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Microbes form close associations with host plants including rice as both surface
(epiphytes) and internal (endophytes) inhabitants. Yet despite rice being one of the most
important cereal crops agriculturally and economically, knowledge of its microbiome,
particularly core inhabitants and any functional properties bestowed is limited. In this
study, the microbiome in rice seedlings derived directly from seeds was identified,
characterized and compared to the microbiome of the seed. Rice seeds were sourced
from two different locations in Arkansas, USA of two different rice genotypes (Katy,
M202) from two different harvest years (2013, 2014). Seeds were planted in sterile
media and bacterial as well as fungal communities were identified through 16S
and ITS sequencing, respectively, for four seedling compartments (root surface, root
endosphere, shoot surface, shoot endosphere). Overall, 966 bacterial and 280 fungal
ASVs were found in seedlings. Greater abundance and diversity were detected for
the microbiome associated with roots compared to shoots and with more epiphytes
than endophytes. The seedling compartments were the driving factor for microbial
community composition rather than other factors such as rice genotype, location and
harvest year. Comparison with datasets from seeds revealed that 91 (out of 296)
bacterial and 11 (out of 341) fungal ASVs were shared with seedlings with the majority
being retained within root tissues. Core bacterial and fungal microbiome shared across
seedling samples were identified. Core bacteria genera identified in this study such
as Rhizobium, Pantoea, Sphingomonas, and Paenibacillus have been reported as
plant growth promoting bacteria while core fungi such as Pleosporales, Alternaria and
Occultifur have potential as biocontrol agents.

Keywords: rice, seed and seedling, microbiome, diversity, driving factors

INTRODUCTION

Macro-organisms such as plants form close interactions with microbes, which together can be
considered as meta-organisms or holobionts (Berg et al., 2014). Fungi, bacteria, viruses, archaea
and protista that are closely associated with plants are often referred to as the “second genome”
(Berendsen et al., 2012). Different plant compartments such as roots, leaves, stems, flowers, fruits as
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well as seeds can all be colonized, potentially with different
microbes (Berg et al., 2014). Microbes accumulate not only on the
outer surfaces of plants as epiphytes but also inside plant tissues
as endophytes (Turner et al., 2013). With the advent of new
sequencing technologies over the past few years, the composition
and possible function of these microbes, which collectively form
the microbiome, associated with plants has drawn much interest
(Müller et al., 2016).

Attention to microbes associated with plants has risen because
they can establish beneficial, neutral or detrimental interactions
of varying intimacy with their host plants (Berg et al., 2014).
Beneficial microbes may promote plant growth, suppress biotic as
well as abiotic stress and improve product quality. For example,
various rhizobia and mycorrhizal fungi have been demonstrated
to improve the acquisition of nutrients by plants (Hawkins et al.,
2000; Zehr et al., 2003; Richardson et al., 2009; Miransari, 2011).
Fungal endophytes such as Neotyphodium lolii can influence host
plant CO2 fixation (Spiering et al., 2006). Bacteria including
Bacillus and Paenibacillus are able to promote plant growth
in desert agroecosystems, whereas fungi such as Lewia sp. can
be used for rhizoremediation of hydrocarbons (Köberl et al.,
2011; Cruz-Hernández et al., 2013). Unlike pathogenic microbes
that cause disease on plants, microbes from Proteobacteria,
Firmicutes, and Actinobacteria are known to suppress plant
disease (Mendes et al., 2011).

Rice (Oryza sativa) is the most important cereal crop
agriculturally and economically feeding over half of the world’s
population. In addition, because of its relatively small genome
size and molecular tractability, it has been established as a
model plant for both basic and applied research (Izawa and
Shimamoto, 1996; Shimamoto and Kyozuka, 2002; Rensink
and Buell, 2004; Kawahara et al., 2013). Current strategies
used to increase rice yield include breeding and application
of chemical fertilizers and pesticides, which can be time
consuming, expensive and environmental unfriendly (Khush,
2000; Peng et al., 2006; Zhang, 2007; Mano and Morisaki,
2008; Huang et al., 2017). Other environmentally conscious
alternatives are in high demand such as the identification and
application of beneficial microbes. Though limited research
has been done, knowledge of the microbiome associated
with rice is beginning to accumulate. For example, three
different root niches [rhizosphere, rhizoplane (the root surface)
and root endosphere] of rice were shown to carry different
microbial communities including eubacteria and methanogenic
archaea (Edwards et al., 2015). Rapid and selective acquisition
of root-associated microbes from the soil was demonstrated
(Edwards et al., 2015). In addition, Methylobacterium in
rice shoots, Azospirillum and Herbaspirillum in rice stems
and roots, and Burkholderia and Rhizobium in roots were
detected (Mano and Morisaki, 2008). Similar bacteria were also
found to be associated with other plants facilitating nitrogen
fixation, and stress tolerance such as high osmotic pressure,
dryness and gamma-ray radiation (Mano et al., 2006; Mano
and Morisaki, 2008). It was also found that microbes from
Alphaproteobacteria, Actinobacteria, Pantoea, Exiguobacterium,
and Bacillus were common in the rice phyllosphere. Such
microbes may have significant effects on global carbon,

nitrogen and other nutrient cycles at the ecosystem level
(Venkatachalam et al., 2016).

Given the abundant evidence that various microbes influence
plant growth and development, considerable research focuses on
understanding the microbial community to benefit modern
agriculture. However, many factors influence the plant
microbiome. Different agricultural practices such as tillage,
drainage, intercropping, rotation, grazing and application of
pesticides, fungicides as well as fertilizer can affect microbial
diversity dramatically (Peiffer et al., 2013; Kato et al., 2015;
Rothenberg et al., 2016; Vukicevich et al., 2016; Jenkins et al.,
2017). Soil type, environmental conditions and host genotype
also play important roles in shaping the microbiome assemblage.
For rice, metagenomic, transcriptomic, proteomic as well as
amplicon sequencing approaches used to characterize the
microbial community of plants grown in soil have shown
that numerous factors including environmental factors, plant
age and genotype all greatly influence it’s microbiome (Knief
et al., 2012; Sessitsch et al., 2012; Edwards et al., 2015).
Productivity and health of agricultural systems depend greatly
on the functional processes carried out by the plant-associated
microbial community (Buyer et al., 1999; Hacquard, 2016).

However, it is conceivable that plants maintain a core
microbiome independent from soil type, environment, host
genotype, agricultural management and other factors. The
concept of a core microbiome was first proposed for the human
microbiome and has been further expanded to plant-associated
microbes (Engelbrektson et al., 2012; Shade and Handelsman,
2012). These core microorganisms constitute a conserved subset
of microbes that likely play important roles for host plants as well
as for the surrounding microbial communities (Engelbrektson
et al., 2012; Huse et al., 2012).

Moreover, there are also limited studies regarding microbiome
variation along different life stages of plants. Reproduction is an
important stage, and seeds usually contain a high diversity of
microbes that can be transmitted vertically across generations
(Bragina et al., 2013; Hodgson et al., 2014; Truyens et al., 2015;
Shahzad et al., 2018). Seed germination is a complex process,
during which the initially dormant seeds undergo physiological
state changes (Ofek et al., 2011). Investigation of the microbiome
temporal shift from seed to seedling as well as spatial shift
from root to shoot and from tissue surface to interior may
help to shed light on the interactions between the host and the
associated microbiome.

