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Our understanding of human microbial communities, in particular in regard to diseases
is advancing, yet the basic understanding of the microbiome in healthy subjects
over time remains limited. The oropharynx is a key target for colonization by several
important human pathogens. To understand how the oropharyngeal microbiome
might limit infections, and how intercurrent infections might be associated with its
composition, we characterized the oropharyngeal microbiome of 18 healthy adults,
sampled weekly over a 40-weeks using culture-independent molecular techniques. We
detected nine phyla, 202 genera and 1438 assignments on OTU level, dominated by
Firmicutes, Bacteroidetes, and Proteobacteria on phylum level. Individual microbiomes
of participants were characterized by levels of high alpha diversity (mean = 204.55
OTUs, sd = 35.64), evenness (19.83, sd = 9.74) and high temporal stability (mean
Pearson’s correlation between samples of 0.52, sd = 0.060), with greater differences
in microbiome community composition between than within individuals. Significant
changes in community composition were associated with disease states, suggesting
that it is possible to detect specific changes in OTU abundance and community
composition during illness. We defined the common core microbiota by varying
occurrence and abundance thresholds showing that individual core microbiomes share
a substantial number of OTUs across participants, chiefly Streptococci and Veillonella.
Our results provide insights into the microbial communities that characterize the healthy
human oropharynx, community structure and variability, and provide new approaches
to define individual and shared cores. The wider implications of this result include the
potential for modeling the general dynamics of oropharynx microbiota both in health and
in response to antimicrobial treatments or probiotics.
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INTRODUCTION

Only about half of the approximately 60 trillion cells found within
our bodies are of human origin, the rest comprises bacterial cells
known as the microbiota (Sender et al., 2016). These microbial
communities inhabit a wide number of habitats on the human
body, such as the oral cavity, skin, vagina, or mucosal gut
surface, providing important functions such as resisting pathogen
invasion, regulating metabolism, and supporting the host’s
immune system (Dethlefsen et al., 2007; Parfrey et al., 2011).

The oral cavity provides a variety of habitats to microbial
communities, including teeth, gingival sulcus, tongue, cheek,
lip, and contiguous with the oral cavity, tonsils, pharynx,
and esophagus. Much of the prior work on these microbial
communities has focused on the oral cavity microbiota as a
single habitat (Aas et al., 2005; Jenkinson and Lamont, 2005;
Gioula et al., 2018), showing that it is species-rich, with 500–
700 species (Wilson et al., 1997; Paster et al., 2001), making it
the most taxon-rich body site (Jenkinson, 2011; Huse et al., 2012;
Faner et al., 2017).

The oral cavity is an entry point to the human body,
and microbial taxa colonizing the oral cavities can spread via
epithelial surfaces to other body sites such as the stomach,
intestinal tract, trachea, or lungs. In addition microbes are
involved in diseases such as caries (oral decay) (Gross et al.,
2010; Tanner et al., 2018), periodontitis (gum disease) (Joshipura
et al., 2003; Schulz et al., 2019), endodontic infections (root
canal) (Brito et al., 2020), or tonsillitis (Lemon et al., 2010;
Galli et al., 2020), and have been increasingly linked to systemic
diseases such as cardiovascular disease (Beck and Offenbacher,
2005; Blekkenhorst et al., 2018), stroke (Joshipura et al., 2003),
diabetes (Genco et al., 2005; Long et al., 2017), or pneumonia
(Seymour et al., 2007; Awano et al., 2008; Mammen et al., 2020).
Recently it has become apparent that, rather than being caused
by single organisms, many of these infections are linked to
communities of organisms, often occurring in complex biofilms
(Hall-Stoodley et al., 2004; Jenkinson and Lamont, 2005; Bai
et al., 2019). This has resulted in a shift of focus away from
single species to considering that increasing understanding of
human health and disease requires the characterization of the
microbial community.

Dewhirst et al. (2010); Jenkinson (2011), and Verma et al.
(2018) Microbial communities and their ecology have been
described in several oral habitats such as teeth (Becker et al.,
2002; Rademacher et al., 2019), tongue (Jiang et al., 2012; Wilbert
et al., 2020), gingival sulcus (Paster et al., 2001; Wei et al., 2020),
and saliva (Sakamoto et al., 2000; Nasidze et al., 2009), but
with a particular focus on disease-state (Aas et al., 2005; Zaura
et al., 2009) and, unfortunately, often lacking sufficient depth
and spatial or temporal sampling breadth to unravel the ecology
and dynamics of microbial communities (Yang et al., 2016).
Moreover, less information is available regarding the healthy
microbiome of the human oropharynx.

