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The metabolic shift between respiration and fermentation at high glucose concentration
is a widespread phenomenon in microbial world, and it is relevant for the
biotechnological exploitation of microbial cell factories, affecting the achievement of
high-cell-densities in bioreactors. Starting from a model already developed for the
yeast Saccharomyces cerevisiae, based on the System Dynamics approach, a general
process-based model for two prokaryotic species of biotechnological interest, such as
Escherichia coli and Bacillus subtilis, is proposed. The model is based on the main
assumption that glycolytic intermediates act as central catabolic hub regulating the
shift between respiratory and fermentative pathways. Furthermore, the description of a
mixed fermentation with secondary by-products, characteristic of bacterial metabolism,
is explicitly considered. The model also represents the inhibitory effect on growth and
metabolism of self-produced toxic compounds relevant in assessing the late phases
of high-cell density culture. Model simulations reproduced data from experiments
reported in the literature with different strains of non-recombinant and recombinant
E. coli and B. subtilis cultured in both batch and fed-batch reactors.The proposed
model, based on simple biological assumptions, is able to describe the main dynamics
of two microbial species of relevant biotechnological interest. It demonstrates that a
reductionist System Dynamics approach to formulate simplified macro-kinetic models
can provide a robust representation of cell growth and accumulation in the medium of
fermentation by-products.

Keywords: Escherichia coli, Bacillus subtilis, System Dynamics (SD) model, self-inhibition, high cell-density
culture, overflow metabolism, Crabtree/Warburg effect

INTRODUCTION

Glucose is the main carbon and energy source for microbial metabolism. Glucose uptake
supplies the glycolytic process producing different intermediates, with pyruvate representing
a central catabolic hub, followed by the respiratory or fermentative pathway, depending on
oxygen availability.
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Respiration is able to maximize ATP production and
consequently biomass yield. However, despite the fully
aerobic conditions, in several microbial species when glucose
concentration is high, the respiratory metabolism is replaced by
a fermentative one, which produces partially oxidized products
(Molenaar et al., 2009; Goel et al., 2012).

Such metabolic shift between two different ATP producing
metabolisms, respiration and fermentation, is a widespread
phenomenon in the biological world (Molenaar et al.,
2009; Goel et al., 2012). In yeast it is known as Crabtree
effect (De Deken, 1966) recognizing its similarity with the
respiration/fermentation shift occurring in mammalian cells
where it is commonly reported as Warburg effect (Warburg,
1956), and considered a hallmark of cancer (Hanahan and
Weinberg, 2011). Moreover, some yeasts are recognized to be
Crabtree-positive such as S. cerevisiae, others are Crabtree-
negative (De Deken, 1966), the difference mainly relies on
the extent of the glycolytic flux which, in turn, depends on
the glucose uptake rate (Huberts et al., 2012). Recently, it has
been shown how the overexpression of a single transcription
factor (the ortholog of S. cerevisiae GAL4) in Komagataella
phaffii results in a switch of the Crabtree phenotype from
negative to positive with an increase in specific glucose uptake
(Ata et al., 2018).

The fitness advantage associated to the metabolic shift and,
more in general its significance, has been largely debated (Pfeiffer
and Morley, 2014; Liberti and Locasale, 2016). Recently, a
review and clarification of the process dynamics beyond this
phenomenon has been proposed (de Alteriis et al., 2018).

The metabolic shift has been attributed to an “overflow
metabolism,” caused by the saturation of the limited respiratory
capacity of the cell, leading to an overflow reaction at pyruvate
level, as first shown for the yeast Saccharomyces cerevisiae
(Sonnleitner and Käppeli, 1986). It is now established that a
complex interplay of molecular mechanisms is also responsible
for the phenomenon, with the ascertained role of regulatory
systems referred to as either carbon catabolite or glucose

FIGURE 1 | Model diagram of microbial growth. Simplified cell metabolism
with explicit representation of the major metabolic pathways. (1) Glucose
uptake; (2) respiration; (3a) fermentation; (3b) acetate production by mixed
fermentation; (4) acetate respiration; (5) secretion of inhibitory compounds; (6)
inhibitory effects; (7) reserves accumulation; (8) cell death.

repression in prokaryotes (Sonenshein, 2007; Bernal et al., 2016)
and yeast (Westergaard et al., 2007), respectively.

As known, the prokaryotic cell factories Escherichia coli, and
to a lesser extent Bacillus subtilis, together with the eukaryotic

TABLE 1 | Model processes.

