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Two-component systems (TCSs) are central to the ability of Mycobacterium tuberculosis
to respond to stress. One such paired TCS is SenX3-RegX3, which responds to
phosphate starvation. Here we show that RegX3 is required for M. tuberculosis
to withstand low pH, one of the challenges encountered by the bacterium in the
host environment, and that RegX3 activates the cytosolic redox sensor WhiB3 to
launch an appropriate response to acid stress. We show that the whiB3 promoter of
M. tuberculosis harbors a RegX3 binding motif. Electrophoretic mobility shift assays
(EMSAs) show that phosphorylated RegX3 (RegX3-P) (but not its unphosphorylated
counterpart) binds to this motif, whereas a DNA binding mutant, RegX3 (K204A) fails to
do so. Mutation of the putative RegX3 binding motif on the whiB3 promoter, abrogates
the binding of RegX3-P. The significance of this binding is established by demonstrating
that the expression of whiB3 is significantly attenuated under phosphate starvation or
under acid stress in the regX3-inactivated mutant, 1regX3. Green fluorescent protein
(GFP)-based reporter assays further confirm the requirement of RegX3 for the activation
of the whiB3 promoter. The compromised survival of 1regX3 under acid stress and its
increased trafficking to the lysosomal compartment are reversed upon complementation
with either regX3 or whiB3, suggesting that RegX3 exerts its effects in a WhiB3-
dependent manner. Finally, using an in vitro granuloma model, we show that granuloma
formation is compromised in the absence of regX3, but restored upon complementation
with either regX3 or whiB3. Our findings provide insight into an important role of RegX3
in the network that regulates the survival of M. tuberculosis under acid stress similar to
that encountered in its intracellular niche. Our results argue strongly in favor of a role of
the RegX3-WhiB3 axis in establishment of M. tuberculosis infection.
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INTRODUCTION

Tuberculosis remains a global health problem (World Health
Organization, 2019, Global Tuberculosis Report). The causative
agent Mycobacterium tuberculosis is endowed with the capacity
to remain dormant for years within its host and to relapse
under favorable conditions, including drug withdrawal. Efforts
to contain the disease have been restricted by the absence of
an efficacious vaccine, as well as the development of multi-drug
resistance. The latter makes it important to search for new drug
targets and approaches for chemotherapy, and specifically to
understand how M. tuberculosis subverts the stress imposed by
the host environment.

The success of M. tuberculosis rests with its ability to sense
extreme conditions within its host such as nutrient deficiency,
acid stress, hypoxia, and redox stress. Two-component systems
(TCSs) are central to the ability of the bacterium to sense and
respond to its environment (Tiwari et al., 2017). A membrane-
bound sensor kinase (SK) and a cytosolic response regulator
(RR) form two halves of canonical paired TCSs. Once the SK
senses a stimulus, it is phosphorylated on a histidine residue. The
phosphate is relayed on to an aspartate residue of the cognate
RR, which regulates its binding to a distinct set of targets which
make up its regulon. M. tuberculosis has twelve paired TCSs,
six orphan RRs and two orphan SKs (Parish, 2014; Kundu,
2018). TCSs regulate gene expression to influence mycobacterial
biofilm formation (Banerjee et al., 2019) virulence, pathogenesis,
intracellular survival and the response to stress within its host
(Bretl et al., 2011).

The TCS, SenX3-RegX3 is best characterized as a phosphate
starvation responsive TCS which is required for intracellular
survival and virulence of M. tuberculosis (Parish et al., 2003).
Unlike many other TCSs, which are coordinately transcribed as
operons, senX3-regX3 contains a large intergenic region and the
two genes can be differentially regulated. Thus, under nutrient
starvation, there is bicistronic transcription of the operon,
as opposed to phosphate depletion, which induces primarily
monocistronic upregulation of regX3 (Rifat and Karakousis,
2014). Additionally, phenotypic studies with mutants containing
transposon disruptions in each gene have shown that RegX3
may function independently of its cognate SK, SenX3 (Rifat
et al., 2014). RegX3 is inhibited when inorganic phosphate is
abundant, in a manner requiring the phosphate-specific Pst
transport system (Tischler et al., 2013). The function of the
SenX3-RegX3 TCS of mycobacteria has been best studied in
relation to phosphate starvation (Rifat et al., 2009; James et al.,
2012). For example, it regulates protein secretion dependent
on the ESX-5 secretion system (Elliott and Tischler, 2016) and
membrane vesicle formation in an ESX-5 –independent manner
(White et al., 2018). RegX3 is a regulator of the stringent response
(Sanyal et al., 2013) and persister formation (Namugenyi et al.,
2017). However, the other stress signals to which RegX3 is
responsive, remain to be uncovered.

