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Although it is well-known that human skin aging is accompanied by an alteration in the
skin microbiota, we know little about how the composition of these changes during
the course of aging and the effects of age-related skin microbes on aging. Using
16S ribosomal DNA and internal transcribed spacer ribosomal DNA sequencing to
profile the microbiomes of 160 skin samples from two anatomical sites, the cheek
and the abdomen, on 80 individuals of varying ages, we developed age-related
microbiota profiles for both intrinsic skin aging and photoaging to provide an improved
understanding of the age-dependent variation in skin microbial composition. According
to the landscape, the microbial composition in the Children group was significantly
different from that in the other age groups. Further correlation analysis with clinical
parameters and functional prediction in each group revealed that high enrichment
of nine microbial communities (i.e., Cyanobacteria, Staphylococcus, Cutibacterium,
Lactobacillus, Corynebacterium, Streptococcus, Neisseria, Candida, and Malassezia)
and 18 pathways (such as biosynthesis of antibiotics) potentially affected skin aging,
implying that skin microbiomes may perform key functions in skin aging by regulating
the immune response, resistance to ultraviolet light, and biosynthesis and metabolism
of age-related substances. Our work re-establishes that skin microbiomes play an
important regulatory role in the aging process and opens a new approach for targeted
microbial therapy for skin aging.

Keywords: skin microbiomes, intrinsic skin aging, photoaging, VISIA, skin immune regulation

INTRODUCTION

Skin is a complex barrier with a variety of biological functions. It provides an important surface
for interactions with the external environment and protects the body from pathogenic, chemical,
and physical assaults (Proksch et al., 2008). Skin microbiota (bacteria, fungi, and viruses) are
indispensable parts of the skin barrier; they regulate inflammatory processes and provide innate
and adaptive immunity (Zhai et al., 2018). Microecologically related research is a new direction in
the study of skin aging. A range of cutaneous pathological states occurs when the compositional
balance of the skin microbiome is broken due to factors such as aging (Kong et al., 2012; Schommer
and Gallo, 2013; Prescott et al., 2017; Tett et al., 2017; Rocha and Bagatin, 2018). In addition, the
composition of skin microbiomes varies depending on internal and external factors such as skin
integrity and physiological status (Dreno et al., 2016), antibacterial therapy (Langdon et al., 2016),
and demographic characteristics (Leung et al., 2016b). Skin aging is a process of alterations in the
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cutaneous structure and physiological changes (Lei et al., 2017;
Bonté et al., 2019), accompanied by increases in species richness
and changes in the dominant bacteria, according to some
studies (Shibagaki et al., 2017). Therefore, we need to prepare a
comprehensive picture of the variation in human skin microbiota
associated with skin aging to reveal the patterns of interaction
between the microbiota and the aging process.

Many studies (Shibagaki et al., 2017; Wilantho et al., 2017; Juge
et al., 2018) have confirmed that the skin bacterial microbiomes
differ between young women and older women; however, there
are limited studies on the variation in the patterns of skin
fungal microbiomes with aging. Additionally, existing studies
have focused mainly on site-specific anatomic variation in the
microbiomes, instead of differences in the aging process on the
basis of exposure factors, i.e., intrinsic aging and photoaging.
Intrinsic aging is basically the natural aging process of the skin
and is determined by internal factors. Photoaging is accelerated
aging of the skin caused by excessive exposure to the sun. In
photoaging, the skin microbiome is characterized by ultraviolet
(UV)-generated reactive oxygen species (ROS), which regulate
gene expression related to collagen degradation and elastin
accumulation. These ROS affect DNA or decrease protein
tyrosine phosphatases, resulting in the upregulation of matrix
metalloproteinase production, contributing to photooxidative
skin aging and skin cancer (Wlaschek et al., 2001; Gonzaga,
2009). In short, intrinsic skin aging and photoaging are different
processes. There is little evidence that microbiomes influence the
aging process of the skin, and little is known about the specific
variation patterns of microbiota and their functions in the two
different aging processes. In an attempt to remedy this lack, we
used 16S ribosomal DNA (rDNA) and internal transcribed spacer
(ITS) rDNA sequencing to create profiles for exposed and non-
exposed anatomical sites, respectively. We measured differences
in the characteristics of microbial composition brought about by
aging among four different age groups. Combined with clinical
parameters, we focused on the functions of specific age-related
microbial communities in each aging stage; these functions may
be considered key regulators of skin aging. Combinations of
microbial communities and age-related pathways in different
age groups could affect UV-induced damage, immune barrier
integrity, and the biosynthesis and metabolism of substances
that alter the aging process. Our findings could be a milestone
in targeted microbial anti-aging skin therapy, which would be
a benefit to health care for aging-relevant cutaneous idiopathic
diseases and wounds in different age groups.