Equation

Feeding =

{
cF · F0 · exp(µ(t− tF )), exponential feeding

cF F0, linear feeding

Uptake = vG
[G]

kG + [G]
B
(

1−
[P]
[P]max

)
(1− nE )lag

RespirationP = vRP
[P]

kRP + [P]
B (1− nA) (1− nI)ge

Fermentation = vF
[P]

kF + [P]
B(1− nA)(1− nI)mo

RespirationA = vRA
[A]

kRA + [A]
B(1− nA)(1− nI)ge

Accumulation = vA
[P]

kA + [P]
B
(

1−
R

Rmax

)
mo

Secretion = ρ (ηRP · RespirationP + ηRA · RespirationA + ηFP · Fermentation)

DeathP = d · δ · P

DeathR = d · δ · R

DeathCM = d · δ · CM

All symbols are described in Tables 2–4.

TABLE 2 | Symbols used in the model equations.

Description Formula

Initial feed rate F0 =

 0, t < tF
MF · µ

cF · yR
, t ≥ tF

Glucose concentration [G] =
G
V

Active metabolite mass B = P+CM

Glycolysis products
concentration

[P] =
P

(B+ R)c

Acetate negative feedback nA = σA
[A]

[A]max

Lag phase lag =

{
0, t < tL
1, t ≥ tL

Inhibitor negative feedback nI = σ I
[I]
[I]max

Glucose effect ge =
1

1+ a1 · exp(b1 · [P])

Metabolic overflow mo = 1− ge

Fermentation allocation to
acetate

fa =
1

1+ a2 · exp(b2 · [A])

Acetate concentration [A] =
A
V

Maximum reserves Rmax = (B+R) rMAX

Death switch d =

{
0, [P] ≤ τ

1, [P] > τ

Medium volume in the
reactor

V (t) =

 V0, t < tF

V0 +
MF

cF · yR
exp(µ · (t− tF )), tF ≤ t ≤ tEND

Other parameters are described in Tables 3, 4.
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unicellular fungus Saccharomyces cerevisiae are the prevalent
microbial platforms for biotechnological applications (Öztürk
et al., 2016; Sanchez-Garcia et al., 2016). The phenomenon of the
metabolic shift with the consequent production of fermentative
products has been widely described for these species, representing
one of the problems which may limit the achievement of high cell
densities and productivities (Riesenberg et al., 1991; Sandén et al.,
2003), for both non-recombinant and recombinant microbial
strains (Lee, 1996; Riesenberg and Guthke, 1999; Porro et al.,
2005; Shiloach and Fass, 2005; Öztürk et al., 2016).

In unrestricted growth conditions, the fermentative microbial
metabolism generally leads to a main end-product and other
by-products: E. coli and B. subtilis predominantly form acetate,
but also lactate and propionate respectively, while in the case
of S. cerevisiae a production of ethanol and, to lesser extent,
acetate is observed.

In the case of E. coli, aerobic acetate production is very
detrimental for growth and productivity, and for this reason it
has been largely investigated (Wolfe, 2005; De Mey et al., 2007;
Bernal et al., 2016). Several strategies have been proposed to
avoid acetate production, from technological approaches (fed-
batch cultures with controlled glucose supply, removal of acetate
from culture medium, use of alternative carbon sources such
as glycerol or mannose) to genetic approaches aimed to obtain

strains with low propensity to acetate formation (Sandén et al.,
2003; Shiloach and Fass, 2005; Eiteman and Altman, 2006).

The outstanding importance of E. coli in biotechnological
processes supported the development of several mathematical
models aimed to describe strain performance in different cultural
conditions, optimizing their cell/product density and avoiding
acetate overproduction. First attempts to use mechanistic models
to simulate the kinetics of E. coli population growth followed
different approaches, from simplified representations of batch
cultures (Corman et al., 1986), based on classic biomass-resource
model (Monod, 1949) to more detailed models of the main
metabolic fluxes by an optimization method (Majewski and
Domach, 1990; Ko et al., 1993, 1994). More recently, a process-
based kinetic model first developed by Xu et al. (1999) was further
improved to study the growth of E. coli W3110 strain in batch
and fed-batch cultures, explicitly including the inhibitory effect
of acetate accumulation on glucose and oxygen consumption (Lin
et al., 2001; Neubauer et al., 2003).