The seven WhiB proteins of M. tuberculosis are believed to be
redox-sensing transcription factors (Larsson et al., 2012). WhiB3
is a virulence regulator of M. tuberculosis which senses host-
generated nitric oxide (NO) and low levels of O2 (Steyn et al.,

2002; Singh et al., 2007; Saini et al., 2012; Pacl et al., 2018). WhiB3
is required for survival of M. tuberculosis during reactive oxygen
species (ROS) and reactive nitrogen species (RNS) stresses
(Mehta and Singh, 2019) and during nutrient starvation. It is
maximally induced at 2 weeks postinfection in the lungs of wild-
type and immunodeficient (gamma interferon receptor-/-, Rag1-
/-, and tumor necrosis factor alpha-/-) mice just prior to reaching
a peak bacterial burden in the lungs, possibly indicating a role
for this gene in quorum sensing in vivo (Banaiee et al., 2006).
A whiB3 mutant shows altered colony morphology and growth
properties (Steyn et al., 2002; Singh et al., 2007). It modulates
virulence lipids including phthioceroldimycocerosate (PDIM),
polyacyltrehalose (PAT), sulfolipid (SL-1); and triacylglycerol
(Singh et al., 2009). These polyketide lipids in turn, arrest
host cell cycle at the G1/S transition (Cumming et al., 2017).
The transcription of whiB3 is significantly enhanced under
acidic pH (Geiman et al., 2006) and WhiB3 is required to
resist acid stress during infection (Mehta et al., 2016). Till
date, its transcriptional regulation is incompletely understood.
In pathogenic mycobacteria, PhoPR directly activates whiB3
expression in response to low pH (Feng et al., 2018). In addition, a
recent study has shown that the nitrogen regulator GlnR directly
activates the expression of whiB3 in Mycobacterium smegmatis
(You et al., 2019).

Here we uncover a novel role of RegX3 in regulating the
M. tuberculosis stress response by demonstrating that the survival
of a regX3 mutant is compromised under acid stress. We show
that RegX3 is activated under acid stress. We demonstrate
conclusively that RegX3 activates WhiB3 by direct binding to
its promoter and that whiB3 expression under acid stress is
compromised in the absence of RegX3. Further we present
evidence that (a) M. tuberculosis subverts lysosomal trafficking
in a RegX3-WhiB3 dependent manner, and (b) granuloma
formation in an in vitro model of infection of human PBMCs
by M. tuberculosis, is regulated by RegX3 in a WhiB3-dependent
manner. These observations argue in favor of a role of the
RegX3/WhiB3 axis in facilitating M. tuberculosis infection.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Escherichia coli Top10 and DH5α were used for cloning.
E. coli BL21(DE3), and C41(DE3) were used for recombinant
protein expression. E. coli was grown in Luria-Bertani (LB)
Miller broth or on LB agar (Becton Dickinson, Difco) at
37◦C. M. tuberculosis H37Rv or other genetically manipulated
M. tuberculosis strains were grown in Middle Brook (MB)
7H9 (Difco) broth supplemented with 10% v/v ADC (Difco
or Hi-Media Laboratories, India), 0.05% Tween 80 (Hi-Media
Laboratories, India) and appropriate antibiotics where required,
at 37◦C with shaking. MB7H11 agar (Difco) supplemented with
10% v/v OADC (and antibiotics where required), was used as
solid medium for plating M. tuberculosis strains. For E. coli,
kanamycin sulfate (Roche Applied Science), ampicillin (Sigma),
and hygromycin (Invitrogen) were used at concentrations of
50, 100, and 200 µg/ml, respectively. For M. tuberculosis,
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kanamycin and hygromycin were used at concentrations of 20
and 50 µg/ml, respectively. All experiments were performed
following appropriate biosafety protocols approved by the
Institutional Biosafety committee.

Molecular Biology Procedures
Standard procedures were used for cloning and analysis of DNA,
PCR, electroporation and transformation. The enzymes used to
manipulate DNA were from Roche Applied Science, Fermentas
and New England Biolabs.

Generation of Genetically Manipulated
Strains of M. tuberculosis H37Rv
Mycobacterium tuberculosis H37Rv lacking regX3 (1regX3)
was generated previously in our laboratory using temperature
sensitive mycobacteriophages (Bardarov et al., 2002) as described
by Banerjee et al. (2016). Briefly, approximately 800 bp flanking
regions upstream and downstream of regX3 were PCR amplified
and cloned into pYUB854 at sites flanking the hygromycin
cassette. Each construct was then packaged into temperature
sensitive mycobacteriophages and delivered via infection into
M. tuberculosis. Double crossovers (DCOs) were screened after
6 weeks by PCR and knockouts confirmed by Western blot using
antibodies against RegX3. For complementation of regX3, a 2.5 kb
region encompassing the senX3-regX3 promoter, and the senX3-
regX3 ORFs were PCR amplified from genomic DNA and cloned
into pMV306(Kan), a plasmid that allows integration at the attB
site on the genome. A ∼900 bp senX3 region was deleted using
Stu1 and the regx3-pMV306 construct was electroporated into the
1regX3 strain to obtain the regX3 complemented strain (1regX3
Comp.regX3), which was selected for growth on plates containing
kanamycin as well as hygromycin.

For complementation with whiB3, the whiB3 ORF
was PCR amplified using sense and antisense primers 5′-
ATGGTACCCATATGCCACAGCCGGAGCAGCTACCG 3′ and
5′ATTAAGCTTCTCGAGAGCTGTGCGGCGGATGCCGCG-
3′, respectively, and cloned at the NdeI and XhoI sites of pet20b+
to generate a whiB3 construct (pET20b whiB3-His) in frame
with a C-terminal His tag. whiB3 with a C-terminal His tag
was then PCR amplified using the sense and antisense primers
5′ TTAGGATCCACCACAGCCGGAGCAGCTACCG3′and 5′
ATTAAGCTTGCTAGCTCAGTGGTGGTGGTGGTGGTGC-
3′, respectively, and pET20b whiB3-His as template; and cloned at
the BamHI and HindIII sites of pMV261 (an E. coli-mycobacteria
shuttle vector in which cloned genes are under the control
of the hsp60 promoter). This construct (pMV261 whiB3-His)
was electroporated into the 1regX3 strain to obtain 1regX3
complemented with whiB3 (1regX3 Comp.whiB3), which
was selected for growth on plates containing kanamycin as
well as hygromycin.