MATERIALS AND METHODS

Skin Sample Collection
Skin samples were collected from 80 healthy participants
belonging to four age groups in Xi’an City (Shaanxi Province,
China). Each group was composed of 20 individuals. The
make-up of the individual groups, including age range and
source of skin samples, was as follows: (1) 20 children, 3–
7 years (cheek [CCHG], abdomen [ACHG]); (2) 20, youths, 19–
23 years (cheek [CYHG], abdomen [AYHG]); (3) 20 middle-aged

individuals, 37–42 years (cheek [CMAG], abdomen [AMAG]);
and (4) 20 elderly individuals, 65–74 years (cheek [CELG],
abdomen [AELG]). Each group was composed of 10 males and
10 females. The study was compliant with the Declaration of
Helsinki Principles, and we obtained informed consent from
participants or, in the case of the children, from their parents
or other relatives, about the significance of the research and the
process of implementation. All the participants were notified
that the material they provided could identify their health status
as that of having no current cutaneous disorders. Persons were
excluded if they were receiving antimicrobial therapy or cleaning
within 1 month. Participants were asked to avoid cleaning
sampling sites or using cosmetics for at least 48 h before sampling.
A strict procedure of superficial skin sampling was conducted for
both cheeks (2 cm × 5 cm) and abdomen (5 cm × 8 cm) in
a temperature- (22 ± 2◦C) and humidity-controlled (40–60%)
room. Samples were collected with sterile cotton-tipped swabs
soaked in 0.15 mol/L sodium chloride and 0.1% Tween 20. Each
cotton tip was cut, placed in a 2.0-ml sterile centrifuge tube, and
frozen in liquid nitrogen immediately for 5 min, then stored at
−80◦C until DNA extraction.

Facial Skin Parameters Collection
The VISIA Complexion Analysis System (Canfield, Fairfield,
NJ, United States) was used to take photographic images of
participants to analyze the physiological characteristics of skin
aging, quantitatively. Participants were asked to wash their face
with clean water before this examination. Images were taken from
the front and 45◦ to both lateral under the same conditions to
ensure the sampling sites (both cheeks) were covered completely.
The photographic images were of 10-megapixel resolution and
were captured with standard, cross-polarized, parallel polarized,
and UV light. Spots, wrinkles, texture, pores, UV spots, brown
spots, red areas, and porphyrins indexes were all objectively
evaluated by the system. Absolute scores were used to assess the
actual condition of each evaluation index.

DNA Extraction, PCR Amplification, and
Sequencing
Total genomic DNA was extracted from the clipped swabs with
the PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad,
CA, United States) according to the manufacturer’s instructions.
DNA concentration was measured with a NanoDrop
spectrophotometer (Thermo Fisher Scientific). Hypervariable
regions V3–V4 of the bacterial 16S rDNA were amplified
with the primers 338F (ACTCCTACGGGAGGCAGCAG)
and 806R (GGACTACHVGGGTWTCTAAT) (Munyaka et al.,
2015). The fungal ITS region was amplified with the primers
ITS1F (5-GGAAGTAAAAGTCGTAACAAGG-3) and ITS2
(5-TCCTCCGCTTATTGATATGC-3) (Zhang et al., 2015).
Amplification was performed as described by Cao et al.
(2018). The PCR products were purified and normalized
using Agencourt AMPure XP magnetic beads (Beckman
Coulter) according to the manufacturer’s protocol. Purified
amplifications were quantitated with real-time PCR and pooled
for Illumina sequencing. Deep sequencing was performed
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2 × 300-bp paired-end on an Illumina MiSeq platform using
MiSeq Reagent Kit v3 (600 cycles) (Illumina) according to the
standard protocol.

Real-Time Quantitative PCR
Total DNA was isolated with AxyPrep Multisource Genomic
DNA Kit (Axygen, Union City, CA, United States) according
to the manufacturer’s instructions, and DNA purity was
checked through the NanoPhotometer spectrophotometer
(IMPLEN, Westlake Village, CA, United States). Microbial
genera of Staphylococcus, Cutibacterium, Lactobacillus, and
Corynebacterium were quantified by real-time quantitative PCR
(qPCR) in different groups. The genus-specific primer pairs used
for qPCR are shown in Supplementary Table 5 (Martineau et al.,
2001; Rinttilä et al., 2004). The detailed protocol of the qPCR is
shown in the Supplementary Protocol 1. Data were analyzed
with ABI 7500 Real-Time PCR software version 2.0.5, and we
used the second derivate maximum method, which calculated
PCR efficiency in accordance with Pfaffl (2001). Sample DNA
concentration was calculated by comparing the sample Cp value
to the standard curve. Each group was tested in triplicate.

Taxonomic Unit Clustering and
Assignment
We assigned all reads to each specific sample on the basis of the
barcode sequence. Reads were removed if they were < 200 bp,
with an average low-quality score (≤20), containing ambiguous
bases or not exactly matched to the universal primer. For chimera
checking and taxonomy assignment of similar high-quality
sequences, qualified reads were de novo clustered into operational
taxonomic units (OTUs) at a similarity level of 97% (Edgar, 2013),
and chimeric OTUs were identified by the UCHIME algorithm
(v1.1.3) and removed. The Ribosomal Database Project Classifier
tool was used to classify all qualified sequences into different
taxonomic groups (Cole et al., 2009).

The taxonomy of each 16S rDNA and ITS rDNA sequence was
analyzed by UCLUST with the corresponding Silva 16S rRNA
database and Unite database, respectively. Chao1-estimated
OTU number index was also used to assess species diversity.
Beta diversity was evaluated by calculating UniFrac distance
(weighted) and constructing from the OTU table principal
component analysis between the samples in different groups.
Spearman analysis was used to analyze the correlation between
clinical data and dominant microbiomes, and the P-value
was calculated with Mothur software, an OTU association
program. The bacterial metabolic potentials were predicted by
Tax4FUN software combined with the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. FUNGuid software was
used to predict fungal functions. All raw sequencing reads
analyzed were deposited in the National Center for Biotechnology
Information (NCBI) with the accession numbers PRJNA630834
and PRJNA630117.