The recent increasing studies on E. coli metabolism improved
the understanding of the acetate production on one hand and,
on the other hand, the co-assimilation of both acetate and
glucose in sugar-limited conditions (Wolfe, 2005; Lara et al.,
2008; Peebo et al., 2015; Basan et al., 2015; Bernal et al., 2016).
Such new findings were integrated in new macro-kinetic models

TABLE 3 | State variables initial values and simulation setup parameters.

Symbol Description Unit Figure 2
E. coliW3110

(Anane et al., 2017)

Figure 3 E. coliTG1
(Riesenberg et al.,

1991)

Figure 3
E. ColiTG1
(Korz et al.,

1995)

Figure 4 E. coli TG1
recombinant

(Hellmuth et al., 1994)

Figure 4 E. coli
TG1 recombinant

(Rinas and
Hoffmann, 2004)

Figure 5
B. subtilis (Huang

et al., 2004)

G0 Glucose initial value g 5 25 28.5 27.75 25 4.4

A0 Acetate initial value g 0 0 0 0 0 0

P0 Glycolysis products
initial value

g 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−5

CM0 Carbon metabolites
initial value

g 0.2 0.1 0.1 0.1 0.1 0.01

I0 Inhibitor initial value g 0 0 0 0 0 0

R0 Reserve compounds
initial value

g 0 0 0 0 0 0

D0 Dead cells initial value g 0 0 0 0 0 0

t0 Time of simulation start h 0 0 0 0 0 0

tF Time of exponential
feeding start

h 11.5 12 9; 11 13 16.5 10.5

tFlin Time of linear feeding
start

h 16 30 – – – –

tEND Time of simulation end H 33 35 22 24 31 27.3

cF Glucose concentration
in feeding solution

g l−1 500 770 500 500 500 500

MF Cell mass at beginning
of feeding

g 4.6; 20.5 10; 94 20; 25 13 11 1.85

µ Feeding rate h−1 0.3; 0.19 0.11; 0.08 0.17; 0.14 0.12 0.13 0.24

yR Maximum biomass
yield on glucose

– 0.39 0.42 0.5 0.5 0.5 0.39

lag Lag phase calibration
parameter

h – 4 – 5 7.5 –

Each column heading reports: the article figure showing the simulation, the microbial species/strain, and the publication reference (indicated in the square brackets) of the
different experimental settings.
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(Anane et al., 2017; Retamal et al., 2018). In particular, Anane
et al. (2017) developed a mechanistic model based on previous
works (Xu et al., 1999; Lin et al., 2001; Neubauer et al., 2003)
with two major improvements: (i) a mathematical formulation
deriving a set of tractable and continuously differentiable
equations leading to better computational performance and
allowing the use of gradient-based optimization methods and
(ii) the inclusion of a continuous process of production and
re-assimilation of intracellular acetate even under non-overflow
conditions, as recently highlighted in proteomic and systems
biology studies (Valgepea et al., 2010; Basan et al., 2015; Peebo
et al., 2015). The model proposed by Retamal et al. (2018),
based on the overflow metabolism assumption (Sonnleitner and
Käppeli, 1986), assumed that the critical glucose uptake rate
responsible for the activation of the metabolic overflow is not
constant, but decreases with increasing acetate concentrations.

Following the consideration that the metabolic shift in
S. cerevisiae is controlled by both limited respiratory capacity
(Sonnleitner and Käppeli, 1986) and repression of respiration
(Westergaard et al., 2007), our group developed a novel
macro-kinetic model based on the System Dynamics approach
(Forrester, 1961), capable to reproduce the growth of the
budding yeast in both batch and high-cell-density cultures
(Mazzoleni et al., 2015). The main assumption of this model
was that the glycolytic intermediates represent the central
metabolic hub regulating the shift between respiratory and
fermentative pathways.

In this work, considering the similarity of the metabolic shift
between S. cerevisiae and prokaryotic cells as determined by
the level of the glycolytic intermediates, we extend the model
by Mazzoleni et al. (2015) to simulate the growth of different
strains of E. coli and B. subtilis cultured in batch and fed-batch
bioreactors under aerobic conditions, with glucose as carbon
and energy source.

MATERIALS AND METHODS

The model developed to simulate the growth behavior of a generic
microbial cell cultured in a bioreactor is presented. Figure 1
shows a schematic diagram of the implemented processes, the
limited number of which was achieved by a top-down approach,
i.e., selecting the essential elements sufficient to reach a robust
representation of the system behavior.