The primary objective of this project was to identify
the microbiome associated with rice shoots and roots and
compare them with the microbiome associated with rice seeds.
Furthermore, we wanted to illustrate the effect of rice tissue
compartment, genotype, growth location and harvest year in
shaping the microbial community. Finally, the core microbiome
related with rice seedlings was also expected to be revealed. To
achieve these goals, we characterized the microbial biodiversity
of rice seedlings, both in shoot and root tissue, derived
from seeds germinated in axenic conditions. Microorganisms
associated with different rice seedling compartments (surface and
endosphere of shoots and roots) were characterized by amplicon
sequence of 16S for bacteria and ITS for fungi. Rice seeds from
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different geographic cultivation areas of different rice genotype in
different harvest years were used in this study (Supplementary
Table 1). The composition and population structure in seedling
and root compartments were compared to those of previously
published data for the seeds and seed compartments (Eyre et al.,
2019). Finally, core bacterial and fungal taxa were identified.

MATERIALS AND METHODS

Rice Seeds
Rice seeds were obtained from Dr. Yulin Jia, USDA Dale Bumpers
National Rice Research Center, Stuttgart, Arkansas. Six different
japonica rice seeds representing two rice varieties (M202 and
Katy) were collected from two locations: research fields at the
Dale Bumpers (DB) Research Center and the University of
Arkansas (UA) in 2 years (2013 and 2014) (see Eyre et al.,
2019). Seeds were enclosed in envelopes (50 g for each type of
seeds) and sent through standard mail. They were stored dry at
4◦C after received.

Rice Seedling Growth
Sand (100 mL) and distilled water (40 mL) were poured into each
square plant culture vessels (SPL Life Science, Incu Tissue) and
autoclaved. After cooling, rice seeds were embedded into the sand
and vessels sealed with 3M medi-pore tape. Each vessel contained
5–6 rice seeds and for each rice type 4 replicates were grown.
Vessels were placed in an incubator at 26/20◦C under a 14 h
light/10 h dark cycle for 3 weeks during which time rice seeds
germinated and grew to 3–4 leaf seedlings (Ding et al., 2012).

Seedling Compartments Sample
Collection
For rice seedlings, shoots and roots were separated and put into
sterile 50 mL falcon centrifuge tubes using sterile tweezers and
scissors. Each falcon tube contained 3–6 shoots or roots from the
germinated rice seeds (root samples were first manually shaken
before placing into falcon tubes in order to remove the loosely
associated sand). Then 20 mL of sterile distilled water was added.
The tubes were vortexed for 2 min to remove any adhering
microbes, and the liquid was collected. Tubes were vortexed two
more times, followed by three 1-min sonication with sterile water
using a sonication probe (Microson Ultrasonic Cell Disruptor
model XL2000, Misonix Incorporated New York, United States,
output 7 watts) to remove tightly adhering microbes. Liquid
extracts were pooled together based on different seed types to
form the shoot and root surface compartment samples. The
remaining shoot and root tissue were washed two more times by
sonication and then placed separately in sterile tubes.

After preliminary confirmation and evaluation for bacteria
and fungi existing in the four seedling compartments by plate
culturing, samples for genomic DNA extraction were then
processed. To extract DNA from shoot and root surface fractions
(all replicates were used for DNA extraction and combined), the
liquid extracts were centrifuged at 12,000 rpm for 15 min and
the supernatant was removed from the pellets. Respective pellets

represented the shoot surface and root surface compartments.
Pellets were collected and stored at −20◦C until DNA extraction
(Bulgarelli et al., 2012; Engelbrektson et al., 2012; Bulgarelli
et al., 2015). For shoot and root endosphere DNA samples,
the remaining shoot tissue and root tissue after washing by
sonication (above) were stored at −20◦C until DNA extraction
(Engelbrektson et al., 2012; Bulgarelli et al., 2013).

DNA Extraction
Whole genomic DNA was extracted from the 24 different
samples. The pellet collected from “shoot surface,” “root surface”
samples as well as the shoot and root tissue were placed separately
in sterile mortar and pestles. Liquid nitrogen was added. Samples
were thoroughly ground and DNA was extracted using the
“Wizard Genomic DNA Purification Kit” by Promega (Madison,
WI, United States) following the provided instructions (Fadrosh
et al., 2014). DNA quality and concentration were checked using
the NanoDrop spectrophotometer (model ND-1000, Thermo
Fisher Scientific, Waltham, MA, United States).

16S V3-V4 and ITS1 PCR Amplification
The amplification was carried out using primers modified
from Fadrosh et al. (2014). For bacteria, a region of
approximately 460 bp encompassing the V3 and V4
hypervariable regions of the 16S rRNA gene was targeted
(IlluminaF: 5′-CCTACGGGNGGCWGCAG-3′ and IlluminaR:
5′-GACTACHVGGGTATCTAATCC-3′) (Klindworth et al.,
2013)1. For fungi, the primers were used to amplify 291 ± 58 bp
ITS1 region (ITS1F: 5′-CTTGGTCATTTAGAGGAAGTAA-3′
and ITS2R: 5′-GCTGCGTTCTTCATCGATGC-3′) (White et al.,
1990; Gardes and Bruns, 1993; Usyk et al., 2017). Overhang
adapters were added to primers for compatibility with the
Nextera Index Kit (Illumina, San Diego, CA, United States).

Two stages of PCR were then conducted as described in
Eyre et al. (2019). Specific index pairs were assigned to each
sample following the manufacturer’s user manual. Bacterial 16S
amplicon and fungal ITS amplicon coming from same sample
shared the identical barcode for Mi-Seq sequencing. All 48
amplicon products (24 for bacteria and 24 for fungi) were
quantified using a Bioanalyzer (Agilent 2200 TapeStation, CA,
United States). Amplicons were diluted and pooled together
at equimolar concentrations to ensure equal proportions of
the bacterial and fungal amplifications. The prepared samples
were submitted to the Genomic Sciences Laboratory at North
Carolina State University for “Illumina MiSeq 300 bp Paired-End
Sequencing” (Illumina, San Diego, CA, United States).

Sequencing Data Analysis
Sequencing data obtained from the Illumina MiSeq runs was
demultiplexed at the sequencing center for the 24 different
samples (Supplementary Table 1) based on the barcode
sequences attached to each sample. FastQC v0.11.82 was then
used to visualize the quality of raw sequences. Reads for

1http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_
preparation.html
2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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each sample were further separated as bacterial and fungal
sequences using a custom Python script based on the different
primer sequences used for 16S and ITS amplification. The R
package “DADA2” was then used to generate the amplicon
sequence variants (ASVs) table (Callahan et al., 2016). Through
“DADA2,” the demultiplexed “fastq” files for each sample were
filtered, trimmed and dereplicated to discern the error rates.
Forward/reverse reads were merged together, and chimeras
were removed from the whole set. The ASVs table was
generated and sequences were then assigned to taxonomy
through DADA2. “SILVA reference database” (version 132)
(Wang et al., 2007; Quast et al., 2012)3 was used for 16S
amplicon data “assignTaxonomy” function. For fungal taxonomy,
the general “fasta” release files from “UNITE ITS database”
was used (Version 18.11.2018)4. Singletons were removed before
subsequent analysis.

