general reduction or induction 
of RNAP activity (Gourse et  al., 2018). These targets are 
succeeded by further enzymes of nucleotide metabolism with 
Kd values ranging between 30 and 80  μM. Except for GpmA 
exhibiting a Kd of 52  μM, proteins associated with carbon 
metabolism feature dissociation constants/IC50 values of 
132–800  μM (Dietzler and Leckie, 1977; Taguchi et  al., 1977; 
Fujita and Freese, 1979; Wang et  al., 2019). In a similar range 
falls the inhibition of DNA replication via (p)ppGpp binding 
to DnaG (Wang et al., 2007; Maciag et al., 2010; Rymer et al., 2012). 
Enzymes of fatty acid metabolism exhibit weak binding affinities 
(Polakis et al., 1973; Stein and Bloch, 1976), suggesting regulation 
by (p)ppGpp only to take place under full stringent control 
(i.e., 1,000  μM (p)ppGpp). Some enzymes partaking in  
(p)ppGpp metabolism, i.e., the (p)ppGpp synthetases RelQ 
(Gaca et  al., 2015; Steinchen et  al., 2015) and Rel/RelA 
(Shyp et  al., 2012; Kudrin et  al., 2018; Takada et  al., 2020a), 
are stimulated in their activity by pppGpp and to a lesser 
extent by ppGpp. Furthermore, the enzymes GdpP, Pde2, and 
PgpH involved in the degradation pathway of the second 
messenger cyclic-diadenosine-monophosphate (c-di-AMP) display 
Ki values for inhibition by ppGpp between 35 and 400  μM.

Importantly, in proteins where (p)ppGpp bind competitively 
to another compound (Figure  1 and Supplementary Table S1), 
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the intracellular concentration of this compound also affects the 
fraction of the (p)ppGpp-bound protein. The influence of 
this other compound rises with its intracellular concentration. 
For example, the concentration of GTP under non-stringent 
conditions is assumed to fall between approximately 1 (Varik 
et  al., 2017; Zbornikova et  al., 2019) and 5  mM (Bennett 
et al., 2009) but may drop heavily due to (p)ppGpp-dependent 
inhibition of GTP anabolism (Kriel et  al., 2012; Liu et  al., 
2015b). Thereby, inhibition of GTPases is governed by the 
(p)ppGpp to GTP ratio that is indicative for the metabolic 
state of the cell. Assuming, for example, similar Kd values 
for (p)ppGpp and GTP binding, only approximately 1% of 
a protein would be  inhibited at 10  μM (p)ppGpp/1  mM GTP 
while this fraction rises to 50% at equal concentrations of 
both nucleotides. In fact, the Ki for the inhibition of the 
GTPase RbgA of 300 and 800  μM (ppGpp and pppGpp in 
presence of 50S ribosomal subunits determined at 1 mM GTP; 

Pausch et al., 2018; Supplementary Table S1) is a better estimate 
than the Kd value. Similar considerations apply to some enzymes 
of nucleotide metabolism, e.g., GMK (Nomura et  al., 2014) 
with its substrate GMP or Gpt (Hochstadt-Ozer and Cashel, 
1972) with the substrate guanine. In contrast to GTP, however, 
the intracellular concentrations of those nucleotides are lower, 
i.e., 24  μM GMP and 19  μM guanine (Bennett et  al., 2009), 
suggesting 90% inhibition at (p)ppGpp concentrations of 
approximately 200 μM. In contrast, the enzymes YgdH (PpnN; 
Zhang et  al., 2019), PurF (Wang et  al., 2019), and LdcI are 
allosterically inhibited by (p)ppGpp, rendering inhibition by 
(p)ppGpp independent of the substrate concentration. 
Summarized, the kinetic parameters of (p)ppGpp interaction 
with target proteins indicate the following hierarchy of adaptation: 
amine and amino acid metabolism, nucleotide metabolism, 
translational and ribosome biogenesis GTPases, DNA replication, 
carbon metabolism, and fatty acid synthesis (Figure  1).