The resulting model is composed of a set of 7 ordinary
differential equations representing glucose in the growth
medium (G), glycolysis intermediates from glucose-6-phosphate
to pyruvate (P), acetate produced by fermentation (A), cellular
components produced by either fermentation or respiration
(CM), reserve compounds (R), growth-associated inhibitory by-
products (I), and dead cells (D).

Glucose (G) is provided according to the feeding conditions
of the bioreactor described for the simulated experiment.
Glucose is assimilated by microbial cells, and then converted

TABLE 4 | Model calibrated parameters with description and simulation values for each microbial strain.

Symbol Description Unit E. coliW3110 E. coliTG1 E. coli TG1 recombinant B. subtilis

vG Maximum uptake rate h−1 0.82 1.92 1.92 1.98

kG Uptake saturation constant g l−1 0.005 2.02 2.02 0.15

ηG Uptake efficiency P/G – 0.69 0.91 0.91 0.65

vRP Maximum glycolysis products respiration rate h−1 0.09 0.72 0.72 0.23

kRP Glycolysis products respiration sat constant g l−1 0.02 0.02 0.02 0.01

ηRP Respiration efficiency CM/P – 0.76 0.71 0.71 0.09

vF Maximum fermentation rate h−1 0.46 5.57 5.57 1.08

kF Fermentation saturation constant g l−1 0.08 0.01 0.01 0.04

ηFA Fermentation efficiency A/P – 0.12 0.37 0.37 0.99

ηFP Fermentation efficiency CM/P – 0.94 0.31 0.31 0.92

vRA Maximum acetate respiration rate h−1 0.25 0.04 0.04 0.35

kRA Acetate respiration saturation constant g l−1 0.86 0.12 0.12 0.21

ηRA Respiration efficiency CM/A – 0.94 0.43 0.43 0.96

vA Maximum accumulation rate h−1 0.2 0.2 0.2 0.2

kA Accumulation saturation constant g l−1 0.05 0.05 0.05 0.05

ηA Accumulation efficiency R/P – 0.93 0.45 0.45 0.99

rMAX Maximum reserves / cell mass ratio – 0.3 0.3 0.3 0.3

δ Death rate h−1 0.1 0.1 0.1 0.1

τ Death threshold g l−1 0.6 0.6 0.6 0.6

ρ Secretion rate h−1 0.003 0.008 0.008 0.052

σ I Sensitivity to inhibitor NF – 1.0 1.0 1.0 1.0

σA Sensitivity to acetate NF – 2.71 1.23 1.23 1.15

c Cell volume/dry weight ratio l g−1 0.01 0.01 0.01 0.01

a1 Resp/ferm metabolic switch – 3.0 · 10−4 3.4 · 10−4 3.4 · 10−4 1.6 · 10−4

b1 Resp/ferm metabolic switch l g−1 35.5 34.1 34.1 23.4

a2 Mixed fermentation metabolic switch – 0.051 0.015 0.015 0.010

b2 Mixed fermentation metabolic switch l g−1 4.9 7.6 15.6 21.0
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into the different intermediate products of glycolysis, from
glucose-6-phosphate to pyruvate (P). These are used for the
construction of new cellular material (CM), either through
respiration or fermentation. In the case of fermentation,
acetate (A) is the main end-product, which can also be
used as carbon source for the respiratory pathway when
glucose is limiting.

The essential assumption of the model is the key role of
the glycolytic products (P) in the regulation of the metabolic
shift between respiration/fermentation and, in general, cell
metabolism. Therefore, high levels of P are assumed to be
responsible for (i) the activation of aerobic fermentation due to
overflow metabolism, (ii) the repression of respiration (“glucose
effect”), (iii) the accumulation of reserve materials (R), and (iv)
the induction of mortality with accumulation of dead cells (D)
(de Alteriis et al., 2018).

Moreover, considering that acetate is not the only end-
product of bacterial fermentations even in aerobic conditions
(Park et al., 1992; Kim et al., 2015), in the presented model
we also assumed that the allocation toward secondary by-
products proceeds in parallel with acetate. In particular, their
production is assumed to increase with the acetate outflow from
the cells.

The model also considers growth-associated inhibitory by-
products (I), as already described in Mazzoleni et al. (2015),
whose production is related to anabolic pathways, hence it is
expressed as a proportion of the respiration and fermentation
fluxes. Both the inhibitors and acetate are assumed to separately
exert a negative feedback on cell growth in a concentration-
dependent way.