Data Exploration and Statistical Analysis
Based on output from the “DADA2” package, statistical analysis
was performed using different R packages (R version 3.5.2)5.
“VennDiagram” package was used to show the distribution of
unique ASVs among different samples (Schwenk, 1984). Alpha-
diversity analysis was conducted using “alpha” function from
R package “microbiome” (Lahti and Shetty, 2018). Different
index value of alpha diversity was obtained while Shannon,
Chao1 and InverseSimpson index were plotted through “ggplot2”
(Wickham, 2016) -based R package “ggpubr” (Kassambara,
2018). Function “stat_compare_means” from “ggpubr” was used
for T-test between groups. “Ordinate” function from package
“Phyloseq” was used for the Principal coordinate analysis
(PCoA) and default distance Bray was applied. “Plot_ordination”
function from package “ggplot2” (Wickham, 2016) was used to
build the plot. For the summarization of samples taxonomic
composition, microbial genomics module of QIAGEN CLC
Genomics Workbench 20.06 was used to build the sunburst
figures. Taxa with at least 1% of the total reads were then extracted
and used to summarize the distribution of taxa across different
tissue compartments using R package “Phyloseq” (McMurdie
and Holmes, 2013). Package “ggplot2” was used for bar chart
plotting. Function “subset_taxa,” “get_taxa” and “sample_sums”
from package “Phyloseq” were used to extract taxa of interest
and get read abundance from taxa of interest as well as sample
of interest. Unpaired T-test and ANOVA analysis were carried
out to compare taxa abundance among groups using Prism
Graphpad software7. For further insight into the microbial
distribution pattern across rice tissue compartments, data from
seeds and seedlings were combined and taxa presenting more
than 0.1% of the total reads were extracted, normalized and
subjected to K-means clustering. The distance matrices were
made by using the “vegdist” function in R package “Vegan”
(Oksanen, 2015) and the clusters were then generated by

3https://zenodo.org/record/1172783#.XvQNAmpKjfA
4https://unite.ut.ee/repository.php
5https://www.r-project.org/; https://rstudio.com/
6https://digitalinsights.qiagen.com
7https://www.graphpad.com/scientific-software/prism/

hierarchical agglomerative clustering (function “hclust”) using
complete linkage. This multivariate clustering analysis was used
to reveal similar groupings of taxa as cluster patterns in the
dataset across tissues. The taxa included in these clusters
are shown in Supplementary Tables 5, 6. In the end, core
members of the microbial communities were extracted using
R package microbiome (Lahti and Shetty, 2018) with 100%
representation (i.e., present in all 6 samples within a group,
seedling samples were grouped based on the 4 compartments).
When compare seedlings data with previous seeds data (Eyre
et al., 2019), ASV table from seedlings data was combined with
ASV table from early published seeds data and then subjected to
corresponding analysis.

RESULTS

Changes of Microbial Members in the
Rice During Shoot and Root Growth
The number of reads before and after quality control and the
number of ASVs per sample as well as per tissue compartment
are shown in Supplementary Tables 1, 2. After quality control,
18,308,731 total raw reads were separated, trimmed and filtered
to yield 4,101,915 bacterial reads and 5,917,486 fungal reads,
respectively. With the exception of the root surface sample from
fungi, the number of high-quality reads per tissue compartment
after quality control ranged between 955,602–2,496,917.

Distribution of unique ASVs as having more than one
read in any of seedling tissue compartments was summarized
firstly to reveal a broad picture of the microbial members
within the rice. The Venn diagrams shown in Figures 1A,C–E
showed the distribution of bacterial members within different
rice seedling compartments (shoot_endosphere, shoot_surface,
root_endosphere, and root_surface). Examination of the 4
seedling compartments revealed a total of 966 unique ASVs
(Figure 1A). More ASVs were found in root tissue (887)
than in shoots (282). For both the root and shoot tissues, the
number of ASVs was slightly higher in the surface samples (680)
compared to the endosphere (575). In addition, for both the
surface and endosphere sample, the root contained more ASVs
than shoot samples (Root surface: 592 vs. Shoot_surface: 268;
Root endosphere: 543 vs. Shoot endosphere 133). Overall, 640
(66.3%) of the ASVs were uniquely found only in single seedling
compartments: 298 (30.8%) out of all ASVs were only found
in root surface sample; 273 (28.3%) for the root endosphere;
60 (6.2%) for the shoot surface and 9 (0.9%) for the shoot
endosphere. Of the total 966 microbial ASVs, only 89 (9.2%) were
shared by all 4 seedling compartments.

Based on our previously published data (Eyre et al., 2019), a
total of 296 ASVs were detected in the rice seeds. Comparison
of the rice seeds and seedling data sets revealed 91 ASVs were
shared, representing 30.7% of those present in the seeds (7.8%
of total ASVs) as shown in Figure 1C. When the seedling
data sets were separated into shoots and roots, 54 ASVs were
shared by rice seeds, shoots and roots (Figure 1D). However,
88 of the 91 were shared between roots and seeds, whereas
57 of the 91 were shared between shoots and seeds. On the
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FIGURE 1 | Relationships between unique ASVs by tissue and tissue compartments. Distribution of unique bacterial (A) and fungal (B) ASVs separated by seedling
compartment. The number of unique ASVs found in each seedling compartment are shown below the Venn Diagram (Pink: Shoot_Surface; Blue: Root_Surface;
Green: Shoot_Endosphere; Yellow: Root_Endosphere). Unique ASVs in seedlings compared to unique ASVs in seeds (C–H). Distribution of unique bacterial (C–E)
and fungal (F–H) ASVs separated by tissue compartments.

other hand, the shared ASVs only represented 9.9% (88 out
of 887) of root ASVs while representing 20.2% (57 out of
282) of shoot ASVs. Seedling samples were further separated to
seedling surface and seedling endosphere. Inspection revealed
that 68 ASVs were shared between rice seeds, seedling surface
and seedling endosphere samples, whereas 82 and 77 of seed
ASVs were shared with seedling surface and seedling endosphere
samples, respectively. The shared ASVs accounted for 12.1%
(82 out of 680) of total seedling surface ASVs and for seedling
endosphere, the shared ASVs account for 13.4% (77 out of
575). In sum, from the perspective of the seed, a greater
number of the bacterial seed microbiome was retained by the

root than the shoot, but these seed derived microbes showed
little preference for being retained in the seedling surface or
endosphere compartments.

To better understand the microbiome dynamics from seeds
to seedlings, additional analyses were performed using the four
different seed compartments: outer husk, husk, outer grain and
grain (Eyre et al., 2019; see Supplementary Figure 1). From
outer surface to inner grain, the number of shared ASVs among
seed compartments and seedling samples decreased, consistent
with the observation that the number of ASVs decreased in
rice seeds from outer surface to inner grain (Eyre et al., 2019).
From the perspective of seed compartments, 43.6% (85/195)
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of outer husk ASVs were shared with seedling samples (roots
and shoots); 39.0% (57 out of 146) of husk ASVs were shared
with seedlings; 41.2% (35 out of 85) of outer grain ASVs were
shared while only 18.9% (7 out of 37) of grain ASVs were shared
(Supplementary Figures 1A–D). Similar patterns were observed
when comparing seed compartments with seedling surface
and endosphere compartments (Supplementary Figures 1E–
H). Thus, overall, although the outer husk contributed the
most ASVs to the seedling microbiome, there appeared to
be little preference based on proportion regarding which
seed compartment contributed predominantly to the seedling
microbiome, with the possible exception of the grain which
contributed the fewest and lowest proportion.

For the fungal dataset, 280 ASVs in total were detected for
rice seedlings (Figure 1B). Overall, 225 (80.4%) of the ASVs
were found to be uniquely associated with specific seedling
compartments: 21 (7.5%) ASVs were only found in shoot surface
sample; 0 (0%) for root surface; 77 (27.5%) were found specific
for shoot endosphere and 127 (45.4%) for root endosphere.
Only 4 of the total 280 ASVs were shared by all 4 seedling
samples, all of which were found on the root surface. The
low number of ASVs found on the root surface preclude
any further general inferences regarding the effect of organs
(root/shoot) and location (surface/endosphere) impacting the
fungal communities.