Statistical Analysis
According to different data types, various statistical strategies
were used to determine statistical significance. Linear

discriminant analysis effect size (LEfSe) analysis with a threshold
of 3.0 was used to determine the significant microbial taxa among
the four age groups. Wilcoxon’s rank-sum test analysis was used
to evaluate the statistical differences in the relative abundance
of microbial communities, species diversity, and pathway
enrichment between the two groups. A Kruskal–Wallis rank-sum
test was constructed to estimate the differences in microbial
composition and species richness for multiple comparisons. In
addition, we also used an analysis of similarities (ANOSIM)
based on weighted UniFrac to calculate the differences in
community structure. Spearman correlations were used to
calculate the relationships between every two microbial genera.
All these statistical analyses were performed using R software
(v 3.5.0) and mothur software (v1.33.3). P-value < 0.05 was
considered statistically significant.

RESULTS

Clinical Parameters in Facial Skin Aging
We used the VISIA Complexion Analysis System to evaluate
the following eight indicators for facial skin from 80 healthy
participants in four age groups: spots, wrinkles, texture, pores,
UV spots, brown spots, red areas, and porphyrins (see Table 1
and Supplementary Table 6). The absolute scores (ASs) of
spots, UV spots, brown spots, red areas, wrinkles, and texture
increased with increased age. However, the ASs of pores and
porphyrins increased initially and then decreased during aging,
and we detected peaks in the middle-aged and youth groups.
These eight clinical parameters accurately reflect the changes
of skin physiological state in aging in many respects, and
they present the regular variation in patterns during aging.
Thus, we used these parameters to quantitatively describe the
different facial skin aging status and to perform an association
analysis of microbiomes.

Overall Sequencing of Skin Microbiomes
We extracted DNA from 160 samples of exposed sites
(cheek) and non-exposed sites (abdomen) and compiled
their rDNA sequences and OTUs (Table 2). We obtained
10,036,756 and 14,864,480 reads from 16S rDNA and ITS rDNA
sequencing, respectively. Sequence assembly, chimera removal,
and quality filtering resulted in 9,315,093 high-quality 16S
rDNA sequences (average 58,219 reads/sample, from 26,245
reads/sample to 154,394 reads/sample) and 14,951,548 high-
quality ITS rDNA sequences (average 92,903 reads/sample, from
26,370 reads/sample to 262,051 reads/sample). We clustered
these data into 6,813 bacterial and 8,080 fungal OTUs with
a ≥ 97% identity threshold. Forty-three phyla and 1,087
genera were annotated with taxonomic information based on
bacterial OTUs, and 19 phyla and 975 genera were annotated
based on fungal OTUs.

Variation in Patterns of Skin
Microbiomes During Intrinsic Aging
We detected different composition characteristics of skin
microbiomes for the intrinsic aging process for unexposed sites
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TABLE 1 | Clinical skin parameters of cheeks from different age groups.

Group Children Median (25th, 75th) Youth Median (25th, 75th) Middle age Median (25th, 75th) Elderly Median (25th, 75th) P-value

Spots 17.87 (13.78, 21.47) 25.12 (21.07, 27.38) 32.80 (29.81, 35.22) 38.08 (34.97, 44.38) <0.001

UV spots 5.30 (2.75, 7.94) 11.16 (5.79, 15.23) 11.37 (8.82, 16.57) 14.19 (9.89, 20.01) <0.001

Brown spots 21.49 (19.43, 25.23) 3016 (25.27, 33.62) 43.53 (37.09, 46.01) 54.49 (51.98, 62.08) <0.001

Red areas 25.68 (19.91, 29.60) 27.36 (25.35, 33.77) 33.28 (28.72, 34.81) 39.25 (36.84, 42.97) <0.001

Wrinkles 4.34 (2.80, 7.88) 7.59 (3.73, 16.21) 17.61 (11.65, 22.40) 18.22 (16.60, 23.67) <0.001

Texture 0.78 (0.40, 1.81) 4.46 (1.50, 5.30) 10.45 (5.51, 14.12) 18.43 (14.76, 24.08) <0.001

Pores 0.61 (0.51, 0.73) 8.51 (5.97, 13.56) 18.28 (13.85, 21.71) 15.58 (12.40, 16.49) <0.001

Porphyrins 1.12 (0.65, 1.48) 9.91 (5.12, 15.83) 7.62 (5.62, 10.71) 4.53 (2.04, 6.76) <0.001

Median score and quartile (25th percentile, 75th percentile) were used to describe the absolute scores of different indices.
P-values were calculated by the Kruskal–Wallis test.
Significance level was 0.05.

TABLE 2 | Descriptive information and statistics for each group, i.e., children group (cheek [CCHG], abdomen [ACHG]), youth group (cheek [CYHG], abdomen [AYHG]),
middle-aged group (cheek [CMAG], abdomen [AMAG]), and elder group (cheek [CELG], abdomen [AELG]).