The model is formulated with the following mass-balance
equations:

dG
dt
= Feeding − Uptake

dP
dt
= ηG · Uptake− RespirationP − Fermentation

− Accumulation− DeathP

dA
dt
= ηFA · Fermentation · fa− RespirationA

dCM

dt
= ηRP · RespirationP + ηRA · RespirationA

+ ηFP · Fermentation− Secretion− DeathCM

dR
dt
= ηA · Accumulation− DeathR

dI
dt
= Secretion

dD
dt
= DeathP + DeathCM + DeathR

The equations of the model are described in detail in Tables 1, 2,
while fixed and calibrated parameters are described in Tables 3, 4.

The mathematical equations were integrated using MATLAB
R2018b (the MathWorks) with a variable order solver (ode15s).

The model calibration was performed by minimizing the sum of
the squared errors (SSE)

SSE =
1

n1

n1∑
i=1

(
CMi − C∗Mi

)2
+

1
n2

n2∑
i=1

(
Gi − G∗i

)2

+
1

n3

n3∑
i=1

(
Ai − A∗i

)2

where n1, n2, n3 are the number of samples per observed outputs,
CMi, Gi, Ai, are the values of the ith measured outputs and
C∗Mi, G∗i , A∗i , are the values of the ith outputs predicted by the
model. The minimization was performed by using the fminsearch
MATLAB routine which implements a Nelder–Mead simplex
algorithm (Lagarias et al., 1998).

Furthermore, a sensitivity analysis was implemented to
analyze the model behavior under parameters perturbations.
Using a local sensitivity analysis (Morris, 1991; Norton, 2015),
the following normalized sensitivity index was calculated by
changing each parameter by ± 5% one-at-a time while keeping
the rest constant:

SSEi,4 =

=

√√√√ 1
n1

3∑
j=1

n1∑
i=1

(
Xj(p1, p2, . . . , pi +4, . . . , pk)− Xj(p)

max(Xj(p))−min(Xj(p))

)2

FIGURE 2 | Measured vs. simulated growth of Escherichia coli W3110
reproducing the experiment in Anane et al. (2017). Time series of measured
microbial mass (times symbol), glucose (filled circle), and acetate (open circle)
data vs. model simulations (continuous lines). Dashed vertical lines represent
the beginning of exponential feeding, while dotted vertical lines the beginning
of constant feeding (arrows indicate glucose pulses).
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where, SSEi,4 is the Standardized elementary effect of the
parameter pi with 4 (± 5%) perturbation on the model outputs;
Xj(P) represents the simulation values of the state variables
Microbial mass, Glucose and Acetate without any parameter
perturbation; max(Xj(p))−min(Xj(p)) is the standardization
factor referring to the values of the baseline simulation; k is the
number of parameters.

RESULTS

Model simulations were compared to experiments of growth
in bioreactor of two strains of E. coli among the most
used in biotechnological applications, namely W3110 (Anane
et al., 2017) and TG1 (Riesenberg et al., 1991; Korz et al.,
1995). For E. coli TG1, also experiments of two recombinant
strains were considered (Hellmuth et al., 1994; Rinas and
Hoffmann, 2004). In the case of B. subtilis, model simulation
was compared to the experiment by Huang and co-workers
(Huang et al., 2004).

In the experiments selected for model simulations, microbial
growth was carried out in bioreactors initially operating in batch
mode and then fed with a glucose-based inlet stream (fed-batch).
The possible metabolic shift occurred according to the value of
the specific growth rate of the population, determined by the

specific feeding rate (SFR) applied to the bioreactor during the
fed-batch phase (Enfors and Häggström, 1998).

Figure 2 shows the model simulation reproducing a two-
phase (exponential and constant feeding regimes) fed-batch
culture of E. coli W3110, performed by Anane et al. (2017).
The initial batch culture, characterized by a maximum specific
growth rate value (µMAX) of 0.31 h−1, presents the typical
exponential growth behavior of an E. coli population growing
on glucose and displaying a fermentative metabolism with
acetate production. When glucose is completely depleted in the
medium, fermentative metabolism is replaced by a respiratory
one, with a short period of acetate consumption by respiration
observed during the batch phase. Then, an exponential increasing
feeding regime is activated (after 13 h from the beginning
of the experiment) at a Specific Feeding Rate (SFR) value
of 0.22 h−1, equal to the population specific growth rate, µ.
This value is high enough (75% µMAX) to switch back the
population to a fermentative metabolism with accumulation
of acetate up to 0.3 g l−1. Three hours later (16 h from the
beginning of the experiment), a constant feeding is applied to
the bioreactor beginning at a SFR value of 0.11h−1, so that the
bacterial cells are allowed to display a respiratory metabolism
with no accumulation of acetate. During this phase, however,
three glucose pulses are performed inducing temporary acetate
production (Figure 2, lower panel).