Seedling fungal data were then compared with previous rice
seeds data (Eyre et al., 2019) where 341 fungal ASVs were detected
(Figures 1F–H). Only 11 ASVs were shared, representing 1.8% of
the total ASVs (3.2% of seed data set). Similar to the bacterial
analysis, seedling samples were then separated by shoots and
roots: 3 ASVs which represents 0.5% of total were shared by
rice seeds, shoots and roots. During germination, 10 [out of
341 (2.9%)] of seeds ASVs were shared with root samples while
4 [out of 341 (1.2%)] of seeds ASVs were shared with shoot
samples. Moreover, the shared ASVs represented 5.8% (10 out of
174) of root ASVs and represented 2.6% (4 out of 153) of shoot
ASVs. Seedling samples were further separated to seedling surface
and seedling endosphere. Only 2 ASVs which represent 0.3% of
total were shared by rice seeds, seedling surface and endosphere
samples. During germination, the 11 [out of 341 (3.2%)] seed
ASVs were shared with seedling endosphere samples while only 2
[out of 341 (0.6%)] were shared with seedling surface samples.
The shared ASVs accounted for 4.2% (11 out of 259) of total
seedling endosphere ASVs. For the seedling surface, the shared
ASVs accounted for 3.1% (2 out of 64). Additional analyses were
conducted using the four seed compartments: outer husk, husk,
outer grain and grain to better understand the microbiome shift
from seeds to seedlings (Supplementary Figure 2). From the
outer surface to inner interior, 2.7% (7 out of 262) of outer husk
ASVs were shared with seedling samples; 3.6% (4 out of 112) of
husk ASVs were shared with seedlings; 3.4% (7 out of 211) of
outer grain ASVs were shared and 7.6% (5 out of 66) of grain
ASVs were shared. Overall, even though the number of fungal
ASVs commonly associated with seeds and seedlings was low,
each seed compartment contributed fairly evenly to the seedling
microbiome, which were predominantly located in the root and
endophyte tissues.

Diversity and Driving Factors of
Microbial Communities
To evaluate diversity of microbial communities associated
with rice seedlings, alpha diversity was calculated across
samples grouped to different compartments, years, genotypes
and locations (Figure 2 and Supplementary Tables 3, 4).
Alpha diversity provides information regarding species richness
(ASV abundance) and diversity within single samples. For rice
seedlings, associated bacteria were more diverse than associated
fungi. Moreover, root samples were more diverse than shoot
samples while the surface samples were more diverse than the
endosphere samples (except for fungi associated with shoot
surface compartment). Analysis of the combined seeds data with
seedlings data indicated that bacteria associated with seedlings
were more diverse than those associated with seeds while fungi
associated with seed samples were slightly more diverse than
those associated with seedlings. Other factors including genotype,
location and year also had minimal effect on diversity.

To better understand the impact of different factors (seedling
compartment, harvesting year, harvesting location, rice
genotype) on the microbial community, Principal Coordinates
Analysis (PCoA) was used to explore the internal relationships of
those variables (Figures 3A,B). For bacterial and fungal datasets
of rice seedlings, PCoA plots showed that samples generally
clustered together based on different tissue compartments,
indicating distinct communities. However, when samples were
grouped based on different harvesting year, location or rice
genotype, no obvious clusters were evident (Supplementary
Figures 5, 6). Seeds data were also combined with seedling data
and subjected to PCoA analysis (Figures 3C,D). Microbiome
community (both bacterial and fungal) associated with rice seeds
were very distinct from those associated with seedlings. For rice
seeds, consistent with previous publication (Eyre et al., 2019), the
grain compartment formed the most distinct bacterial grouping.
Inspection of the fungal PCoA in seeds samples revealed that
the grain, outer grain, and outer husk tissues formed distinct
groupings with the husk overlapping all three. Though the
seedling sample did not show clear community patterns in the
combined analysis with the seed data, when the seed data was
removed, the bacterial community possessed by shoot samples
was different from root samples and the microbiome associated
with plant surface was distinct from the plant endosphere (as
shown in Figures 3C,D).

Taxon Composition of Microbial
Communities
To better understand changes in microbial communities during
germination, CLC workbench (Microbial genomics module) was
used to visualize taxa proportions for comparing seeds and
seedlings. For bacteria (Figure 4A and Supplementary Figure 3),
Proteobacteria (87%) and Actinobacteria (12%) composed the
entire seeds bacterial community. Though Proteobacteria were
also dominant for seedlings (63%), reduced Actinobacteria (4%)
were detected along with emerging Bacteroidetes (29%) and
Firmicutes (3%). In addition, during germination the abundance
of Gammaproteobacteria increased compared to seeds (from 0.9
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FIGURE 2 | Alpha diversity of bacterial (A,C,E) and fungal (B,D,F) ASVs within samples pooled based on tissue compartments. Unpaired t-test was performed, and
P-values were added in (A,B) (G, Grain; H, Husk; OG, Outer Grain; OH, Outer Husk; RE, Root Endosphere; RS, Root Surface; SE, Shoot Endosphere; SS, Shoot
Surface).

to 30.9%, P = 0.0259) where Alphaproteobacteria were prevalent
(86% in seeds).

A total of 247 taxonomic classifications primarily at the
genus level were detected for the combined seed and the
seedling datasets. Nineteen taxa were identified representing
91.5% of the total reads (Figure 4B, seeds data and seedlings
data combined). Of those taxa, 12 were from proteobacteria (4
Alphaproteobacteria and 8 Gammaproteobacteria), 3 were from

Bacteroidetes, 3 Actinobacteria and 1 Firmicutes. Considering
the seedling samples, 16 taxa were present in the combined data
set (taxa Curtobacterium, Microbacterium, Enterobacteriaceae,
and Atlantibacter were absent from seedlings while Luteibacter
was included). Taxon composition of the root endosphere was
similar as the root surface, except for increased abundance of
Pseudomonas (from 1.3 to 10%, P = 0.0028), Massilia (from 2.8
to 10.4%, P = 0.0206) and reduced abundance of Herbaspirillum
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FIGURE 3 | Bacterial and fungal Principal coordinate analysis (PCoA) for seedlings (A,B) and combined data (seeds and seedlings data) (C,D). PCoA was
performed on the bacterial (A,C) and fungal (B,D) samples, colorized by different tissue compartment (G, Grain; H, Husk; OG, Outer Grain; OH, Outer Husk; RE,
Root Endosphere; RS, Root Surface; SE, Shoot Endosphere; SS, Shoot Surface).

(from 21.4 to 5.2%, P = 0.0250). The shoot sample contained a
greater abundance of Actinobacteria (8.5% for shoot and 0.6% for
root, P = 0.0009) and Aureimonas (3.8% for shoot and 0.2% for
root, P = 0.001) than roots. The shoot endosphere sample was
richest in Pantoea and least rich for Bacteroidetes. In contrast,
in the shoot surface sample, Gammaproteobacteria (from 57.4
to 13.6%, P < 0.0001) were reduced while Bacteroidetes
(from 3.8 to 39.3%, P < 0.0001) increased. When examined
based on ASV abundance distribution (Figure 4C) rather
than read abundance, compared to read abundance bar plot,
Methylobacterium increased in seedlings and Actinobacteria
increased in root samples. For the shoot endosphere sample,
Bacteroidetes ASVs were highly prominent.

With respect to seeds, 8 taxa were included in the 19 taxa in
the combined seeds and seedlings dataset. These observations
were similar to previous findings using the seeds data alone,
where 9 taxa were identified whose abundance were higher
than 1% of total reads with the addition of Franconibactor
(Eyre et al., 2019). Moreover, the taxon composition in rice
seedlings was distinct from seed samples. Curtobacterium
and Microbacterium from Actinobacteria were consistently
present for all tissue compartments, however, the abundance
was reduced in seedling samples compared to rice seed

(Curtobacterium from 8 to 0.4%, P < 0.0001; Microbacterium
from 2 to 1%, P = 0.0281). A similar pattern was also
observed for 4 genera from Alphaproteobacteria, which were
very prominent in seeds. In contrast, compared to seed
samples, members from Gammaproteobacteria, Bacteroidia and
Firmucutes were abundant in seedlings and represented 47.4% of
the total reads.