Growth of M. tuberculosis Under
Phosphate Starvation
For phosphate starvation M. tuberculosis and its variants were
grown in MB7H9 containing MOPS pH 6.6, 17.6 mM Na2HPO4,
7.35 mM KH2PO4, and 0.05% Tween 80, till the O.D.600

reached 0.6. The cells were then centrifuged and washed twice
with phosphate-free MB7H9, resuspended in either phosphate
containing or phosphate free medium and allowed to grow at
37◦C at a shaking speed of 120 rpm for 72 h. Aliquots were
removed and cells were stored in RNA Later (Qiagen) at −80◦C
for isolation of RNA.

Cloning, Expression and Purification of
Recombinant Proteins
Escherichia coli BL21(DE3) harboring regX3 cloned in pET28a
was grown at 37◦C with shaking and induced with isopropyl
β-D-thiogalactopyranoside (IPTG) (120 µM) as described by
Sanyal et al. (2013). Cells were lysed by sonication and His-RegX3
was purified from the cell-free supernatant by chromatography
on Ni2+-NTA agarose. RegX3 (K204A) has been described by
Banerjee et al. (2016). A recombinant MalE–EnvZ construct
(gift from Dr. M. Igo, University of California, Davis, Davis,
CA, United States) was transformed in E. coli BL21(DE3) and
used for expression and purification using amylose affinity
chromatography as described by Sharma et al. (2015). Briefly,
cells were grown and induced with IPTG (100 µM) at 16◦C for
20 h. Cells were disrupted by freeze-thaw cycles in the presence
of lysozyme and MalE–EnvZ was purified from the cell-free
supernatant by amylose affinity chromatography (NEB). EnvZ
was autophosphorylated in kinase buffer (50 mM Tris–HCl, pH
8, 50 mM KCl, and 50 mM MgCl2) containing 20 mM ATP for
15 min at 37◦C.

Bioinformatic Analyses
The upstream promoter sequence of whiB3 (−500 to +100)
was searched for an inverted repeat motif having the following
features: a 6–8 bp sequence, followed by a 5 bp spacer, followed
by a second 6–8 bp region which is complementary to, and the
inverse of the first 6–8 bp sequence. In-house PERL script was
used for this search.

In vitro Transphosphorylation Reactions
RegX3 or its DNA binding mutant (K204A) was phosphorylated
using phospho-EnvZ as the phosphate donor (Roberts et al.,
2011). The reaction was carried out in kinase buffer with
2.5 µM phosphorylated EnvZ and His-RegX3. Phosphorylated
RegX3 (RegX3-P) was used for electrophoretic mobility
shift assays (EMSAs).

Electrophoretic Mobility Shift Assays
Binding of phospho-RegX3 (or its mutant) to the whiB3
promoter was analyzed by EMSA. A whiB3 promoter
region (−307 to −157), containing the RegX3 binding sites
was PCR amplified using the sense and antisense primer
pair 5′-CAGCTTTCTTTGCGCTAATTTAGG-3′ (A) and
5′-CAATATCGGACCGTTGCGTGAG-3′ (C), respectively
(Supplementary Figure S1). The antisense primer was Cy5-
labeled. Mutant DNA was generated by overlap extension PCR
(Supplementary Figure S1). The Cy5 labeled DNA (30 ng) was
incubated with varying concentrations of phospho-RegX3 (or its
mutant) in 4 mM Tris–HCl pH 8.0, containing 4 mM MgCl2,
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5% (v/v) glycerol, 40 mM NaCl, 0.5 µg salmon sperm DNA, for
30 min at room temperature (RT). The reaction mix was run on
a 6% TBE polyacrylamide gel and the DNA-protein complex was
visualized using a Typhoon Trio Plus Imager (GE Healthcare).
In other assays, EMSAs were carried out with mutated fragments
of DNA, and the DNA-protein complexes were visualized using
SYBR GOLD staining.

Measurement of Promoter Activity
A DNA fragment encompassing the region –832 to +102
of whiB3 was PCR-amplified using the primer pair 5′-
TTAGGATCCCCACCGCCGACGCACCGC-3′ (sense) and 5′-
CGGGGTACCCGTCGGGATGGAAGAACATCG-3′ (antisense)
and cloned between the BamHI and KpnI restriction sites of
pFPV27. The resulting construct or pFPV27 was electroporated
separately into wild type M. tuberculosis and 1regX3 strains.
Green fluorescent protein (GFP) fluorescence was measured
in a microplate reader (Victor 1420 Multilabel counter) with
excitation at 488 nm and emission at 535 nm.

Chromatin Immunoprecipitation (ChIP)
Chromatin Immunoprecipitation (ChIP) was performed as
described by Sharma et al. (2015). Briefly, growingM. tuberculosis
cells were crosslinked using 1% formaldehyde followed by
quenching with 250 µM glycine. The cells were lysed and
DNA was sheared on a BIORUPTOR PLUS (Diagenode) with
25 cycles of 30 s/90 s on/off, respectively, so as to generate
fragment sizes of approximately 250 bp. Immunoprecipitation
(IP) was carried out using RegX3 antibody (raised by Thermo
Fisher Scientific) and DNA was purified after decrosslinking
with Proteinase K. Amplification of the whiB3 promoter
region was quantitated by ChIP-qPCR using the primer
pair 5′-CAGCTTTCTTTGCGCTAATTTAGG-3′ (sense) and 5′-
CAATATCGGACCGTTGCGTGAG-3′ (antisense).