FIGURE 3 | Measured vs. simulated growth of Escherichia coli TG1 reproducing Riesenberg et al. (1991) (left column) and Korz et al. (1995) (right column)
experiments. Time series of measured microbial mass (times symbol), glucose (filled circle) and acetate (open circle) data vs. model simulations (continuous lines).
Dashed vertical lines represent the beginning of exponential feeding, while dotted vertical lines the beginning of constant feeding.
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Figure 3 presents the simulation results of two fed-batch
cultures of another E. coli strain, namely TG1 (Riesenberg et al.,
1991; Korz et al., 1995). The first simulated experiment (Figure 3,
left column) is characterized by an initial batch culture lasting
12 h when glucose in the medium is completely depleted,
followed by a two-phase fed-batch, carried out at an exponential
increasing feeding regime (up to 30 h from the beginning of the
experiment) corresponding to a SFR value of 0.11 h−1 and then a
constant feeding regime (from 30 h onward), starting at 0.11 h−1.
In the first phase of exponential feeding, the simulated microbial
population follows the observed growth corresponding to the
feeding regime, while in the second phase (constant feeding) the
model properly describes the declining growth rate due to self-
produced inhibitory compounds. In turn, the reduced growth
rate compared to the glucose feeding induces the metabolic
switch reactivating acetate production. In the second simulated
experiment (Figure 3, right column) the initial batch phase is
followed by a single-phase fed-batch, carried out at a SFR value
of 0.17 h−1 for the first 3 h and then reduced to 0.14 h−1.
The simulated dynamics of both experiments are very similar,
showing an exponential growth of the cell population in the first
fed-batch phase at the imposed µ value. In these conditions,
no acetate is produced, since the set-point µ values (0.11 and
0.17 h−1 respectively) are below the threshold value for acetate
production reported for the strain (Korz et al., 1995).

In brief, in both experiments of Figure 3, a reduction in
the growth rate was observed near the end of the run. Such
growth reduction appeared when microbial mass achieves a value
around 100 g l−1, and as explained above is modeled as ascribed
to the production of growth-linked inhibitory compounds,
different from acetate, consistent with previous findings in yeast
(Mazzoleni et al., 2015).

Figure 4 shows the simulations of two fed-batch cultures
of recombinant strains of E. coli TG1 (Hellmuth et al., 1994;
Rinas and Hoffmann, 2004) carried out at SFR of 0.13 and
0.12 h−1, respectively. The behavior of the recombinant strains
results very similar to the non-recombinant ones of Figure 3,
with accumulation of acetate, as indicative of a fermentative
metabolism, observed only in the initial batch phase.

The last simulation presented in Figure 5, shows the growth
dynamics of B. subtilis cultured in fed-batch carried out at
an exponential feeding regime of SFR = 0.12 h−1. Also in
this case, there is an adequate fit between the model and the
experimental data. The culture achieves a very low density (about
17 g l−1) at the end of the simulated experiment, and it is
characterized by a continuous, although very low, production of
acetate. Figure 6 provides a summary of the model simulation
performance, showing very good agreement between measured
and simulated values of microbial mass for all the selected
strains. The results of the sensitivity analysis are presented in

FIGURE 4 | Measured vs. simulated growth of recombinant strains of Escherichia coli TG1 reproducing Hellmuth et al. (1994) (left column) and Rinas and
Hoffmann (2004) (right column) experiments. Time series of measured microbial mass (times symbol), glucose (filled circle), and acetate (open circle) data vs.
model simulations (continuous lines). Dashed vertical lines represent the beginning of exponential feeding.
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FIGURE 5 | Measured vs. simulated growth of Bacillus subtilis reproducing
Huang et al. (2004). Time series of measured microbial mass (times symbol),
glucose (filled circle), and acetate (open circle) data vs. model simulations
(continuous lines). Dashed vertical lines represent the beginning of exponential
feeding, while dotted vertical lines the beginning of constant feeding.