For fungi, the seed and seedling communities were
comprised of Ascomycota and Basidiomycota (Figure 5A).
Tremellomycetes (from 27.9 to 28.13%, P > 0.05) and
Cytobasidiomycetes (from 1.5 to 0.9%, P > 0.05) were the
most abundant taxa for Basidiomycota and their total proportion
remained unchanged during germination (for seedling samples,
99% ASVs from Tremellomycetes could not be assigned to a
specific genus while in Cytobasidiomycetes, genus Occultifur
emerged to be dominant as the genus Symmetrospora became
undetectable). In contrast, for Ascomycota, the abundance
of Sordariomycetes increased dramatically (from 3.5 to 54%,
P < 0.0001) while Dothideomycetes were reduced (from 66.5
to 17%, P < 0.0001) in seedlings. It should also be noted
that for Sordariomycetes, Fusarium became prevalent in
seedlings compared to seeds where Nigrospora was the primary
(Supplementary Figure 4).
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FIGURE 4 | Bacterial taxon composition for microbial communities. Comparison of seeds and seedlings data at phylum and order level (A). Bacterial genera bar
graphs based on reads abundance (B) and ASVs abundance (C) for 4 different tissue compartments (Top genera with > 1% total reads). Tissue compartment: RE,
Root Endosphere; RS, Root Surface; SE, Shoot Endosphere; SS, Shoot Surface.

In the fungal data, 159 taxonomic classifications primarily
at the genus level were detected for rice seedlings. Similar
to bacteria, fungal taxa with at least 1% of the reads (13
genera representing 90.6% of total reads) from seeds and
seedlings dataset were examined (Figure 5B, combined seeds
and seedlings dataset). Overall, taxa assigned to Fusarium
and Tremellales accounted for 74.8% (Figure 5B) of the
whole seedling taxon composition. However, compared
to other seedling samples, Tremellales (0.5% for root
endosphere, ANOVA P = 0.0024) and all Basidiomycota
(0.6% for root endosphere, ANOVA P = 0.0021) were

poorly represented in the root endosphere compartment
(Figure 5B). Inspection based on ASV abundance rather
than read abundance, revealed that Occultifur which only
represented 0.15 and 0.04% of reads in root endosphere and
shoot surface compartments showed higher relative ASV
abundance. Furthermore, in the root endosphere, based on
reads Basidiomycota accounted for less than 2% of the root
endosphere reads, whereas they accounted for ∼25% of ASV
abundance (Figure 5C).

With regards to changes in fungal taxa during seedling
development, taxa Pleosporales (from 42.3 to 7.9%, p < 0.0001),
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FIGURE 5 | Fungal taxon composition for microbial communities. Comparison of seeds and seedlings data at phylum and order level (A). Fungal genera bar graphs
based on reads abundance (B) and ASVs abundance (C) for 4 different tissue compartments (Top genera with > 1% total reads). Tissue compartment: RE, Root
Endosphere; RS, Root Surface; SE, Shoot Endosphere; SS, Shoot Surface.

Didymellaceae (from 11.1% to non-detectable), Alternaria
(from 13.9 to 4%, P = 0.0072) and Cladosporium (from
4.5% to non-detectable) diminished while Fusarium (from
non-detectable to 41.6%) and Tremellales (from 4.8 to
34.2%, P = 0.0002) increased. Although only 4 fungal ASVs

were found on the root surface they were predominantly
Tremellales. Taxa such as Papiliotrema, Saitozyma, Hannaella,
Nigrospora, Gladosporium and Didymellaceae showed increased
relative ASV abundance when compared to read abundance
(Figures 5B,C).
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Microbiome Patterns Across Rice Tissue
Compartments
Multivariate clustering analysis showed the bacterial data was
assigned to 6 clusters across tissue compartments (Figure 6A
and Supplementary Figure 7). Taxa assigned to cluster B were
found predominately in the root endosphere which contained
28.6% of the total root endosphere reads. Members of this
cluster were primarily from the Proteobacteria. Taxa in cluster
E were abundant in root surface compartments representing
20.1% of the root surface reads. Members of clusters B, E,
and F, which were prominent in seedlings, were largely absent
from seeds. Cluster A, which was made up of 10 taxa including
Rhizobium, Paenibacillus, Pedobacter, and Microbacterium, was
prominent in both seed and seedling compartments. Taxa in
cluster C were dominant in seeds, particularly in grain and husk
samples and included taxa Cautobacterium, Kineococcus as well as
Methylobacterium. Similar to Cluster C, Cluster D also contained
taxa dominant in seeds compartments such as Brevundimonas,
Sphingomonas, and Roseomonas.

K-means clustering was also applied to the fungal dataset and
provided 6 clusters across 8 tissue compartments (Figure 6B
and Supplementary Figure 7). Taxa in cluster A were dominant
in the root endosphere sample and were all Ascomycota. They
represented 34.5% of total ASV reads in this compartment. Six
taxa in cluster E including Saitozyma and Nigrospora were found
mostly in outer husk compartment representing 33.7% of outer
husk reads. Half of them were Ascomycota while the other
half were Basidiomycota. Cluster C (Occultifur and Fusarium
included) contained taxa that were in high abundance in the root
samples and shoot endosphere compartment. They were largely
absent from seeds. A similar pattern was found for Cluster B,
which contained taxa absent from seeds but abundant for root
surface and shoot samples. Furthermore, this cluster had modest
representation in the outer husk and outer grain compartments
of seeds. Only one taxon was present in Cluster B: Tremellales.
Cluster F was primarily restricted to seeds and carried taxa that
were most abundant in outer grain and outer husk compartment
such as Hannaella and Phaeosphaeria. Of note, members of
Cluster D, which included Alternaria and Curvularia taxa were
detected in all seed compartments but highest in grain.

Identification of a Core Microbiome
In total, 25 bacterial taxa and 8 fungal taxa were identified as core
members in one or more seedling compartments. The bacterial
core represented 90.0% of the bacterial total reads, while the
fungal core represented 61.3% of the fungal total reads. From
the perspective of ASVs, the ASVs identified in the bacterial core
represented 42.2% (494/1171) of the bacterial ASVs, while the
fungal core represented 21.8% (133/610) of the fungal ASVs.

Considering the bacterial core (Table 1), 10 taxa were detected
in all samples of the root endosphere; 21 taxa for root surface
samples; 11 taxa for shoot endosphere samples and 15 for
shoot surface. Genera including Allorhizobium, Sphingomonas,
Methylobacterium, Aureimonas, Pantoea, and Xanthomonas were
consistently detected as core for all four tissue compartments.
Less prevalent taxa such as Microbacteriaceae and Rhizobiaceae

were only absent for root endosphere samples; Mucilaginibacter
and Paenibacillus were consistently detected as core except for
shoot endosphere samples. Curtobacterium, Pseudomonas, and
Chryseobacterium were only identified in surface samples.

For the fungal core (Table 2), 7 taxa were detected in
all samples of the root endosphere; 1 taxon for root surface
samples; 3 taxa for shoot endosphere samples and 2 for
shoot surface. Fusarium was consistently detected except for
the shoot surface samples and Pleosporales was consistently
detected except for the root surface samples. Alternaria was
only detected in the endosphere sample. For the Basidiomycota,
only Occultifur in the root endosphere and Ustilaginaceae in the
shoot surface were found. Ascomycota such as Didymellaceae,
Phaeosphaeriaceae and Clonostachys were also identified as core
for the root endosphere.