Another aspect that has gathered momentum, is the
identification of a core microbiome, which has been an
important goal of the Human Microbiome Project (Shetty
et al., 2017; Edouard et al., 2018; Li and Ma, 2020). The

core microbiome is defined as a suite of shared members
within microbial consortia occurring in similar or the
same habitat (Shade and Handelsman, 2012), and, as some
authors argue, shared among all or the majority of humans
(Turnbaugh et al., 2007; Hu et al., 2013). The core microbiome
is likely to provide important ecosystem functions, and may
therefore play a significant role in maintaining health, and
can provide a deeper understanding of the dynamics and
stability of the microbial community (Shade and Handelsman,
2012; Li and Ma, 2020). While some have argued that a
core oral microbiome exists based on commonality of
microbial taxa between participants (Zaura et al., 2009), the
small numbers of participants, and data only representing
snapshots, rather than longitudinal data, hamper the
ability to generalize these conclusions (Jenkinson, 2011;
Shetty et al., 2017).

In this study, we set out to define the general microbial
community and phylogeny of the most prevalent taxa in the
human oropharynx, its temporal dynamics and variability in
community structure and to describe the core microbiome shared
across baseline-healthy participants.

MATERIALS AND METHODS

Participants and Sample Collection
Eighteen participants were recruited for this study, representing
both genders (11 females, 7 males) ranging in age from 18 to
40 (mean 24.40, sd = 6.04), and were healthy (without illnesses,
undergoing treatments, and non-smokers) and not on any long-
term medication. The study was approved by the University of
Glasgow Ethics Committee and consent was obtained (Ethics
Application 2012107 and 200140021).

Participants were provided with Sigma Transwabs swabs in
liquid amies (Medical Wire Ltd., United Kingdom) for bacterial
detection, with samples taken from the tonsils and the posterior
wall to tonsil. Participants were asked to take a swab once
weekly, early in the morning prior brushing their teeth and
breakfast, and kept a diary providing information about their
health status. Samples were collected weekly, and bacterial swabs
were processed typically within 2 h after collection. Sampling
occurred in Glasgow, United Kingdom, between January and
May and September and December in 2013.

DNA Extractions
DNA was extracted using the QIAamp DNA Mini kit (Qiagen
Ltd., United Kingdom) following the bacteria, swab, and tissue
protocol (Salter et al., 2014). Extracted DNA was quantified using
the Qubit 2.0 (Thermo Fisher Scientific, Q32866) and picogreen
HS DNA assay (Invitrogen Ltd., United Kingdom). A volume of
DNA (5 µl) was mixed with 2 µl of loading dye on a 1% agarose
gel (1 g agarose to 100 ml TBE) along with a 1 Kb Invitrogen
DNA ladder and ran at 100 v for 60 min to check purity. The
DNA was then stored at −20◦C until required. The details on
processing the samples are given in Chapter 2 of http://theses.gla.
ac.uk/8163/ and provided in Supplementary Material 1 (QIA-
AMP DNA extraction protocol), Supplementary Material 2
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(Production of an rDNA clone library), and Supplementary
Material 3 (QIAGEN QIA gel extraction kit protocol).

Bioinformatics
Trimming and filtering of paired-end sequencing reads was
done using Sickle (version 1.2) by applying a sliding window
approach and trimming regions where the average base quality
drops below 20 (Joshi and Fass, 2011). This applied a 10 bp
length threshold to discard reads that fall below this length.
BayesHammer (Nikolenko et al., 2013) was used from the SPAdes
assembler (version 2.5) to error correct the paired-end reads
followed by PANDAseq (version 2.4) with a minimum overlap
of 50 bp to assemble the forward and reverse reads into a
single sequence spanning the entire V1–V2 region (Masella et al.,
2012). The above choice of software showed a reduction in
substitution errors by 77–98% with an average of 93.2% for
MiSeq datasets (Schirmer et al., 2015). After having obtained
the consensus sequences from each sample, UPARSE (version
7.0.1001) was used for OTU construction (Edgar, 2013). The
approach pools together the reads from different samples and
adds barcodes to keep an account of the samples these reads
originate from. The reads are then dereplicated and sorted by
decreasing abundance and discarding singletons. In the next step,
the reads are clustered based on 97% similarity, discarding any
reads that are shorter than 32 bp. The original barcoded reads
were then matched against OTUs with 97% similarity to generate
OTU tables for different samples. OTU representative sequences
were then taxonomically classified against the RDP database
using the standalone RDP classifier (version 2.6) (Wang et al.,
2007). Phylogenetic distances between OTUs were produced
by first using MAFFT (version 7.040) (Katoh and Standley,
2013) to align the OTUs against each other and then by
using FastTree (version 2.1.7) on these alignments to generate
an approximately maximum-likelihood phylogenetic tree (Price
et al., 2010). Chimeras were removed from the most abundant
reads, and a reference based using Gold database (Schirmer
et al., 2015; D’Amore et al., 2016). Traditional pipelines were
modified to get the optimum accuracy for amplicons based on
benchmarking studies (Schirmer et al., 2015; D’Amore et al.,
2016; Gerasimidis et al., 2016). The OTU table, phylogenetic
tree, taxonomic information, and metadata were then used in
multivariate statistical analysis. Even though the de novo chimera
removal step removes reads that have chimeric models built from
more abundant reads, a few chimeras may be missed, especially if
they have parents that are absent from the reads or are present
in very low abundance. Therefore, in the next step, we used
a reference-based chimera filtering step using a gold database1

that is derived from the ChimeraSlayer reference database in the
Broad Microbiome Utilities2.