Figure 7. The generally low response of the model outcomes to
the variation of the parameters shows that the model formulation
is robust. In fact, a ± 5% change in each parameter induces
significant variations only in a few cases. In particular, two
parameters related to glucose uptake (vG and ηG) affected all
strains (Figure 7), reflecting the relevance of this process in the
model formulation. Differently, it is interesting to notice that
each strain showed a specific sensitivity to different parameters.
In particular, E. coli W3110 appeared to be sensitive to the
fermentation process (vF and ηFA); E. coli TG1 showed higher
responsiveness to the secretion rate of inhibitory compounds (ρ)
and the respiration parameters (vR and ηRP); B. subtilis showed
to specifically respond to the metabolic shift between respiration
and fermentation (b1) and the efficiency of biomass production
by fermentation (ηFP).

DISCUSSION

The presented model is capable to reproduce the dynamic
behavior of several Escherichia coli strains, as well as of Bacillus
subtilis growing both in batch and fed-batch cultures on glucose
as carbon as energy source. The highly significant agreement

FIGURE 6 | Comparison of measured vs. simulated microbial mass for all
presented simulations (Figures 2–5).

between experimental data and simulations obtained for different
microbial species and strains demonstrates how the process-
based System Dynamics approach, already followed in the case
of the yeast Saccharomyces cerevisiae (Mazzoleni et al., 2015), can
be successful to develop a general model of microbial growth
in bioreactors, despite the extremely simplified representation
of the main physiological functions limited to very few, but
fundamental metabolic processes.

Indeed, as for yeasts, also in bacterial cells the dynamic levels
of pyruvate, as end metabolic hub of the glycolytic process, play
a central role in the control of metabolism. At high glucose
concentrations, and consequently at high concentration of
glycolytic intermediates, the differential rates of reactions along
the fermentative pathway progressively trigger the activation
of the overflow metabolism and the consequent repression of
respiration (Mazzoleni et al., 2015; de Alteriis et al., 2018).

This essential assumption characterizing the presented model
proved indispensable to predict the occurrence of the metabolic
shift between respiration and fermentation in two species of
prevalent biotechnological interest such as E. coli and B. subtilis,
as shown by the very good agreement between simulations and
experimental data (Figure 6). Therefore, acetate is produced
in both batch and unrestricted fed-batch cultures, such as the
first fed-batch phase of the experiment presented in Figure 2,
when the imposed µ value is higher than the critical one
for the examined strain. On the contrary, when glucose
supply to the bioreactor is controlled, such as in the other
simulated experiments of Figures 3, 4, an oxidative metabolism
is ensured. Concerning the latter experimental setups of the
E. coli TG1 strains, the supplied culture medium was the same
between recombinant and non-recombinant strains (i.e., mineral
medium supplemented with trace elements containing glucose
as carbon and energy source). The obtainment of the desired
products (beta-galactosidase and human growth factor) by the
recombinant strains was achieved by shifting the temperature
to 42◦C or by addition of 0.5 mM IPTG after 22 h fed-batch
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FIGURE 7 | Model parameters’ sensitivity analysis. Variation of the model outcome (compared with baseline simulation) for ± 5% changes in the value of each
parameter (see the “Materials and Methods”section for details).

phase. In both cases, induction of the products did not affect the
dynamics of growth, in terms of glucose consumption and acetate
formation, as shown by the simulations.

Noteworthy, in the case of B. subtilis (Figure 5), even
though the glucose supply was fairly low (SFR = 0.12 h−1), a
limited production of acetate was observed during all the culture
run, showing a less clear-cut metabolic shift for this microbial
species. This is also reflected by the high sensitivity of this
strain to the parameter related to the metabolic switch (b1).
A further assumption of the proposed model is related to glucose
transporters which have been considered as constant within each
microbial strain. Clearly, this is a strong simplification since it is
known that transporters can be modulated according to glucose
availability in the media and future specific studies could address
this point more in depth.

Moreover, in the previous S. cerevisiae model presented by
Mazzoleni et al. (2015), secondary products of fermentation were
not considered, being ethanol largely predominant when budding
yeast is in conditions of overflow metabolism. Differently,
in the case of bacteria, acetate production is followed by a
significant production of other partially oxidized products even
in aerobic conditions. This is explicitly represented in the model

by the description of a mixed fermentation which is assumed
to increase with the acetate outflow from the cell. Due to
lack of experimental data on such secondary by-products it
was impossible to explicitly represent their accumulation in
our simulations even though their production is accounted for.
The model also considers that the produced acetate can be re-
assimilated through the respiratory metabolism at the same time
as glucose if both substrates are available in the growth medium,
but for simplicity, secondary pathways for acetate consumption
were not considered (Anane et al., 2017).