Group Exposed sampling sites Non-exposed sampling sites

Row tags
(Mean ± SD)

OTUs
(Mean ± SD)

Chao 1
(Mean ± SD)

Row tags
(Mean ± SD)

OTUs
(Mean ± SD)

Chao 1
(Mean ± SD)

16S rRNA
sequencing

CCHG 57,314.95 ± 18,550.61 706.95 ± 142.04 871.00 ± 136.36 ACHG 55,010.35 ± 14,018.03 693.75 ± 150.12 790.94 ± 124.74

CYHG 57,314.95 ± 18,550.61 765.40 ± 195.63 906.98 ± 160.88 AYHG 52339.65 ± 15,372.78 627.35 ± 69.63 773.09 ± 74.51

CMAG 68,455.80 ± 18,127.31 736.30 ± 130.98 1002.43 ± 133.11 AMAG 64,877.40 ± 16,541.71 721.55 ± 149.22 977.68 ± 173.76

CELG 76,821.60 ± 34,202.71 792.80 ± 135.89 1,113.29 ± 154.79 AELG 67,124.55 ± 16,017.87 859.20 ± 214.47 1,132.56 ± 213.50

ITS gene
sequencing

CCHG 57,314.98 ± 78,550.61 629.35 ± 144.07 831.37 ± 169.83 ACHG 81,292.35 ± 36,065.16 432.45 ± 157.85 613.31 ± 155.83

CYHG 59,893.50 ± 15,931.53 665.20 ± 189.05 878.92 ± 250.46 AYHG 77,415.25 ± 44,384.18 474.20 ± 221.25 658.61 ± 315.54

CMAG 68,455.80 ± 18,127.31 757.55 ± 96.95 1,047.49 ± 139.19 AMAG 95,945.80 ± 51,417.13 772.60 ± 174.85 1,024.11 ± 205.99

CELG 76,821.60 ± 34,202.71 631.35 ± 271.73 867.09 ± 383.69 AELG 127,038.30 ± 58,757.97 594.80 ± 275.75 843.19 ± 387.64

Variables are represented as mean ± standard deviation according to row tags, OTUs, and species richness indices (Chao 1 indices).

in different aging stages. We found large differences in bacterial
and fungal species diversity with Chao1 indices, particularly
during the skin intrinsic aging process (Supplementary
Table 7). Bacterial species richness increased gradually
with advancing age, whereas the fungal communities in
the middle-aged group showed the highest species diversity
(Figures 1A,B). We further recorded the core species at
the phylum and genus levels. Four major bacterial phyla
and two fungal core phyla: Proteobacteria, Firmicutes,
Actinobacteria, Bacteroidetes, Ascomycota, and Basidiomycota
were dominant in the four age groups, accounting for > 78%
of the total skin microbiomes. In addition, among the top five
dominant bacterial species, we detected higher abundances of
Cyanobacteria in the children group (4.67%) and Fusobacteria
in the elder group (1.24%) compared with the other age
groups. At the genus level, nine dominant bacterial genera
(Streptococcus, Porphyromonas, Acinetobacter, Enhydrobacter,
Comamonas, Staphylococcus, Cutibacterium, Corynebacterium,
and Chryseobacterium) and eight dominant fungal genera
(Candida, Malassezia, Penicillium, Wallemia, Aspergillus, and
Cladosporium) were the top five species in at least one group,
with average abundances of ≥ 1% (Supplementary Table 1 and
Figures 1C,D).

We used weighted UniFrac distance analysis to measure
the overall structural similarity and differences in microbiomes

associated with skin aging. Significant separations among clusters
existed between different age groups with ANOSIM (P < 0.05)
(Supplementary Table 2). Based on weighted UniFrac-principal
coordinates analysis (PCoA), the microbial composition in the
children group was obviously different from that in the other age
groups. However, the structures of the microbial communities in
the other three groups were similar (Figures 1E,F).

We next used LEfSe analysis to compare the differences
in taxonomic profiles between the four age groups. At the
phylum level, Proteobacteria (48.27%), Cyanobacteria (4.11%),
and Fusobacteria (1.80%) were significantly enriched in the
children group. In addition, the abundance of Actinobacteria
(28.18%) was greater in the youth group compared with the
other three age groups. Comparative analysis of genera on
skin demonstrated that most age-related species predominated
in the children group for both bacterial communities, such
as Acinetobacter (14.33%), Streptococcus (8.50%), and Neisseria
(2.41%), and fungal communities, such as Trichosporon (1.12%),
Candida (6.71%), and Meyerozyma (2.18%). We also found
significant enrichment of Staphylococcus in the youth (10.25%)
and middle-aged (8.88%) groups and Corynebacterium in the
youth (13.84%) group. In addition, Malassezia was uniquely
more abundant in the youth (17.72%), middle-aged (14.99%),
and elder groups (12.37%) (Supplementary Table 3 and
Figures 1G,H).
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FIGURE 1 | Variation in patterns of skin microbiome during the intrinsic aging process. Bacterial (A) and fungal (B) species richness at each age group. Relative
abundances of bacterial (C) and fungal (D) core species at the genus level in each group. Weighted UniFrac-PCoA plots of skin bacteria (E) and fungi (F) in each
group. Bacterial (G) and fungal (H) phylogenetic distributions during intrinsic skin aging (LDA score > 3, P-value < 0.05). Based on linear discriminant analysis effect
size (LEfSe), the phylogenetic distributions of distinct taxa are colored corresponding to the different classification (phyla to species were depicted by circles from the
inside to outside). Circlize analysis shows the relative abundances of nine unique age-related functional taxa in each age group (I).

We also performed qPCR for our focused Staphylococcus
and Corynebacterium, closely related to the integrity of the skin
immune barrier during skin intrinsic aging. The quantitative
results were highly consistent with the results of the 16S
rDNA sequencing. The details are shown in Supplementary
Figure 2. We believe that the results obtained from the
amplicons could well-reflect the real situation of the microbial
variation patterns in skin aging processes, and the results are
authentic and reliable.