RNA Isolation From Intracellular Bacteria
and qRT-PCR
RNA was prepared from intracellular M. tuberculosis following
the method of Rohde et al. (2007) as described by Banerjee et al.
(2019). Briefly, RAW264.7 cells were infected at a multiplicity
of infection (MOI) of 10 for 4 h followed by treatment with
gentamicin for another 2 h to remove extracellular bacteria.
The cells were then washed and lysed in guanidine thiocyanate
(GTC) buffer containing N-lauryl sarcosine, sodium citrate, and
β-mercaptoethanol. Bacteria were pelleted, lysed using lysozyme
and Trizol, followed by bead beating. RNA was prepared from the
lysate after centrifugation using the Qiagen RNeasy Kit following
the manufacturer’s protocol. RNA was treated with Turbo DNAse
(Ambion). cDNA was synthesized using the cDNA synthesis
kit (Thermo Fisher Scientific) according to the manufacturer’s
instructions. For PCR, whiB3 was amplified using sense and
antisense primers 5′-AACGCAGACATCTGGAACTG-3′ and
5′-GGTGCCCTTGAGGAGTAGGT-3′, respectively. regX3 was
amplified using the sense and antisense primers 5′-CAG
CGTTCCGGTGATCATG-3′ and 5′-CAGGCCGACCACCTT
GTC-3′, respectively. 16s rRNA was amplified using the sense

and antisense primers 5′-TCCCGGGCCTTGTACACA-3′ and
5′-CCACTGGCTTCGGGTGTTA-3′, respectively.

The quantitative PCR assay was performed with KAPA SYBR R©

FAST Universal Q-PCR Mix (Kapa Biosystems Pty Ltd., Cape
Town, South Africa). Melting curve analyses were run after each
assay to check PCR specificity. Three serial dilutions were used
for each cDNA. PCR was performed in triplicate for each dilution.
The relative expression of the target gene was normalized to 16s
rRNA The comparative CT (also known as 2−11CT) method was
used for analyzing gene expression, with the assumptions that the
difference of one cycle is two-fold and the PCR efficiency of the
target gene is similar to that of the internal control (16s rRNA)
(Livak and Schmittgen, 2001).

Immunofluorescence Microscopy
RAW264.7 cells were grown on coverslips and infected with
fluorescein isothiocyanate (FITC)-labeled M. tuberculosis strains
as described by Banerjee et al. (2019). Cells were fixed with
4% (v/v) paraformaldehyde for 10 min permeabilized with
0.01% Triton X-100 in PBS, then treated with 2% BSA in
PBS, followed by treatment with anti lysosomal-associated
membrane protein 1 (LAMP1) antibody (Abcam) (1:500)
overnight at 4◦C. Cells were treated with Alexa 546-conjugated
goat anti-rabbit antibody (Abcam) and coverslips were mounted
with SlowFade (Thermo Scientific). Nuclei were stained with
4′,6-diamidino-2-phenylindole (DAPI). Slides were imaged by
confocal microscopy.

Acid Stress
Fifty milliliter of starter cultures of M. tuberculosis strains
were grown in MB 7H9 broth to early log phase (O.D.600
of 0.3), split into two aliquots and resuspended at pH
5.5 or pH 6.6. For pH 5.5, medium containing 0.02%
Tyloxapol and 0.085% NaCl was buffered using 100 mM 2-
(N-morpholino)ethanesulfonic acid (MES) (Healy et al., 2016).
CFUs were followed over a period of 6 days and the percent
reduction in CFUs of cultures grown at pH 5.5 relative to
those grown at pH 6.6, was plotted. RNA was isolated from
cultures exposed to different pH for different periods of time.
Gene expression was evaluated by qRT-PCR using SYBR Green
(Kappa Biosystems). The results were normalized relative to
16S rRNA levels.

Granuloma Formation in vitro
Human peripheral blood mononuclear cells (PBMCs) were used
for in vitro granuloma formation as described by Mehta and
Singh (2019). Briefly, 5–10 ml blood was collected from a
healthy human volunteer, diluted 1:1 and layered on Ficoll
Paque (GE Healthcare) followed by centrifugation at 480 × g
for 40 min at 18◦C. The buffy coat containing monocytes
was collected and washed twice in sterile cold KRG buffer
(120 mM NaCl, 5 mM KCl, 1.5 mM MgCl2, 8.5 mM Na2HPO4,
1.7 mM NaH2PO4, and 10 mM dextrose). Cells were resuspended
in complete RPMI medium with glutamine. The monocyte
containing suspension was plated at a density of 1.5 × 106

cells/ml in complete RPMI medium in 24 well plates and kept
at 37◦C in a CO2 incubator for 2 h. Single cell suspensions
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of each M. tuberculosis strain were made as described by
Karim et al. (2011) and added at the required MOI to each
well of the 24-well plate containing the PBMCs, centrifuged
at 700 rpm for 5 min and incubated at 37◦C in a CO2
incubator. After 4 h, 10 µg/ml gentamicin was added to
remove the extracellular bacteria. After another 2 h, cells were
washed thrice and complete RPMI medium was added to
each well. At day 9 post-infection, cells were processed for
Giemsa staining.

Ethics Statement
All experiments with human samples were performed with
the approval of the Institutional Human Ethics Committee
(BIHEC/2017-18/1) and with consent from all donors (healthy
volunteers in the laboratory).