The mechanistic models developed by Pham et al. (1998) to
reproduce the growth of S. cerevisiae in aerobic fed-batch cultures
and later extended to describe the fermentation dynamics of
E. coli by Xu et al. (1999); Lin et al. (2001), and Neubauer
et al. (2003) are probably the most studied microbial macro-
kinetic models. Very recently, Anane et al. (2017), refined
the previous model formulation to improve the mathematical
analyzability and include the latest knowledge on the acetate
metabolism of E. coli. Our proposed model has a similar level of
simplification compared to the abovementioned works, although
it was designed to be more general in order to reproduce different
microbial species and strains rather than being applied to a

Frontiers in Microbiology | www.frontiersin.org 9 September 2020 | Volume 11 | Article 521368

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-521368 September 29, 2020 Time: 18:7 # 10

Carteni et al. Modeling Metabolic Shift in Microbial Cultures

single one. Moreover, our model is the only one considering
the inhibitory effect on growth and metabolism of self-produced
toxic compounds different from fermentation products which
is relevant to reproduce the late phases of high cell-density
cultures when this phenomenon becomes significant in limiting
the growth rate. The phenomenon of self-toxicity regulating cell
proliferation is evident only in prolonged fed-batch cultures,
and it was clearly pointed out in the case of both wild-type
and auxotrophic yeast strains cultured in fed-batch reactors
(Mazzoleni et al., 2015). However, in this paper the cell densities
achieved in E. coli experiments are sufficiently far from the
theoretical value of maximum cell density for bacterial cells (200 g
d.w. l−1) (Lee, 1996). For this reason, the growth decline due
to self-toxicity was observed only in the simulated experiment
presented in Figure 3, reproducing the experiments of Riesenberg
et al. (1991), where the cell density achieved at the end of the
run was higher than 100 g d.w. l−1. In this case, the final growth
decline was clearly visible (Figure 3, left panels) and the model
was perfectly capable to reproduce such behavior.

Following a completely different approach, metabolic flux
analysis models specifically focused on the central carbon
metabolism of E. coli, show a detailed description of the metabolic
pathways (e.g., Chassagnole et al., 2002; Lemuth et al., 2008).
Recently, Millard et al. (2017) developed a detailed kinetic
model linking the internal metabolism to the environment and
cell proliferation through the description of the dynamics of
62 metabolites, and 68 reactions divided into 3 compartments
(environment, periplasm and cytoplasm). This model has been
validated using 226 experiments from different sources, allowing
the authors to conclude that the self-regulating capabilities of
the E. coli central metabolism are far more important than
expected, also undermining the relevance of gene regulation
to explain these dynamics. In typical metabolic flux analyses
of Systems Biology, all the measured processes are considered
and eventually reduced by selection techniques based on their
relevance (bottom-up approach). On this point, Chassagnole
et al. (2002) declare: “Because the many biochemical details
of the metabolic networks appear overwhelming at first sight,
there is a demand for decreasing the enormous complexity
of the problem.” As an example, Erdrich et al. (2015) used
a combination of “pruning” and “compression” procedures,
dramatically reducing the number of reactions from 2384 to 88.

Instead, our modeling procedure directly aims at the
identification of a minimal number of processes sufficient to
simulate the emergent properties of a complex system (top-
down approach) and it is based on logical reasoning on existing
knowledge of the system. Then, in this work only those variables
relevant for the growth of microbial populations on glucose and
their metabolic shift were mathematically described, whereas the
many secondary pathways, also directly or indirectly affecting

the selected variables, were not taken into account. In summary,
our approach is based on the principle of parsimony and has the
advantage of keeping the mathematical formulation simple and
robust with a reduced number of parameters.

CONCLUSION

In conclusion, the results demonstrate how a reductionist System
Dynamics approach can be used to formulate simplified macro-
kinetic models, still capable to accurately capture the dynamics
of biomass growth, glucose consumption and accumulation
of fermentation by-products in the medium. The conceptual
base of the model, similar to that already proposed for
S. cerevisiae (Mazzoleni et al., 2015), suggests a unifying
theoretical view for all microbial species, with a key role of
the metabolic shift phenomenon despite differences in specific
molecular mechanisms.

Moreover, the robustness of the results supports a future
potential application of the model as a tool for optimization and
control of microbial fermentation processes of the main species
of biotechnological importance.
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