Variation in Patterns of Skin
Microbiomes During Photoaging
Due to exogenous factors such as UV radiation, facial skin
experiences excessive photoaging. Interestingly, we found
that the cheek microbiomes during aging presented unique
dynamic variation patterns different from intrinsic aging.
The dynamic changes in species richness and core dominant
phyla during photoaging were similar to the changes during
intrinsic aging. With advancing age, bacterial alpha diversity
increased monotonically, whereas the highest species diversity
of fungal communities was detected in the middle-aged
group (Figures 2A,B). Six major phyla were found by 16S
rDNA sequencing, and ITS rDNA sequencing: Proteobacteria,
Firmicutes, Actinobacteria, Bacteroidetes, Ascomycota, and
Basidiomycota was dominant in all age groups. Cyanobacteria
and Fusobacteriaon exposed skin were also dominant in the
children group and elder group, respectively. For the genera
on exposed skin, ten dominant bacterial genera (Streptococcus,
Porphyromonas, Alloprevotella, Enhydrobacter, Haemophilus,
Staphylococcus, Cutibacterium, Neisseria, Corynebacterium, and
Chryseobacterium) and nine dominant fungal genera (Candida,
Malassezia, Penicillium, Acremonium, Exophiala, Meyerozyma,
Trichosporon, Aspergillus, and Cladosporium) were the top five

dominant genuses in at least one group (Supplementary Table 1
and Figures 2C,D).

When analyzing the beta diversities of the facial skin
microbiomes during photoaging, we found that, apart from the
similar bacterial composition between the youth and middle-aged
groups, significant separations among clusters with ANOSIM
(P < 0.05) existed between different age groups (Supplementary
Table 2). Based on weighted UniFrac-PCoA for both bacterial
and fungal profiles, a great difference in microbial composition
between children and the other age groups was also present
during photoaging. Additionally, a significant difference existed
between the youth and elder groups, whereas a similar microbial
composition was identified between the middle-aged and both
youth and elder groups (Figures 2E,F).

Differential analysis of taxa by LEfSe of the four age groups
revealed that, at the phylum level, there was higher enrichment
for Cyanobacteria in the children group (4.11%), Actinobacteria
(26.47%) in the youth group, and Bacteroidetes (14.56%) in
the elder group. Bacterial genus-level assignment similarly
showed that more age-related species were dominant in the
children group, including Neisseria (8.91%), Streptococcus
(24.35%), and Haemophilus (5.15%) and fungal communities
such as Candida (8.90%) and Trichosporon (2.36%). In contrast,
Cutibacterium (15.13%; 12.12%) and Staphylococcus (19.22%;
19.48%) were enriched in both the youth and the middle-
aged groups. Compared with the other three age groups,
there was a higher proportion of Lactobacillus (1.15%)
on exposed sites in the middle-aged group. Streptococcus,
Leptotrichia, Alkanindiges, and Enhydrobacter were more
likely to reside on cheeks in the elder group. Malassezia,
the most abundant skin fungus, had a significantly higher
proportion in the middle-aged (30.60%) and the elder (27.46%)
groups (Supplementary Table 4 and Figures 2G,H). Similarly,
quantitative analysis was performed with qPCR for skin immune
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FIGURE 2 | Variation in patterns of skin microbiome during photoaging. Bacterial (A) and fungal (B) species richness at each age group during photoaging. Relative
abundances of bacterial (C) and fungal (D) core species at the genus level in each group. Weighted UniFrac-PCoA plots of skin bacteria (E) and fungi (F) in each
group. Based on LEfSe, bacterial (G) and fungal (H) phylogenetic distributions during photoaging (LDA score > 3, P-value < 0.05). Circlize analysis shows the
relative abundances of nine unique age-related functional taxa in each age group (I).

barrier-related genus during photoaging processes, including
Staphylococcus, Cutibacterium, and Lactobacillus, which were
highly consistent with our results of 16S rDNA sequencing
(Supplementary Figure 2).

Relationship Between Clinical Skin
Parameters and Microbial Communities
in Photoaging
On the basis of differential analysis of taxa of the four
age groups, we performed Spearman correlation analysis to
describe the relationships between dominant facial microbial
communities and age-related clinical parameters (based on
the VISIA Complexion Analysis System). We found that the
enrichment of Neisseria and Candida in the children and
elder groups correlated positively with the ASs of brown spots
and red areas. In the elder group, the higher abundance of
Streptococcus showed a positive correlation with exacerbation
of the progress of emerging (brown) spots, wrinkles, texture,
and porphyrins, whereas we observed a nearly opposite trend
for the children group. Because enrichment of Lactobacillus
was present in the middle-aged group, except for UV spots,
all remaining indicators declined to varying degrees. Similarly,
the normal number of Cutibacterium was also considered a
protective factor according to the skin parameters. Only the
ASs of porphyrins and pores associated with sebum secretion
increased with a higher abundance of Cutibacterium in the
young and middle-aged groups. Most indices indicated a slowing
of skin aging. In addition, we found remarkable downward
trends in the ASs of UV spots and red areas due to the
enrichment of Staphylococcus in the young and middle-aged
groups. Malassezia was the most dominant fungi on human
skin, especially for the middle-aged and elder groups. Most
of the parameters suggested that skin was more likely to be
in a senescent state when abundant Malassezia was present.
At the phylum level, Cyanobacteria was a newly detected

predominant phylum in the children group related to preventing
UV-induced damage and pigmentation, including spots, UV
spots, and brown spots (Figure 3 and Supplementary Figure 1).
We ultimately identified nine microbial communities most
closely associated with age-related clinical parameters and
demonstrated their relative abundance in each age group in
Figures 1I, 2I.