Giemsa Staining
Plates were centrifuged and each well was fixed with methanol for
5 min at RT. The fixative was removed, Giemsa stain was added
and kept for 30 min at RT. Plates were washed with water to
remove excess Giemsa stain. Images were taken in a Zeiss light
Microscope with a 10 x objective.

Statistical Analysis
Normality test was performed using GraphPad Prism v5
(applying D’Agostino-Pearson omnibus test and/or Shapiro–
Wilk test). All the data distributed normally as inferred by
the normality test. Student’s t test was performed for pairwise
comparison. In the case of multigroup comparisons, analysis of
variance (ANOVA) test was performed. For Anova, Tukey Post
hoc test was used to confirm the significant differences between
two groups. All analyses were performed using GraphPad Prism
v5. A p value ≤ 0.05 was considered to be significant.

RESULTS

RegX3 Is Required for the Survival of
M. tuberculosis Under Acid Stress
M. tuberculosis encounters an acidic environment in the
phagosomes, and must wire its gene expression program to
facilitate growth and persistence in this acidic environment. It
is therefore important to understand the repertoire of regulators
that enable M. tuberculosis to sense acid stress and to mount
an appropriate response. Considering the importance of TCSs
in sensing of the extracellular milieu, we searched the literature
for regulators that are activated under acid stress or in the
intraphagosomal milieu. PhoPR has been documented to be
upregulated during acid stress (Bansal et al., 2017). The report
that RegX3 is upregulated early during infection of macrophages
by M. tuberculosis (Rohde et al., 2007), provided the cue for
testing a probable role of RegX3 in mounting a response
to acid stress. We tested and validated the upregulation of
regX3 following exposure of M. tuberculosis to acid stress
(Table 1). Next we tested the survival of the wild type and the
mutant 1regX3 previously reported by us (Banerjee et al., 2016)

TABLE 1 | Relative fold changes of regX3 in M. tuberculosis subjected to acid
stress for different periods of time.

Hours of acid stress Fold-change

2 1.52 ± 0.04

24 4.13 ± 0.32

48 2.62 ± 0.21

Total RNA was isolated from M. tuberculosis before and after acid stress. Transcript
abundance was determined by qRT-PCR. Comparisons were made with cells that
had not been subjected to acid stress.

following exposure to either pH 6.6 or pH 5.5. Survival
was monitored at different time intervals post-exposure by
enumerating CFUs. There was a decrease in CFUs in wild
type M. tuberculosis grown at pH 5.5 compared to cells
grown at pH 6.6. However, the reduction in CFUs at pH 5.5
(compared to pH 6.6) was significantly higher in the absence
of regX3 (Figure 1A), suggesting that regX3 contributes to
the ability of the bacterium to withstand acid pH. This was
confirmed by the observation that survival under acid stress was
partially restored in the regX3 complemented strain (1regX3
Comp.regX3) (Figure 1A). Importantly, there were no significant
differences in CFUs among the four strains on day 0 (i.e., at the
start of the experiment).

We then searched for possible binding of RegX3 to the
promoters of genes involved in regulating the response of
M. tuberculosis to acid stress. WhiB3 is one such regulator.
Its deletion lowers the survival of M. tuberculosis under acidic
conditions (Mehta et al., 2016). We fell back on the report
of Rustad et al. (2014) documenting that overexpression of
RegX3 transcriptionally upregulates whiB3, therefore suggesting
its role in regulating whiB3 expression. For the purpose of this
communication, we have focused on validating the regulation
of WhiB3 by RegX3 under acid stress, and understanding
its implications. As expected, the transcription of whiB3
was enhanced when wild type M. tuberculosis was subjected
to acid stress (Supplementary Table S1). The acid-induced
upregulation of whiB3 was abrogated in 1regX3 and restored
upon complementation of the mutant with regX3 (1regX3
Comp.regX3) (Supplementary Table S1), suggesting that RegX3
is required for the transcription of whiB3 under acidic conditions.
The importance of a regX3-whiB3 axis in regulating the survival
of M. tuberculosis under acidic conditions, was tested by
complementing 1regX3 with whiB3 and assessing CFUs under
acidic conditions. The observation that complementation with
whiB3 could partly restore the ability of 1regX3 to withstand acid
stress (Figure 1A), argued in favor of a role of the regX3-whiB3
axis in the survival of M. tuberculosis under acid stress.

An inverted repeat (GTGAAC) separated by five to seven
unconserved nucleotides constitutes the RegX3 binding motif
(Glover et al., 2007). For example, this motif has been identified
on the M. tuberculosis polyphosphate kinase 1 (ppk1) promoter
in our laboratory (Sanyal et al., 2013). An in silico analysis
showed that a putative RegX3-binding motif is present in
the M. tuberculosis whiB3 promoter region (Figure 1B). This
RegX3 binding palindrome was conserved in Mycobacterium
africanum and Mycobacterium bovis BCG, two members of the
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FIGURE 1 | RegX3 is required for the survival of M. tuberculosis under acid stress and it binds to the promoter of whiB3. (A) Wild type M. tuberculosis or its
genetically manipulated variants was grown at pH 5.5 or at pH 6.6 for different periods of time. Percent reduction in growth [as determined by enumerating colony
forming units (CFUs)] of M. tuberculosis growth at pH 5.5 relative to growth at pH 6.6 is shown. (B) Sequence conservation of RegX3 binding motif of the whiB3
promoter (whiB3p) in M. tuberculosis, M. africanum, and M. bovis BCG. (C,D) EMSA was performed by incubating a Cy5-labeled PCR fragment derived from
whiB3p with different concentrations of phosphorylated RegX3 (RegX3-P) (left panel of C). Competitive EMSA was performed by incubating RegX3-P with