Core microbiome found in seedlings were compared to
those found in seed samples (Eyre et al., 2019). Generally,
the seed bacteria core was a subset of the seedling except for
Franconibacter found in grain. Genera of Methylobacterium,
Aureimonas, Rhizobium and Sphingomonas were consistently
detected in seed and seedling samples. However, for the
fungal core, genera contained in seedlings were a subset
of those contained in seed samples except for Clonostachys
and Ustilaginaceae. Pleosporales, Alternaria, Didymellaceae,
Phaeosphaeriaceae and Occultifur were dominant in
seed samples while Fusarium was only detected as core
in the outer husk.

DISCUSSION

Microbes can colonize different plant compartments and prosper
on the outer surfaces as well as inside plant tissues (Turner
et al., 2013; Berg et al., 2014). In this study, we first explored
the microbiome associated with rice seedlings derived exclusively
from seeds. For the seedling bacterial data, fewer ASVs were
detected in endosphere samples than surface samples. This may
due to physical as well as biochemical barriers that restrict
microbes from colonizing inside plants. In addition, the roots
harbored more ASVs than shoots, which may be a result of the
soil facilitating microbial growth within roots. However, a similar
pattern was not seen in the fungal data where limited ASVs
were detected in the root surface sample. Perhaps the method
of sample collection of roots, which involved gentle shaking to
remove debris and the method used for amplicon production
may explain the small number of ASVs in fungal data. Overall, the
percentage of shared ASVs in the 4 seedling compartments was
low both for fungi and bacteria, suggesting tissue compartment as
the driving factor of microbial communities. The PCoA analysis
further confirmed this conclusion.

When compared to the previous seed data (Eyre et al.,
2019), shared bacterial as well as fungal ASVs constituted
a low proportion of the whole, indicating ASV composition
in the seeding is very different from seeds and development
plays an important role in proliferation of the rice associated
microbiomes. This was evident from the PCoA analysis. The high
proportion of seedling specific bacterial and fungal ASVs may
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FIGURE 6 | Bacterial and fungal taxa clusters (Microbial taxa with > 0.1% total read abundance). Clustering of the normalized relative abundance values for bacterial
(A) and fungal (B) taxa. Node values represent the average of the normalized abundance values within a cluster for each of the tissue compartments, A–F represent
the 6 clusters summarized from the data and taxa included in each cluster can be found in Supplementary Tables 5, 6.

due to the nutrient rich environment provided by soil and/or
nutrients released from seedlings during germination. As such,
rare microbes, possibly existing as fungal and bacterial spores
in the seed prospered in the seedlings and were identified as
unique ASVs (Darrasse et al., 2010; Huang et al., 2016; Johnston-
monje et al., 2016; Shade et al., 2017). However, it is also formally

possible that the seedling ASVs from sand result from DNA
contamination, present even in sterile sand.

For the bacterial microbiome, the ASV pool of the grain
contributed the least ASVs to the seedling while the outer
husk contributed the most. This may imply some valuable
function associated with the outer husk compartment, whereby
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TABLE 1 | Bacterial core seedling microbiome.

RE RS SE SS

Actinobacteria Microbacterium Amycolatopsis Amycolatopsis

(−, 1, 1, 1) (−, −, 1, 1) (−, −, 1, 1)

Microbacteriaceae Microbacterium Microbacterium

(−, 1, 1, 1) (−, 1, 1, 1) (−, 1, 1, 1)

Curtobacterium Microbacteriaceae Microbacteriaceae

(−, 1, −, −) (−, 1, 1, 1) (−, 1, 1, 1)

Kineococcus Curtobacterium

(−, 1, −, −) (−, −, −, 1)

Quadrisphaera

(−, 1, −, −)

Proteobacteria Allorhizobium Allorhizobium Allorhizobium Allorhizobium

Alphaproteobacteria (2, 2, 1, 1) (2, 2, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)

Sphingomonas Sphingomonas Sphingomonas Sphingomonas

(4, 2, 1, 1) (2, 7, 2, 2) (1, 2, 2, 2) (1, 2, 2, 2)

Methylobacterium Aureimonas Aureimonas Aureimonas

(4, 2, 1, 1) (−, 2, 1, 1) (−, 1, 1, 1) (−, 1, 1, 1)

Novosphingobium Rhizobiaceae Rhizobiaceae Rhizobiaceae

(1, 1, −, −) (−, 1, 1, 1) (−, 1, 1, 1) (−, 1, 1, 1)

Aureimonas Methylobacterium Methylobacterium Methylobacterium

(1, −, −, −) (2, 3, 1, 1) (1, 1, 1, 1) (2, 1, 1, 2)

Novosphingobium

(1, 1, −, −)

Roseomonas

(−, 2, −, −)

Belnapia

(−, 1, −, −)

Proteobacteria Pantoea Pantoea Pantoea Pantoea

Gammaproteobacteria (2, 2, 1, 1) (2, 6, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1)

Xanthomonas Luteibacter Xanthomonas Xanthomonas

(1, 1, 1, 1) (−, 1, −, −) (1, 1, 1, 1) (1, 1, 1, 1)

Herbaspirillum Pseudomonas Cupriavidus Pseudomonas

(1, −, −, −) (−, 3, −, 2) (−, −, 1, −) (−, 2, −, 2)

Massilia

(−, 1, −, −)

Xanthomonas

(1, 1, 1, 1)

Bacteroidetes Mucilaginibacter Chryseobacterium Chryseobacterium

(3, 2, −, 1) (−, 1, −, −) (−, −, −, 1)

Mucilaginibacter Mucilaginibacter

(2, 3, −, 1) (1, 1, −, 1)

Firmicutes Paenibacillus Paenibacillus Paenibacillus

(1, 1, −, 1) (1, 3, −, 1) (1, 1, −, 1)

The bacterial ASVs and their representative taxa shared between all samples of a seedling compartment. The numbers in parentheses represent the number of ASVs
belonging to the bacterial taxa that are shared with other compartments in order according to the header. The bold number represents the number of ASVs belonging to
the compartment of interest (RE, Root Endosphere; RS, Root Surface; SE, Shoot Endosphere; SS, Shoot Surface).

microbes are recruited from the parent plant during growth and
development and may confer some benefit to rice growth. When
the seeds germinate, those microbiome from the outer husk are
thus recruited again to favor rice seedlings. Microbes from the
grain compartment on the other hand, may be highly specialized
and do not thrive as robustly as epiphytes during seedling growth
due to unsuitable living environment and resource limitations
(James et al., 2002; Compant et al., 2010; Turner et al., 2013).

The total number of fungal ASVs of seeds and seedlings
were similar. However, the amount of shared ASVs between
seeds and seedlings were extremely low. This may be result of
the methods used for sample collection, amplicon production
and two independent sequencing data processing for seed and
seeding. Alternatively, germination and development play a
major role in establishment of the seedling fungal community.
Many fungi found in the seeds may be opportunistic saprophytes
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TABLE 2 | Fungal core seedling microbiome.