FIGURE 1 | Scheme of prioritization of (p)ppGpp-mediated adaptation. The colored bar denotes the approximate intracellular concentrations (in μM) of (p)ppGpp in 
bacteria. Binding targets of (p)ppGpp were sorted according to their dissociation constants (Kd). For DnaG, “enzymes” and proteins of carbon metabolism and fatty 
acid synthesis, Ki or EC50/IC50 values are depicted. Proteins are color-coded according to their belonging to different groups/biochemical processes. Rectangles and 
rounded rectangles indicate whether (p)ppGpp binding to the target molecule is competitive or allosteric. Bacterial species are abbreviated as follows: 
Escherichia coli (Ec), Bacillus subtilis (Bs), Staphylococcus aureus (Sa), Listeria monocytogenes (Lm), Francisella tularensis (Ft), Thermus thermophilus (Tt), and 
Salmonella typhimurium (St). Further details can be found in Supplementary Table S1.
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IMPORTANCE OF BASAL (p)ppGpp 
LEVELS FOR BACTERIAL PHYSIOLOGY

Increasing evidence recommends that bacteria require basal 
(p)ppGpp levels to maintain homeostasis (Sokawa et  al., 1975; 
Sarubbi et  al., 1988; Silva and Benitez, 2006; Lemos et  al., 2008; 
Gaca et  al., 2013; Stott et  al., 2015; Li et  al., 2020) and strains 
that are completely devoid of any (p)ppGpp (known as (p)ppGpp0) 
reveal multiple disabilities in cell division, transcription, translation, 
GTP homeostasis, and antibiotic tolerance. In Bacillus subtilis, 
the lack of (p)ppGpp causes elevated GTP levels, which through 
dysregulation of the GTP-dependent transcriptional repressor CodY 
result in auxotrophies for branched-chain amino acids (Kriel et al., 
2014). Similar CodY-mediated detrimental effects of ppGpp0-strains 
were observed for Enterococcus faecalis (Gaca et  al., 2013) and 
Staphylococcus aureus (Pohl et  al., 2009). In a rel-deletion strain 
of Synechococcus elongatus, the transcript levels of 52–67% of all 
genes were upregulated at least 3-fold and the levels of rRNA 
elevated indicating a “transcriptionally relaxed” state (Puszynska 
and O’Shea, 2017). Furthermore, cell size and volume increased 
but could be  restored by synthetic compensation of (p)ppGpp 
(Puszynska and O’Shea, 2017). In Vibrio cholera basal (p)ppGpp 
has been linked to the expression of virulence factors and cell 
motility (Silva and Benitez, 2006). Basal (p)ppGpp was also required 
for the tolerance of E. faecalis against vancomycin (Abranches 
et  al., 2009). These reports emphasize the importance of basal 
(p)ppGpp levels, which through high-affine binding of the alarmones 
(Kd < 10 μM; Figure 1) exert a regulatory function in the absence 
of a (p)ppGpp-stimulating trigger.

TOXIC OVER-ACCUMULATION OF  
(p)ppGpp

Intuitively, a prolonged mismatch of (p)ppGpp synthesis and 
degradation resulting in over-accumulation of (p)ppGpp, is 
detrimental for the cell. In E. coli, RelA and SpoT are responsible 
for the synthesis of (p)ppGpp, with only SpoT being able to 
hydrolyze the alarmones. As such, the role of SpoT is pivotal 
for preventing toxic (p)ppGpp accumulation as exemplified by 
SpoT-deletion strains being characterized by reduced growth 
rates and distorted amino acid requirements (Xiao et  al., 1991). 
Bacteria of the Firmicutes phylum, instead of possessing RelA 
and SpoT, harbor the bifunctional enzyme Rel (Atkinson et al., 2011). 
The hydrolase activity of Rel is required to prevent toxic 
concentrations of (p)ppGpp, which results in severe growth defects 
(Gratani et  al., 2018; Takada et  al., 2020b). This effect appears 
more notorious in the presence of the two small alarmone 
synthetases, RelP and RelQ, the (p)ppGpp synthetase activity of 
which is not properly contained in absence of the (p)ppGpp-
degrading Rel (Geiger et al., 2014). In Mycobacterium tuberculosis, 
(p)ppGpp degradation is equally essential since deletion of 
(p)ppGpp hydrolase activity, while retaining (p)ppGpp synthesis, 
lead to lethal toxicity evidenced by irregularities in colony 
formation irrespective of the nutritional environment 
(Weiss and Stallings, 2013). Notably, these M. tuberculosis strains 