(Continued)
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FIGURE 1 | Continued
Cy5-labeled DNA in the presence of increasing concentrations of unlabeled DNA (right panel of C) (D) EMSA was performed with phosphorylated or
non-phosphorylated RegX3. (E) EMSA was performed with the DNA binding defective mutant (RegX3 K204A). DNA-protein complexes were visualized under a
Typhoon biomolecular imager or by staining with SYBR GOLD. (F) ChIP analysis of RegX3 binding to whiB3p. M. tuberculosis was grown in phosphate enriched (+)
or depleted (–) medium (left panel) or grown at different pH (right panel) and subjected to ChIP with RegX3 antibody. The association of RegX3 at the promoter of
whiB3 was quantitated by q-PCR of immunoprecipitated DNA or the input (as control) using primers specific for whiB3p or 16s rRNA. The fold enrichment with
respect to control [i.e., bacteria grown in phosphate enriched medium (left panel), or at pH 6.6 (right panel)] was set as 1. Data represent means ± S.D., n = 3.
(G) EMSA was carried out by incubating wild type DNA or DNA mutated in the RegX3 box, with different concentrations of RegX3-P. Bands were visualized by SYBR
GOLD staining. (H,I) M. tuberculosis (WT or 1regX3) harboring either vector alone or whiB3p were grown either under phosphate stress (H) or acid stress (I) GFP
fluorescence was measured in a fluorescence microplate reader. The data are represented as means ± SD, n = 3. ***p < 0.0001; **p < 0.001; *p < 0.05.

M. tuberculosis complex. It was absent in Mycobacterium leprae
or the fast-growing M. smegmatis.

RegX3 Binds to the Promoter of whiB3
and Regulates whiB3 Promoter Activity
In order to test the binding of RegX3 to the whiB3 promoter
region, we amplified the region –307 to −157 of the whiB3
promoter to generate a Cy5-labeled DNA and used this
for EMSAs. RegX3-P bound to the aforesaid DNA in a
concentration-dependent manner (Figure 1C, left panel). This
binding could be competed by unlabeled DNA, suggesting
the specificity of the binding (Figure 1C, right panel).
Phosphorylation of RegX3 is usually required for optimal
DNA binding activity (Sanyal et al., 2013). In line with
this, unphosphorylated RegX3 was not able to bind the
whiB3 promoter-derived DNA (Figure 1D), suggesting that
phosphorylation is required for binding of RegX3 to the whiB3
promoter. In previous studies, we have shown that amino
acid lysine 204 (K204) is required for DNA-binding activity of
RegX3 (Banerjee et al., 2016). RegX3 (K204A) was unable to
bind the whiB3 promoter fragment (Figure 1E) confirming the
specificity of the binding.

In order to analyze the physiological relevance of the aforesaid
binding, we performed ChIP assays under conditions associated
with upregulation of RegX3. RegX3 is best characterized as
a phosphate starvation-responsive RR (Rifat et al., 2009). We
therefore subjected cells to phosphate starvation and tested the
association of RegX3 with the whiB3 promoter region, using an
antibody to RegX3. The binding of RegX3 to the whiB3 promoter
region was confirmed by ChIP-qPCR (Figure 1F, left panel),
arguing in favor of a physiological role of RegX3 in regulating
whiB3 expression under stress. In order to test the role of RegX3
in regulating whiB3 under acid stress, we further performed
ChIP-qPCR after subjecting cells to acid stress. The association
of RegX3 with the whiB3 promoter region was enhanced in
cells grown at pH 5.5 compared to cells grown at pH 6.6
(Figure 1F, right panel).

Finally, we confirmed the role of the putative RegX3
binding palindrome identified on the whiB3 promoter by
mutational analysis. The sequences CTATCC and GGATAG in
the palindrome were substituted with the sequences, TATATA
and AATATA, respectively (Figure 1G) to generate a mutant
DNA. RegX3 failed to bind to this mutated DNA (Figure 1G),
confirming that this region is required for the binding of
RegX3 to the whiB3 promoter. To further elucidate the

requirement of RegX3 in the expression of whiB3, the whiB3
promoter was cloned in a promoterless GFP vector pFPV27,
electroporated in M. tuberculosis (or 1regX3) and GFP activity
was monitored under phosphate starvation (a known trigger for
RegX3 expression) or acid stress. Phosphate starvation activated
the whiB3 promoter (Figure 1H). However, this was significantly
diminished in 1regX3 (Figure 1H). Promoter activity was also
observed in cells exposed to acid stress (Figure 1I), and was
significantly diminished in 1regX3 (Figure 1I).

Intracellular whiB3 Expression Is
Regulated by RegX3
We next addressed the question whether the regulation of
whiB3 by RegX3 is relevant within the intracellular milieu of
the host. It has been reported that whiB3 is upregulated early
during infection of macrophages by M. tuberculosis (Rohde et al.,
2007). We therefore analyzed the expression of whiB3 during
infection of macrophages by either wild type or regX3-inactivated
M. tuberculosis. Expression of whiB3 was compromised in the
absence of regX3 compared to the wild type (Table 2) and restored
upon complementation with regX3. These observations suggested
that RegX3 regulates the expression of whiB3 of M. tuberculosis
within the intracellular milieu of its host.