Functional Prediction of Skin
Microbiomes in Skin Aging
Apparently, during intrinsic aging, different modes of action of
skin microbiomes occur in different stages. During the transition
from children to youth, we found higher enrichments in base
excision repair, biosynthesis of amino acids, and biosynthesis
of antibiotics and lower abundances of arginine and proline
metabolism in the youth group. With the progression of aging,
pantothenate and CoA biosynthesis and mismatch repair pathways
gradually lost their dominance in the middle-aged group, and
lower enrichment in D-arginine and D-ornithine metabolism and
oxidative phosphorylation in the elder group may contribute
to the intrinsic aging process. Remarkably, the abundance of
vitamin B6 metabolism continually declined from youth to elder
(Figure 4).

During cheek photoaging, microbial alterations affect the
aging process from children to youth, mainly by downregulating
the MAPK signaling pathway, glutathione metabolism,
photosynthesis, and pantothenate and CoA biosynthesis. In the
subsequent aging stage, microbiomes in the middle-aged group
decrease their metabolic capacities, such as glycerophospholipid
metabolism, vitamin B6 metabolism, and metabolic pathways.
We found that pathways associated with biosynthesis and
lipid metabolism, i.e., biosynthesis of antibiotics, fatty acid
biosynthesis, glycerol lipid metabolism, and porphyrin and
chlorophyll metabolism gradually lost dominance in the elder
group (Figure 4).
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FIGURE 3 | Correlation between clinical parameters and dominant bacterial communities. Heatmap of the Spearman correlation between clinical data and dominant
bacterial communities in four age groups during photoaging (PA). **Represents the p value <0.01 for the Spearman correlation analysis.

DISCUSSION

Physiological skin changes are thought to mirror aging. Because
skin aging is prone to be affected by environmental factors,
especially UV radiation, previous studies distinguished between
intrinsic aging and photoaging (Bonté et al., 2019; Wang et al.,
2019). Not only is skin aging associated with a decline in
appearance and the occurrence of skin disorders, but also the
bacterial composition of facial skin among women was strongly
affected by aging (Makrantonaki et al., 2012; Blume-Peytavi et al.,
2016; Shibagaki et al., 2017; Kim et al., 2019). In our research,
for the first time, we comprehensively revealed the various
age-dependent patterns in the composition of skin prokaryotic
and eukaryotic communities. We also suggest that our findings
represent a new stage in the understanding of the skin pan-
microbiomes and characteristics of skin aging.

Similar Microbial Variation Patterns in
Intrinsic Skin Aging and Photoaging
In aging, we detected different species diversities and
compositional characteristics of skin microbiomes in different
age groups. These differences could be ascribed to continuous
self-regulation and self-renewal of skin microbiomes, related to
individual’s residential environment and host selection pressures
(e.g., local physiological status) (Kim et al., 2018; Dimitriu
et al., 2019). Consistent with previous studies, higher species
diversities of cutaneous bacterial communities were found with

aging for both exposed and non-exposed sites (Leung et al.,
2015, 2016a; Shibagaki et al., 2017). However, we found that, for
both sampling sites, the fungal communities showed the highest
species diversity in the middle-aged group (Figures 1A,B, 2A,B).
In addition, we noted that the most conspicuous structural
differences were found between the children and the other age
groups (Figures 1E, 2E). With the onset of puberty, transition,
and sexual maturation, the skin microbiomes would undergo
a large shift, with the disappearance of several taxa. Because
sex hormones stimulate remodeling of the local sebaceous
environment, microorganisms become dominated by lipophilic
communities such as Cutibacterium and Malassezia in the
middle-aged and elder groups (Leyden et al., 1975; Oh et al.,
2012; Belkaid and Tamoutounour, 2016).

We further identified several potentially functional skin
age-related microbiotas combined with quantitative analysis.
By exploring the specific distribution of these dominant
communities and the proved functions associated with clinical
characteristics, we hypothesized that microbial communities not
only coexist with the skin barrier but might actually modify the
process of skin aging, as proposed by current theories (Roth
and James, 1988; Sanford and Gallo, 2013). Because diverse
microbial compositions exist in different sites and different age
groups, the potential effects of microorganisms on the skin
are age- and site-specific (Figure 5). After identifying the nine
microbial communities closely related to skin aging parameters,
the potential relationships between these genera (including
bacteria and fungi) were also expounded in the aging process

Frontiers in Microbiology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 565549

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-565549 October 21, 2020 Time: 14:18 # 8

Li et al. Skin Microbiomes and Skin Aging

FIGURE 4 | Functional prediction of skin microbiomes in skin aging. Comparison of potential metabolic functions in the Kyoto Encyclopedia of Genes and Genomes
pathways between each two age groups during intrinsic skin aging (IA) and photoaging (PA).

(Supplementary Figure 3). Furthermore, our work also mainly
focused on the effect of aging on the changes in abundance
of certain genera and compositional contribution of the entire
microbiomes, rather than the effects of aging on the changes of
overall abundance or absolute quantity of microbiomes.