RE RS SE SS

Ascomycota Pleosporales Pleosporales Pleosporales

Dothideomycetes (1, −, 1, 1) (1, −, 2, 1) (1, −, 2, 1)

Alternaria Alternaria

(2, −, 1, −) (2, −, 1, −)

Didymellaceae

(1, −, −, −)

Phaeosphaeriaceae

(1, −, −, −)

Ascomycota Sordariomycetes Fusarium Fusarium Fusarium

(1, 1, 1, −) (1, 1, 1, −) (1, 1, 2, −)

Clonostachys

(1, −, −, −)

Basidiomycota Occultifur Ustilaginaceae

(1, −, −, −) (−, −, −, 1)

The fungal ASVs and their representative taxa shared between all samples of a seedling compartment. The numbers in parentheses represent the number of ASVs
belonging to the bacterial taxa that are shared with other compartments in order according to the header. The bold number represents the number of ASVs belonging to
the compartment of interest (RE, Root Endosphere; RS, Root Surface; SE, Shoot Endosphere; SS, Shoot Surface).

and are readily lost and fall to levels below our limits of detection
during seedling growth (Afkhami and Rudgers, 2008; Márquez
et al., 2012). Nevertheless, the outer husk and outer grain
compartments contributed the most fungal ASVs to the seedling
which may be due to the high diversity of fungi associated with
those two compartments (Figure 2).

Different field conditions and agricultural activities alter the
microbial community (Buyer et al., 1999; Hacquard, 2016), as
may genetic differences of host plants (Peiffer et al., 2013). In
this study, it was the tissue compartment that proved to be the
principal driving factor of microbial community. This discovery
also suggested that there may be core microbiome consistently
associating with rice plants regardless of location, genotype and
harvesting time. Additional studies using rice representing more
diverse genotypes from more growing locations and harvesting
years would be needed to confirm conclusions obtained in this
study. In fact, little is known about the mechanisms for microbial
community build up. More knowledge is needed regarding the
interaction between host and microbiome as well as interaction
among different microbial communities (Lau and Lennon, 2011;
Cordero and Datta, 2016; Henry et al., 2016).

Taxa composition of tissue compartments revealed here
are consistent with previous studies related to microbiome
communities associated with plants (Fischer et al., 2012;
Lundberg et al., 2012; Sessitsch et al., 2012; Vorholt, 2012;
Bodenhausen et al., 2013; Bulgarelli et al., 2013; Schlaeppi and
Bulgarelli, 2015). Similar taxon compositions were detected in
the root endosphere and on the root surface, indicating that
both of those two compartments inherited similar microbial taxa
from seeds. However, some differences were noted, indicating
that the endosphere may impose some selection mechanisms.
More Pseudomonas and Massilia accumulated in root endosphere
rather than on the root surface and those microbes are strongly
linked to plant growth promotion. It is noteworthy that ASV
abundance was also analyzed in addition to read abundance.

In a number of instances, taxa showed dramatic differences in
read abundance compared to their taxonomic (ASV) abundance.
For those who had lower proportion of read abundance but
higher ASV abundance such as Actinobacteria in roots, it may
suggest a higher evolution potential for this specific taxon. On
the contrary, for the Rhizobium genus from Alphaproteobacteria,
ASV abundance in seedlings was lower than read abundance,
suggesting ASVs detected in this genus are quite conservative.

A point worth highlighting is that though not detected in
seeds, Bacteroidetes (29%) and Firmicutes (3%) were detected in
seedling samples. It is likely that Bacteroidetes and Firmicutes
exist in the seed samples in the first place, but the amount of
those bacteria fell below our limits of detection in seeds. Previous
research had identified Bacteroidetes and Firmicutes associated
with rice seeds (Okunishi et al., 2005; Mano et al., 2006; Zhang
et al., 2019). The reason they were identified elsewhere may
be because they were either isolated bacteria from culturable
colonies (Okunishi et al., 2005; Mano et al., 2006) or larger sample
amounts for gDNA were used (Zhang et al., 2019). Also, the
rice varieties and rice growing conditions were different from
our studies, which may have enhanced these taxa in seeds. It is
likely that during the process of rice germination, rich nutrients
either from rice shoots and roots or soil facilitate the thriving
of Bacteroidetes and Firmicutes. Moreover, those bacteria may
promote rice growth, generating a mutualism interaction with
rice (Urai et al., 2008; Madhaiyan et al., 2010a; Köberl et al.,
2011). In fact, considerable microbiome research has revealed a
close relationship of rice plants with Bacteroidetes and Firmicutes
(Mano and Morisaki, 2008; Raweekul et al., 2016; Lu et al., 2018),
consistent with our findings for seedlings.

Proteobacteria, which predominated root endosphere
compartments (Cluster B Figure 6A), likely represent specific
root endophytes. Other Proteobacteria dominated the root
surface (Cluster E), indicating those bacteria live in association
with roots and were not selected as endophytes. Cluster A
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revealed taxa found in the seed that remained in the seedling
compartments. This cluster is made up of Paenibacillus,
Acidovorax, Pedobacter, Rhizobium, Microbacterium, and others.
It is not known how exactly these taxa are selected, but they may
be of particular interest.

From the fungal clustering analysis, taxa were generally found
to be associated with specific compartments. Taxa enriched
in the root endosphere sample (Cluster A) were identified
as Ascomycota. Gibberella which can infect rice and produce
gibberellin was present in this cluster and gibberellin is a
growth hormone promoting cell elongation, flower formation
and seedling growth (Cerdá-Olmedo et al., 1994; Zainudin et al.,
2008). Furthermore, members of the genus Clonostachys found in
this cluster have been developed as biological control agents (Xue,
2003; Jensen et al., 2004; Rodríguez et al., 2011).

An important goal of this work was to define a core
microbiome of rice for both bacteria and fungi as these may
represent microbes that confer beneficial properties. A number of
core bacteria were identified, such as Rhizobium-Allorhizobium-
Pararhizobium-Neorhizobium that can fix nitrogen and colonize
inside plant tissue. These microbes have been also found
colonizing roots of non-legume crops such as wheat, barley,
maize and rice and could be used as biofertilizer through
bio-inoculating with crop seeds (Boddey et al., 1995; Webster
et al., 1997; Yanni et al., 1997; Gutierrez-Zamora and Martinez-
Romero, 2001; Lupwayi et al., 2004; Chi et al., 2005; Da et al.,
2011; Ren et al., 2011; Mousavi et al., 2014, 2015). Species from
the genus Pantoea (Monier and Lindow, 2005) have been found
as part of the epi- and endophyte flora of various plant hosts. They
are considered to be phosphate-solubilizing microorganisms
(PSMs) and may be valuable to solubilize inorganic phosphates
(Son et al., 2006; Coutinho and Venter, 2009). Pseudomonas,
Bacillus, and Enterobacter are also known as PSMs (Raj et al.,
1981; Laheurte and Berthelin, 1988). A rice endophyte Pantoea
agglomerans YS19 was further demonstrated to have nitrogen-
fixing activity, producing phytohormones that can improve rice
biomass and affect allocations of host photosynthates (Feng
et al., 2006). This species was also found to have anti-disease
properties that protect pear and apple from B. cinerea, Penicillium
expansum, and Rhizopus stolonifer (Nunes et al., 2001; Nunes
et al., 2002). Furthermore, P. agglomerans may also regulate
water content of wheat rhizosphere by improving soil aggregation
(Amellal et al., 1998). Siderophores and hydrocyanic acid (HCN)
are produced by Pantoea which may help with ion absorption and
disease control (Selvakumar et al., 2008). However, this genus also
contains species that can cause disease on a wide range of host
crops as well as human beings (Brenner et al., 1984; Coutinho
and Venter, 2009; Kido et al., 2010).