Statistical Analysis
All samples that contained less than 5000 reads were discarded
in the analysis to allow comparison of all samples with sufficient
statistical power. The relative abundance of taxa for each sample

1http://drive5.com/uchime/uchime_download.html
2http://microbiomeutil.sourceforge.net/

was calculated by dividing the read counts of that taxa by
sample size and ranges from 0 to 1. Statistical analysis was
performed in R software (version 3.1.2). Where appropriate
before specific analyses, the abundance data was normalized
(McMurdie and Holmes, 2013).

Hierarchical clustering was used to group samples according
to their Pearson correlation distance, based on log10 + 1
transformed abundance data, providing a measure of inter and
intra individual similarity of the microbial community.

Estimating alpha diversity and evenness is particularly
challenging in microbial communities (Hughes et al., 2001).
To do so, samples were bootstrapped to a minimum of 5000
reads with replacement to subsample at a standardized sampling
effort. This resulted in estimates of average species richness and
evenness from 100 trials per sample. Alpha diversity describes
the count of unique OTUs in each sample, while evenness is
inverse Simpson (Smith and Wilson, 1996), i.e., the proportional
abundances of OTUs in each sample. Data was analyzed using
a one-way ANOVA and Tukey post hoc test, after checking
the assumptions.

Multidimensional Scaling and Core
Microbiome
To illustrate differences in bacterial community composition
over time, two participants were selected; the first participant
reporting no health issues, and the second reporting cold
symptoms in two separate weeks within the study period.
Participants were selected based on those with the largest number
of samples available. Differences in community structure at
phylum and OTU level (selecting the 20 most abundant OTUs)
are shown, and the structure of the microbial community
was assessed using a non-metric multidimensional scaling plot
(NMDS) at OTU level for each participant with Bray-Curtis
dissimilarity index (Kruskal, 1964). The overlaid vectors indicate
significant correlations among the relative abundances of OTUs
with the two axes of the NMDS using package vegan in r
(Oksanen et al., 2013, 2018). All samples were bootstrapped
samples to a minimum number of 5000 reads with replacement to
subsample at a standardized sample effort and sampled 100 times.
We used hierarchical cluster analysis in r to distinguish between
three sample clusters, using hclust function in the stats package
(R Core Team and C Worldwide, 2002), performing hierarchical
clustering based on average distances from the distance matrix.

There has been no single standardized approach to identify
the core microbiome, with most studies reporting the core
based on presence/absence of taxa at specific threshold values
of abundance and prevalence (Turnbaugh et al., 2007). Here,
we analyzed the core microbiome using adjustable parameters
for abundance (i.e., % of relative abundance in the sample,
ranging from 5 to 100%) and prevalence (% of occurrence within
samples), as developed previously providing a more integrated
approach to view the core microbiome (Jalanka-Tuovinen et al.,
2011). We subsequently used the heat_tree_matrix() function
in the metacoder package (Foster et al., 2017) to establish
significantly different relative abundances in core OTUs (based
on log2 median ratio) between participants using a Wilcoxon test.
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RESULTS

A total of 313 samples from 18 participants representing both
genders (11 females, 7 males) ranging in age from 18 to 40
(mean 24.40, sd = 6.04) were analyzed. The taxonomic profiles
across all participants revealed a total of nine phyla, 202
genera, and 1438 assignments on OTU level. A summary of the
phylogenetic distribution of the oropharyngeal microbiome is
shown in Table 1.

At phylum level, 98.17% of reads were classified, with
the remaining 1.82% belonging to unknown or unclassified
phyla. The five main bacterial phyla present at the highest
mean abundance were Firmicutes (mean scaled abundance per
participant = 0.597, sd = 0.160), Bacterioidetes (mean = 0.133,
sd = 0.082), Proteobacteria (mean = 0.118, sd = 0.147),
Actinobacteria (mean = 0.067, sd = 0.042), and Fusobacteria
(mean = 0.042, sd = 0.036).