Specific Age-Related Microbial
Communities and Pathways to Regulate
Skin Photoaging
We observed a higher abundance of Cyanobacteria in the
children group. As vital components of the photoprotective
barrier, Cyanobacteria have developed protective mechanisms

against ultraviolet radiation on the skin (Fuentes-Tristan et al.,
2019). In correlation analysis with clinical data, enrichment
of Cyanobacteria was greatly related to decreased UV-induced
damage and pigmentation. In addition, significant enrichment
of photosynthesis-related pathways indicated that Cyanobacteria
were more active and had a more important function in the
children group. On the basis of this evidence, we speculate that
children should have a more complete anti-UV barrier.

A previous study showed that the skin aging process could
be regulated and even reversed by restoring the normal barrier
functions (An et al., 2017), and, during photoaging, the immune–
microbial alliance is considered a bridge between innate and
adaptive immunity to preserve barrier integrity by microbiota.
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FIGURE 5 | Overview of microbial action mode in skin aging. The “shield” before the microbial communities represents the protective factors, whereas the “sword”
could be treated as unfavorable factors during skin aging. “+” followed by aging indicating potential functional pathways means that the abundance of a pathway
increased with aging, whereas “–” indicates an opposite trend for the variation.

Association analysis with clinical parameters revealed that
the specific enrichment of Staphylococcus, Cutibacterium, and
Lactobacillus benefited some detected indicators (e.g., UV
spots, red areas), and we believed that these microbiotas were
likely to improve the skin barrier integrity. In the youth
or middle-aged groups, higher enrichment of Staphylococcus
could produce several antimicrobial proteins and proteases that
protect the skin from pathogenic invasion and maintain skin
microbiota homeostasis (Gallo and Hooper, 2012; Buffie and
Pamer, 2013; Belkaid and Tamoutounour, 2016). Meanwhile,
Cutibacterium could mediate the necessary immune response
and suppress inflammation to further slow the aging process
by modulating conjugated linoleic acid generation and control
the expression of antimicrobial proteins by Staphylococcus
(Liavonchanka et al., 2006). In the middle-aged group, the
higher abundance of Lactobacillus may develop protective
effects from aging for the following reasons. Lactobacillus can
produce various antimicrobial substances and induce anti-
inflammatory Treg cells to reduce inflammatory injury caused by
UV radiation (Oh et al., 2006), potentially improving conditions

for the delay in collagen synthesis and wrinkle formation
(Landen et al., 2016), consistent with our skin parameters. The
mentioned microbial functions are the specific and inherent
characteristics of these three microbiotas, which could well-
explain the results we obtained. Additionally, Lactobacillus could
also act synergistically with Staphylococcus, which likely leads to
enrichment in the biosynthesis of antibiotics, specifically in the
middle-aged group, consistent with the result of the predicted
functional pathway. Therefore, in the youth and middle-aged
groups, we speculate that Staphylococcus, Cutibacterium, and
Lactobacillus could promote the formation of mature and
complete immune barriers or host defense, to further protect
during photoaging.

On the basis of correlation analysis with the parameters,
we regarded Streptococcus as a decelerating factor for skin
aging in the children and youth groups, whereas an opposite
behavior was observed in the other two groups. This interesting
finding is potentially attributable to the alteration with the
aging of the dominant species Streptococcus, from probiotic
communities to the conditional pathogenic genera. Because
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the skin barriers of the children and elder groups exist in
an immature and recessive status, respectively, we detected
a higher abundance of some conditional pathogenic genera,
such as Neisseria, Streptococcus (elder group), and Candida
(Petry et al., 2012; Beatrous et al., 2017; Metin et al., 2018).
According to the clinical parameters, these species could be
regarded as accelerators (negative correlations) of aging. Due
to long-term inflammatory stimulation, even association with
various dermatological disorders, high enrichment of Malassezia
could be considered an unfavorable factor, particularly in the
middle-aged and elder groups according to clinical parameters.
The analysis of the correlations between selected genera in the
process of photoaging confirmed our inference, to some extent
(Supplementary Figure 3).

We further depicted specific functional pathways exerted
by the entire microbial community at different aging stages
(aging-related landscape) with functional prediction analysis.
The photoaging process is characterized mainly by variation of
metabolic capacity. Due to higher hormone secretion, greater
enrichment for pathways related to metabolism was observed
in the youth compared with the middle-aged group, which
indicated less protective effects of antioxidants (metabolism of
cofactors and vitamins) (Martínez-Navarro et al., 2020) and
decreased ability to provide energy, membrane integrity, and
cell signaling (glycerophospholipid metabolism) (Cruickshank-
Quinn et al., 2017) in the middle-aged group. As aging
progresses, in the transition between the middle-aged and the
elder groups, further reduction in lipid metabolism capacity
(glycerolipid metabolism, fatty acid biosynthesis) (De Luca
and Valacchi, 2010; Cruickshank-Quinn et al., 2017) and
resistance to pathogens (biosynthesis of antibiotics) jointly
promote photoaging. Interestingly, the bacterial communities
have two nearly opposite effects on the skin at the children
age. Decreasing antioxidant defense substances (glutathione
metabolism) (Wolfle et al., 2014), epidermal homeostasis
(pantothenate and CoA biosynthesis) (Kuehne et al., 2017),
and UV-protection (photosynthesis) are considered unfavorable
factors during skin aging. Conversely, less enrichment in
the MAPK signaling pathway in the youth group could
slow down the photoaging speed, with less degradation of
the extracellular matrix (Shin et al., 2019). These predicted
functions would help us to better understand the function
of the whole skin microbiomes in the photoaging process.
Although they cannot be the same as the actual situation,
combined with the previous analysis, we can still obtain
meaningful inferences.