were also impaired in their virulence in a mouse model during 
both acute and chronic infection, highlighting the interference 
with (p)ppGpp metabolism as a potential antimicrobial therapeutic 
strategy. Taken together, a tight regulation of the antagonistic  
(p)ppGpp producing and degrading activities is indispensable for 
many, if not all bacteria for (i) correctly adjusting (p)ppGpp 
levels in response to environmental cues, (ii) coordinating various 
cellular processes in an orchestrated manner, and (iii) avoiding 
lethal consequences due to (p)ppGpp over-accumulation.

CROSSTALK BETWEEN (p)ppGpp AND 
c-di-AMP

Bacteria possess a thorough toolbox of nucleotide-based second 
messengers to efficiently respond to diverse external cues 
(Pesavento and Hengge, 2009; Kalia et al., 2013; Hengge et al., 2016). 
Among those, c-di-AMP is a signaling molecule mainly synthetized 
by Gram-positive bacteria (Romling, 2008; da Aline Dias et al., 2020; 
He et  al., 2020; Yin et  al., 2020), which fulfills a pivotal role in 
the osmotic homeostasis (Stulke and Kruger, 2020). The dynamic 
range of intracellular c-di-AMP is much lower than for (p)ppGpp 
and lies in the one-digit μM range (in B. subtilis 1.7  μM during 
vegetative growth to 5.1  μM 2  h after sporulation; 
Oppenheimer-Shaanan et al., 2011). The importance of c-di-AMP 
for bacterial physiology is also highlighted by the observation 
that both the complete absence and over-accumulation of c-di-AMP 
impede growth of B. subtilis (Mehne et  al., 2013; 
Gundlach et al., 2015). Comparison of the transcriptional profiles 
of S. aureus cells at high c-di-AMP or (p)ppGpp concentrations 
revealed an overlap of 27.9% between the two regulons (Corrigan 
et  al., 2015). Intriguingly, (p)ppGpp inhibit the activity of the S. 
aureus c-di-AMP phosphodiesterase GdpP with a Ki of 
129.7 ± 42.8 μM in vitro correlating with higher levels of c-di-AMP 
observed in vivo (Corrigan et  al., 2015). Inhibition by ppGpp 
with an IC50 of 139  ±  5.6  μM was also reported for the second 
S. aureus c-di-AMP phosphodiesterase Pde2 (Bowman et  al., 
2016). Similar observations made for the c-di-AMP hydrolases 
YybT (GdpP) from B. subtilis (Rao et  al., 2010) and PgpH from 
Listeria monocytogenes (Huynh et  al., 2015). These Ki/IC50 values 
suggest that (p)ppGpp concentrations must rise above their basal 
levels to inhibit c-di-AMP degradation. Deletion of S. aureus 
GdpP with concomitant increase of c-di-AMP evokes elevated 
(p)ppGpp (Corrigan et  al., 2015), thus implying that induction 
of one second messenger, (p)ppGpp or c-di-AMP, augments the 
other. Conversely, the depletion of the only c-di-AMP synthetase, 
dacA, in L. monocytogenes also induced a toxic accumulation of 
(p)ppGpp (Whiteley et  al., 2015). This apparent twist might 
be  caused in the narrow dynamic range of c-di-AMP whereby 
deflection in either direction triggers (p)ppGpp synthesis or indicate 
species-specific differences in the regulatory circuits. Nevertheless, 
the functional connection of c-di-AMP and (p)ppGpp is further 
substantiated by the observation that the essentiality of dacA in 
L. monocytogenes during growth in rich medium was abrogated 
in a (p)ppGpp0-strain or in the wild-type strain grown in minimal 
medium (Whiteley et  al., 2015). Hereby, the activity of the 
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GTP-dependent transcriptional regulator CodY appears critical 
to dacA essentiality in rich media in that mutation of codY in 
the (p)ppGpp0-strain renders dacA again essential. This implies 
that elements of the CodY regulon may be  toxic in the absence 
of c-di-AMP-producing DacA (Whiteley et  al., 2015). The 
GTP-loading state and activity of CodY (Sonenshein, 2007) are 
in turn linked to (p)ppGpp through the inhibition of GTP 
anabolic enzymes involved in nucleotide metabolism by the 
alarmones (see above). Thus, as a whole, the interdependencies 
between c-di-AMP and (p)ppGpp conceivably require a high 
degree of coordination and involve a number of different 
cellular processes.