Sphingomonas, also detected as a core bacteria occurs in a
diverse range of environments, are metabolically flexible and
can consume environmental contaminants (Miyauchi et al.,
1999; Aylward et al., 2013). Members of this genus can
remediate heavy metals and decompose various pesticides
(Miller et al., 2010; Liu et al., 2014). Sphingomonas sp.
LK11 alleviates salinity stress in Solanum pimpinellifolium
(Khan et al., 2017). Sphingomonas panaciterrae sp. nov. was
demonstrated to promote plant growth through production

of indole-3-acetic acid (IAA) (Sukweenadhi et al., 2015). They
were also shown to protect Arabidopsis thaliana against
bacterial pathogens (Innerebner et al., 2011). Another core
bacteria Paenibacillus genus have a broad host range and
have been demonstrated to have properties such as nitrogen
fixation, bioremediation, and promoting plant growth through
production of phytohormones including auxin, indole and
phenolic compounds. They can also combat plant pathogens
and pests by producing antibiotics (Gardener, 2004; Lal and
Tabacchioni, 2009; Govindasamy et al., 2010). P. polymyxa can
enable host drought tolerance (Shiao and Huang, 2001) as well
as confer “Induced systemic resistance” (ISR) in Arabidopsis
through the emission of volatile organic compounds (VOCs)
(Lee et al., 2012).

Other core genera, including members of the genus
Mucilaginibacter are known to have plant-growth-promoting
properties and some species have been isolated from dried rice
straw in addition to soil samples (Pankratov et al., 2007; Urai
et al., 2008; An et al., 2009; Jeon et al., 2009; Luo et al., 2009;
Baik et al., 2010; Madhaiyan et al., 2010b). Methylobacterium
species were shown to promote plant growth through producing
different phytohormones and have been isolated from various
plants (Kutschera, 2007). They were also known to solubilize
calcium phosphate and fix nitrogen (Subhaswaraj et al., 2017).
Bacterial species from Xanthomonas and Pseudomonas may
cause plant disease in some circumstances while other species of
Pseudomonas can also promote plant growth (Cole et al., 2015;
Park et al., 2015). Given their known properties, it is likely many
of the core bacteria described here have potential to be developed
as biologicals for modern agriculture.

Examination of the core fungi associated with rice seedlings,
revealed several genera with known biological properties,
including members of the Alternaria genus. These fungi
are ubiquitous in the environment and commonly act as
opportunistic plant pathogens (Al-Hatmi et al., 2016). More than
100 plant species can be infected by Alternaria species which
can cause leaf spot and other diseases (Rotem, 1994). However,
some Alternaria species also have biocontrol potential against
other plant diseases. A. zinniae, A. eichhornia, and A. cassiae are
commercially available for weed control (Walker and Sciumbato,
1979; Walker, 1980; Aneja and Singh, 1989; Babu et al., 2002).
Occultifur species are basidiomycetous yeasts and usually use
plant leaves and soil as important and interrelated habitats
(Khunnamwong et al., 2015, 2017). Some species have been
reported as mycoparasites, whereas one species has been reported
as a saprophyte (Roberts, 1997; Khunnamwong et al., 2015).
Members of the family Didymellaceae inhabit a wide range of
ecosystems (Chen et al., 2017) and most of them are plant
pathogens of a wide range of hosts (Aveskamp et al., 2008,
2010; Chen et al., 2015), however, they also comprises several
species recognized as endophytic, fungicolous and lichenicolous
fungi (Yang et al., 1994; Sullivan and White, 2000; Hawksworth,
2003; Hawksworth and Cole, 2004; Diederich et al., 2007; Schoch
et al., 2009). Those core fungi also can be candidates for
biocontrol uses.

Filamentous core fungi from the genus Fusarium are widely
distributed in plants, soil, water and are abundant members
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of the soil microbial community. Most species are harmless
while some species can cause diseases of plants as well as
animals. Many products from agriculturally important crops
can be contaminated by Fusarium spp., which can be of
concern because of highly toxic metabolites produced by some
species (Rippon, 1982; Walsh and Dixon, 1996; Nowicki et al.,
2012). Most species from the order Pleosporales are harmless
saprobes while there are also species associated with plants as
parasites, epiphytes and endophytes (Zhang et al., 2009). The
corresponding ASVs could be only assigned to Pleosporales at the
order level rather than species level, indicating further research is
needed to accurately characterize the role of fungi in this order.
Fungi from Gibberella can infect rice and produce gibberellin,
a plant hormone promoting cell elongation, flower formation
and seedling growth (Cerdá-Olmedo et al., 1994; Zainudin et al.,
2008). Clonostachys rosea f. rosea from the Clonostachys genus
is a plant endophyte and has been used as a biological pest
control agent against fungi such as B. cinerea as well as nematodes
(Toledo et al., 2006; Zhang et al., 2008).

In this research, we identified and characterized the
microbiome associated with rice seedlings in a sterile
environment. However, the main purpose for this research
is to understand the dynamics of microbiota shift from rice
seeds to seedlings. Seed-borne microbes is of great interest to
researchers because those microbes can be vertically transmitted
to next generation (Barret et al., 2015; Cope-Selby et al., 2017;
Mitter et al., 2017; Shahzad et al., 2018). During the transmission,
phyto-beneficial bacteria and fungi inherited from seeds can
promote seedling growth as well as mitigate plant stress damage
(Mitter et al., 2017; Shahzad et al., 2018). Knowledge about
the microbiota shift from rice seeds to rice seedlings can help
uncover what microbes have been transmitted vertically and
how well they proliferate. Transmitted microbes showing high
abundance in seedlings have great potential to be selected
by rice as phyto-beneficial microbes. This will further instruct
microbiome inoculant engineering to benefit modern agriculture.
The use of a sterile environment to monitor shifts in microbiome
populations has been used in other studies (Hardoim et al.,
2012; Huang et al., 2016; Mitter et al., 2017; Torres-Cortés
et al., 2018). However, there is limited data about how rice
seed-borne microbes change during the development process.
Our research provides the first detailed description of dynamic
microbiota shifts from rice seeds to rice seedlings. Rice seeds of
different genotype harvested from different locations at different
time allowed us to gain novel insight into these population
shifts and the core microbiome associated with seedlings tissue
compartments. Further experiments with more varieties and
sources of seeds are needed to confirm and extend our findings
as well as additional studies to compare population shifts of seeds
planted in natural soils.

An initial comparison between our findings and other datasets
collected from natural conditions revealed some consistent
patterns. Edwards and colleagues (Edwards et al., 2018) found
tissue compartments and rice development age were more
important factors shaping microbiome than growth location.
Wang and colleagues detected more diverse bacterial ASVs
in roots than stems while fungal ASVs were more diverse in

stems than roots (Wang et al., 2016). Although the identified
microbiome varied somewhat between different experimental
set ups, similarities in the distribution of phyla are apparent,
in line with our key findings. For example, Proteobacteria,
Actinobacteria, Bacteroidetes and Firmicutes were consistently
detected as bacterial phyla associated with rice while Ascomycota
and Basidiomycota were found to be dominant fungal phyla
(Mano and Morisaki, 2008; Edwards et al., 2015; Bertani et al.,
2016; Raweekul et al., 2016; Venkatachalam et al., 2016; Lu et al.,
2018; Thapa et al., 2018).

In sum, this study addressed the question of what happens
to microbes present in seeds during seedling germination and
how are they distributed to above and below ground tissues.
Their retention (and loss) and distribution patterns during
seedling growth also provides some insight into why they
are there. Because the productivity and health of agricultural
systems depend greatly upon the functional processes carried
out by the plant-associated microbiome, to further examine the
question “what are they doing there?” will need further functional
analysis of these core microbes. If their function is beneficial
and given they are core, they may be persistent and represent
valuable biologicals.

The findings of this research support the hypothesis that
the process of germination changes the microbial community
inherited from seeds and partitions it into the above and
below ground tissues. Certain microbes remain associated with
specific tissue compartment and accumulate there to build a
core microbiome. Most importantly, the effect of rice genotype,
growth location and harvest year are not as strong a driving force
as tissue compartment on shaping the microbial community. The
common core microbiome of rice seedlings revealed by this study
offer promise that we can develop and apply universal microbial
inoculant to benefit global rice production.
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