Specific Age-Related Microbial
Communities and Pathways to Regulate
Intrinsic Skin Aging
Intrinsic skin aging is associated with the variation of immune
homeostasis and defective barrier function (Zeng et al., 2019), so
the immune–microbial alliance is also a vital factor that regulates
the intrinsic aging process. We found significant enrichment
of Staphylococcus in the youth and middle-aged groups, which
would potentially maintain the integrity and healthy status of

the skin immune barrier to further affect intrinsic aging. We
also speculate that Corynebacterium is another age-related anti-
aging factor, particularly Corynebacterium jeikeium (a resident
bacteria on the skin), which usually produces several bacteriocin-
like compounds against pathogens. Furthermore, the ability
of manganese acquisition reduces oxidative damage to the
epidermal tissue of non-exposed sites (Storz and Imlay, 1999;
Cogen et al., 2008). In the youth group, according to the
microbial inherent characteristics, Corynebacterium would act
synergistically with Staphylococcus, where it would contribute
to the enrichment of the biosynthesis of antibiotics. Because
of the instability of the skin barrier in the children and elder
groups, a higher proportion of pathogenic genera such as
Neisseria, Streptococcus (elder group), and Candida are also
regarded as unfavorable factors during intrinsic aging. Besides,
we especially detected higher enrichment of Malassezia in
the youth, middle-aged, and elder groups, which could be
related to the long-term inflammatory stimulation to accelerate
aging. The selected intrinsic skin aging-related six bacteria
and fungi had significant correlations and relative variation
patterns, as demonstrated in Supplementary Figure 3, which
also could support the potential interactions between different
microbial communities (including bacteria and fungi). We also
found that, by the enrichment of specific signaling pathways,
bacterial communities have different activities in the intrinsic
process of skin aging.

The variations of predicted functions were also discussed
in intrinsic aging progress. Sustained damage of DNA repair
(mismatch repair, base excision repair) and antioxidant capacity
(metabolism of cofactors and vitamins) during the youth to elder
stages would accelerate intrinsic aging. In addition, compared
with the middle-aged group, epidermal tissue is in a more
healthy and stable state in the youth group (pantothenate and
CoA biosynthesis) (Kuehne et al., 2017). In the elder group,
a reduced energy supply to the host was suggested by the
alteration of abundance in oxidative phosphorylation. The growth
of children into adults is accompanied by increased amino
acids synthesis (biosynthesis of amino acids) and resistance to
pathogens (biosynthesis of antibiotics) and by decreased collagen
synthesis (arginine and proline metabolism) (Kang et al., 2015)
that is associated with facial wrinkles and texture. Therefore,
significant differences in the variation of predicted functions
for the skin microbiomes were present in the two aging
processes. According to the functional prediction analysis, we
found that photoaging was accompanied mainly by decreasing
the biosynthesis and metabolism of age-related functional
substances, whereas intrinsic skin aging was characterized by
variation in the biological process.

Limitations
Our study was limited mainly to function prediction analysis.
In this section, we performed the function prediction analysis
with Tax4fun software based on the database, which cannot be
completely consistent with the actual function of the whole skin
microbiomes. In addition, we just constructed the relationships
between predicted results and potentially functionally dominant
genera, whereas their real association cannot be determined.
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Therefore, additional metagenomic studies are needed to
confirm our findings. In addition, we selected the cheek and
abdomen as representative sites for study, although the microbial
compositions in other body parts may be different. Based on
fungal functional annotation and current microbiome research,
skin fungal communities are recognized mainly as pathogens.
More confirmed functional pathways related to microbiome
during aging need experimental verification. Although we
controlled the sampling process and area strictly, we still might
obtain the different total population size for skin microbiomes
of each sample. Therefore, the biological repetitions of multiple
samples were conducted in each group. The results of qPCR
were used to support our current results of relative abundance,
to further ensure the reliability of our findings.

CONCLUSION

Our study was the first to systematically describe an entire
landscape of skin age-related bacterial and fungal profiles
(from children to elderly). Due to the changes in individual
residential states of skin microbiomes during aging, specific
age-related microbial compositions were presented in different
age groups. Similar variation patterns of species diversity and
compositional structures based on weighted UniFrac-PCoA
were detected between intrinsic skin aging and photoaging.
Conversely, we identified aging specific dominant microbes and
predicted functional pathways for exposed and unexposed sites
in each group (Figure 5). We found these potential age-related
microbial factors in each group that were likely to affect the
integrity of the skin immune and anti-UV barrier, biosynthesis
and metabolism of age-related functional substances, and long-
term inflammatory stimulation, to further regulate skin intrinsic
aging and photoaging processes. Our work provides a new
perspective on skin aging, which could be used to develop anti-
aging cosmetics and skincare for different ages.

Our work provides a new strategy for future research
and clinical application of skin microbiomes. First, by further
expanding the research cohort and reducing age stratification, we
can describe the variation patterns of skin microbial composition
in the aging process more accurately. Then, some specific
microbiota can be used as a biomarker to further evaluate
skin aging status as a non-invasive auxiliary test. Second,
further purification of specific anti-aging microbiota and related
metabolites would promote the development of the products
related to cosmetic medicine. In addition, based on our findings
and further study, skin homeostasis regulators for different
age groups can be developed to reduce the incidence of age-
related skin diseases. Therefore, our research has great innovation
and clinical value.
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