RegX3 Regulates Trafficking of
M. tuberculosis to Lysosomes in a
WhiB3-Dependent Manner
Intracellular trafficking to lysosomes reduces mycobacterial
burden in macrophages, and virulent mycobacteria have the
ability to evade trafficking to macrophages. 1regX3 showed
reduced survival in macrophages compared to the wild type
(Banerjee et al., 2016). We therefore tested whether the ability of
M. tuberculosis to evade trafficking to lysosomes is compromised

TABLE 2 | Relative fold changes of whiB3 in different M. tuberculosis strains
grown in macrophages.

Strain Fold change

1regX3 0.49 ± 0.02

1regX3 Comp.regX3 0.80 ± 0.08

Different strains of M. tuberculosis were grown in macrophages. Cells were
lysed, bacteria were harvested and total bacterial RNA was isolated. Transcript
abundance was determined by qRT-PCR. The relative fold changes of the different
mutants of M. tuberculosis were compared with that of wild type M. tuberculosis
(set as 1) grown in macrophages.
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in the absence of regX3. Following infection, the colocalization
of FITC-labeled M. tuberculosis with the lysosomal marker
LAMP1 was enumerated by fluorescence microscopy. The
association of 1regX3 with lysosomes, was higher than that
of wild type M. tuberculosis (Figures 2A,B). This was partly
reversed in 1regX3 Comp.regX3 (Figures 2A,B). Interestingly,
complementation with whiB3 (1regX3 Comp.whiB3) was equally
effective in reversing the trafficking of M. tuberculosis to
lysosomes. These results suggested that RegX3 subverts the
trafficking of M. tuberculosis to lysosomes in a WhiB3-
dependent manner.

RegX3 Has a Role in Granuloma
Formation in M. tuberculosis
Human PBMCs have been previously used to elicit granuloma
formation in vitro (Puissegur et al., 2004; Guirado et al.,
2015). Previous reports have shown that WhiB3 is required
for granuloma formation in vitro (Mehta and Singh,
2019). Considering that whiB3 expression is regulated
by RegX3, we tested the role of RegX3 in granuloma
formation in vitro 1 million PBMCs were infected with
M. tuberculosis at an MOI of 0.01. Aggregates of PBMCs
(>100 µm) were observed in the case of infection with
the wild type bacterium. However, there was a striking
absence of these aggregates when PBMCs were infected with
1regX3 (Figure 3). Complementation of 1regX3 with regX3
(1regX3 Comp.regX3) restored the ability of the bacterium
to elicit aggregation and granuloma formation (Figure 3).

Interestingly, 1regX3 Comp.whiB3 was also able to elicit
granuloma formation (Figure 3). These results strongly
suggested that the role of RegX3 in granuloma formation is
dependent on WhiB3.

DISCUSSION

The TCSs play an important role in regulating the ability
of M. tuberculosis to respond to the stressful conditions
it encounters during the course of establishing a successful
infection. Among the paired TCSs, SenX3-RegX3 is best
characterized as a phosphate starvation responsive TCS (Rifat
et al., 2009). The other stress signals that it responds to, remain
unclear. Its regulon is also incompletely characterized. The
intracellular niche for M. tuberculosis is the macrophage, where
survival under low pH poses a challenge. We searched for
regulators that are activated when M. tuberculosis resides in the
intracellular milieu of the macrophage, where the pH is acidic.
RegX3 is one such regulator (Rohde et al., 2007). 1regX3 is
compromised in its ability to survive in macrophages compared
to the wild type (Banerjee et al., 2016). In the present study we
show that RegX3 is upregulated under acid stress (Table 1) and
that it is required for the survival of M. tuberculosis under acid
stress (Figure 1A).

The 4Fe-4S protein WhiB3 is activated under acid stress
(Geiman et al., 2006) and in the response to vitamin C, a
trigger of dormancy (Nandi et al., 2019). WhiB3 is required

FIGURE 2 | RegX3 and WhiB3 are required for trafficking of M. tuberculosis to lysosomes (A) RAW264.7 cells were infected with FITC-labeled (green)
M. tuberculosis (WT, 1regX3, 1regX3 Comp.regX3 or 1regX3 Comp.whiB3), fixed and immunolabeled with anti-LAMP1 followed by Alexa 546-conjugated
secondary antibody (red). Cells were stained with DAPI to visualize the nuclei. Colocalization of green and red fluorescence indicates bacterial trafficking to the
lysosomal compartment. (B) Percent colocalization of each of the four strains with LAMP1 was calculated by counting at least 100 bacteria from five different fields.
Data represents means ± S.D., three independent experiments. ***p < 0.001.
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FIGURE 3 | In vitro granuloma formation after infection of PBMCs with
different strains of M. tuberculosis. One million human PBMCs were infected
with different strains of M. tuberculosis at an MOI of 0.01; or were left
uninfected (UI) and stained with May-Grünwald Giemsa stain at day 9
post-infection. Images were taken at 10× magnification. Each left and right
panel shows two different fields out of at least five fields captured. Scale bar
denotes 100 µm.

for the induction of immunomodulatory lipids and for blocking
phagosomal maturation (Pacl et al., 2018). We show for the
first time that RegX3 regulates whiB3 under both phosphate
starvation and acid stress.