THE EMERGING 
HYPERPHOSPHORYLATED 
NUCLEOTIDES (p)ppApp

In the 1970s, the accumulation of two further magic spots 
designated as (p)ppApp was observed in B. subtilis during 
the early stages of sporulation (Rhaese and Groscurth, 1976; 
Rhaese et  al., 1977; Nishino et  al., 1979) and the (p)ppApp 
synthetic activity retrieved from the ribosomal fraction, which 
indicates the contribution of an RSH. The first RSH to catalyze 
(p)ppApp formation was recently identified in Methylobacterium 
extorquens (Sobala et al., 2019), however, (p)ppApp-producing 
activity was not evidenced for the E. coli RelA enzyme (Jimmy 
et  al., 2020). Another source of (p)ppApp is the nucleoside 
5'-diphosphate kinase from Streptomyces morookaensis although 
the enzyme being secreted raises the question of its physiological 
relevance for this organism (Oki et al., 1975). The high similarity 
of (p)ppGpp and (p)ppApp – they only differ in their 
nucleobase – advises a putative overlap of their target spectra. 
Recent studies evidence that E. coli PurF and RNAP, both of 
which are validated targets of (p)ppGpp, also bind (p)ppApp 
(Bruhn-Olszewska et  al., 2018; Ahmad et  al., 2019). However, 
while in PurF both second messengers bind in similar fashion 
at the same site and inhibit the enzyme with equal potency 
(Ahmad et  al., 2019; Wang et  al., 2019), the binding sites on 
RNAP are discrete and (p)ppApp enhance transcription from, 
e.g., the rrnB P1 promoter as opposed to (p)ppGpp (Bruhn-
Olszewska et  al., 2018). In one study, ppApp also inhibited 
the (p)ppGpp synthetic activity of E. coli RelA with an IC50 
of 24.5 ± 3.5 μM (Beljantseva et al., 2017) raising the possibility 
that, in fact, (p)ppApp and (p)ppGpp are antagonists. Besides 
potentially fulfilling regulatory functions in their host cell, 
(p)ppApp also serve as toxins during interbacterial warfare 
(Ahmad et  al., 2019). Hereby, the type VI secretion system 
(T6SS) effector protein Tas1 of Pseudomonas aeruginosa PA14, 
a (p)ppApp synthetase, is injected into the target cell and 
depletes the cellular ATP pools, resulting in dysregulation of 
the metabolome and, ultimately, cell death. Endogenous ppApp, 
the metabolism of which is embedded in toxin-antitoxin systems, 
might represent an intricate pathway to control growth (Jimmy 
et  al., 2020). Whether the (p)ppApp molecules exert growth 
control independent from (p)ppGpp via a separated protein 

target spectrum or in a competitive manner to (p)ppGpp 
remains to be  investigated.

CONCLUDING REMARKS

The functions of (p)ppGpp are often simplistically portrayed 
as a biphasic switch between relaxed and stringent environmental 
conditions, the latter triggering a major metabolic rearrangement 
through induction of (p)ppGpp synthesis. The presence of 
gradation in (p)ppGpp-dependent regulation of transcription 
is an approved mechanism (Traxler et  al., 2008; Balsalobre, 
2011; Traxler et  al., 2011). However, the wide range of binding 
affinities among the (p)ppGpp-affected protein targets covering 
four orders of magnitude furthermore suggests a post-
translational adaptational program activated hierarchically by 
increasing (p)ppGpp. The depicted scheme illustrates the 
importance of high-affine (p)ppGpp targets that explicitly require 
regulation, thus suggesting a protagonism of the alarmones 
on cell homeostasis. We  believe that the post-translational 
sequential “dimming” of protein activities by (p)ppGpp, a 
conception potentially also true for related second messengers 
like (p)ppApp and c-di-AMP, plays a major role in successful 
adaptation of microorganisms.
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