Previous studies have shown that the whiB3 promoter regions
from M. tuberculosis and Mycobacterium marinum contain a
PhoP box and that PhoP regulates whiB3 under acid stress
(Feng et al., 2018), specifically in slow-growing mycobacteria
such as M. tuberculosis. In this study we have identified a
RegX3-binding palindrome upstream of whiB3 in M. tuberculosis
(Figure 1B). The PhoP binding site on the whiB3 promoter
is located between −310 and −271 of the whiB3 upstream
region (Feng et al., 2018). The RegX3 binding site is located
between −244 and −227. The RegX3 binding sequence is
conserved in two members of the M. tuberculosis complex,
namely M. africanum and M. bovis BCG. This sequence is not
conserved in other mycobacteria such as M. leprae or the fast-
growing M. smegmatis. Unlike the PhoP box, the RegX3 box
is also absent in Mycobacterium kansasii and M. marinum,
suggesting that dual regulation of whiB3 by PhoP and RegX3

under acid stress, may be unique to the M. tuberculosis complex.
This suggests that a complex regulation of whiB3 by both PhoP
and RegX3 is likely tailored to aid the survival of M. tuberculosis
within its intracellular niche.

We observed that RegX3 binds to the whiB3 promoter in
a phosphorylation-dependent manner (Figure 1D), and that
a DNA-binding mutant of RegX3 fails to do so (Figure 1E),
confirming the specificity of the binding. Mutation of a set of
nucleotides within the putative RegX3-binding palindrome,
abrogated RegX3 binding (Figure 1G), confirming the
requirement of the palindromic sequence in the whiB3 promoter
for RegX3 binding. We also confirmed binding of RegX3 to
the whiB3 promoter region by ChIP using RegX3-specific
antibody (Figure 1F). The regX3-deleted strain, 1regX3, failed
to activate the whiB3 promoter and was compromised in its
ability to survive under acid stress. It showed compromised
levels of whiB3 expression under either phosphate starvation (a
known signal for RegX3 activation) or acid stress, suggesting the
likely physiological relevance of the RegX3-WhiB3 axis. Taken
together, these findings confirmed that RegX3 is a regulator of
whiB3 in M. tuberculosis.

During infection, M. tuberculosis colonizes macrophages.
We have previously shown that 1regX3 is compromised
in terms of its ability to survive in macrophages (Banerjee
et al., 2016). In line with this, it showed increased
trafficking to the lysosomal compartment (Figure 2).
Concanamycin A, an inhibitor of vacuolar ATPases, blocks
acidification of the phagosome in macrophages infected with
M. tuberculosis (Rohde et al., 2007). In these conditions,
intracellular whiB3 induction is inhibited, suggesting that
acidification of the macrophage, triggers whiB3 induction,
and that whiB3 probably has a role in subverting the
trafficking of M. tuberculosis to macrophages. Interestingly,

FIGURE 4 | Schematic representation of the effect of RegX3 induction under
acid stress in M. tuberculosis. RegX3 is induced upon exposure of
M. tuberculosis to acid pH. It binds to the RegX3 box on the whiB3 promoter
to trigger whiB3 induction. WhiB3 subsequently mediates subversion of
lysosomal trafficking of M. tuberculosis to macrophages and granuloma
formation in vitro.
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trafficking of 1regX3 to the lysosomal compartment was reversed
upon complementation with either regX3 or whiB3. These
observations suggested that RegX3 functions at acid pH and in
macrophages, in a WhiB3-dependent manner.

whiB3 is reportedly required for M. tuberculosis survival under
acidic stress (Mehta et al., 2016). Since the RegX3 binding box
as well as the PhoP box have been identified only in the whiB3
promoters of M. tuberculosis complex members, we suggest that
the PhoPR-whiB3 and the RegX3-whiB3 regulatory pathways may
act in concert in a manner unique to the M. tuberculosis complex,
facilitating successful infection. In future studies, it would be of
interest to evaluate the status of the PhoP and the RegX3 boxes
in the whiB3 promoters of clinical strains of M. tuberculosis, and
any possible link they may have with mycobacterial virulence.
It would also be of importance to dissect the hierarchy of
functioning of PhoP and RegX3 in the regulation of whiB3.

M. tuberculosis resides in granulomas within its host.
Previous studies have shown that there is reduced lung
inflammation in mice infected with 1whiB3 compared to
wild type M. tuberculosis. There is scant knowledge of the
M. tuberculosis factors that facilitate granuloma formation.
Considering the physiological differences between animals and
humans with respect to M. tuberculosis infection, we chose
to study the role of the RegX3-WhiB3 axis in a human
in vitro granuloma model. Here we show that granuloma
formation in an in vitro model (i.e., the formation of
aggregates >100 µm), is compromised in the absence of RegX3
(Figure 3). Interestingly granuloma formation is restored upon
complementation of 1regX3 with either regX3 or with whiB3,
underscoring the importance of the RegX3-WhiB3 axis in
granuloma formation, possibly through the WhiB3-dependent
induction of immunomodulatory lipids. In summary, our present
studies show that acid stress induces RegX3, which binds to the
promoter of whiB3 to trigger its expression. WhiB3 subsequently
mediates subversion of lysosomal trafficking of the bacterium
in macrophages, and granuloma formation in vitro (Figure 4).
The enhancement of understanding of pathogen biology through
the present study, should aid in designing intervention strategies
in future. It would be of interest to compare lung pathology
elicited in vivo by M. tuberculosis 1regX3 complemented with
either regX3 or whiB3, and to generate a more complete
understanding of the genes regulated by the RegX3/WhiB3 axis
within the host milieu.
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