Phylum-Level Analysis
The phylum Firmicutes contained five classes and 55 genera. The
class Bacilli was the largest in terms of taxa richness within the
Firmicutes and contains 256 OTUs. The genus Streptococcus was
the most frequently detected genus within the Bacilli and in the
oropharynx in general, occurring at a mean relative abundance of
0.472 (sd = 0.175) across all samples. Clostridia and Negativicutes
were also extremely common genera, containing 130 and 92
OTUs, respectively. Amongst the Negativicutes, Veillonella was
another genus amongst the five most frequently detected genera,
occurring, however, at a much lower abundance compared
to Streptococcus (mean = 0.055, sd = 0.037). Veillonella and
Streptococcus have been previously found to be highly abundant
genera at many oral sites (Aas et al., 2005).

The 280 Bacteroidetes included three classes, the highly
abundant Bacteroidia (154 OTUs), Flavobacteria (81), and one
member of the Sphingobacteria, as well as 44 unclassified
Bacteroidetes OTUs. There were 21 genera, with Prevotella being
the largest, as well as being amongst the five most abundant
genera, with a mean abundance of 0.082 (sd = 0.060).

TABLE 1 | Phylogenetic distribution of taxa, data based on HOMD version 2010.

Phylum Number
of

classes

Number
of

genera

Number
of OTUs

Number of
taxa classified

(class level)

Number of
taxa

unclassified
(class level)

Firmicutes 5 55 519 492 27

Bacteroidetes 4 21 280 236 44

Proteobacteria 6 65 239 222 17

Actinobacteria 1 48 236 236 0

Fusobacteria 1 7 83 83 0

Spirochetes 1 2 53 53 0

TM7 1 1 25 25 0

Synergistetes 1 2 2 2 0

Verrucomicrobia 1 1 1 1 0

Total 21 202 1438 1350 88

The phylum Proteobacteria comprised five classes and
239 OTUs, including highly represented classes such as
Gammaproteobacteria (122 OTUs) and Betaproteobacteria (77
OTUs), as well as the lesser represented classes such as
Epsilonproteobacteria (11 OTUs), Deltaproteobacteria (seven
OTUs), and Alphaproteobacteria (five OTUs), with 17 OTUs
remaining unclassified. Moreover, the phylum Proteobacteria
compromised 65 genera. The genus Neisseria was found in high
relative abundance across all samples (mean = 0.042, sd = 0.050),
being one of the five most abundant genera.

Actinobacteria comprised a total of 236 OTUs. Amongst
48 genera within the Actinobacteria, Actinomyces was amongst
the five most abundant genera at a mean abundance of
0.039 (sd = 0.031).

The phylum Fusobacteria contained one class (Fusobacteria),
comprising 83 OTUs and seven genera.

In addition to those five prevalent and abundant phyla, our
data set also included, in descending abundance; the phyla
Spirochetes (53 OTUs in one class and two genera), TM7 (25
OTUs in one class and one genus), Synergistetes (two OTUs in
one class and two genera), Verrucomicrobia (one OTU in one
class and one genus).

Richness, Evenness, Inter and Intra
Participant Variability
To compare microbial communities, we estimated alpha diversity
and evenness using bootstrapped samples to a minimum of 5000
reads with replacement to subsample at a standardized sampling
effort. The alpha diversity was high, with a mean of 204.55 OTUs
(sd = 35.64) per participant averaged across each participant’s
samples, ranging from 172.64 to 242.27 OTUs. There was a
significant difference in alpha diversity across participants (one-
way ANOVA F17, 295 = 4.977, p < 0.001) (Figure 1A), and

FIGURE 1 | (A) Mean alpha diversity (i.e., count of unique OTUs in each
sample) for all participants (±sd) and (B) mean evenness (Inverse Simpson).
Horizontal bars show significant pairwise differences (p < 0.05) across
participants. Note the difference in scale.
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evenness (inverse Simpson), describing the average proportional
abundances of OTUs, was also significantly different between
participants (ANOVA F17, 295 = 1.969, p = 0.013), with a mean
of 19.83 (sd = 9.74), ranging from 7.31 to 27.62 (Figure 1B).

We used hierarchical correlation distance analysis to gain an
overview of the similarity within (i.e., differences in microbial
communities within a participant over the sampling interval)
and between the participants (i.e., average inter-participant
variability) of the study based on log10 + 1 transformed
abundance data (Figure 2). Intra-participant differences were

lower, ranging from a Pearson’s correlation (r) of 0.04 to 0.90,
with a mean of 0.42 (sd = 0.116). The inter-individual similarity
was, on average higher than intra-individual differences, at a
range from 0.39 to 0.61, with a mean r of 0.52 (sd = 0.060). Most
samples clustered in a participant-wise manner, indicative of a
relatively consistent microbial community, but some variation of
this is notable (Figure 2). For instance, samples from participant
HT (highlighted in Figure 2) show marked clustering, indicative
of high sample similarity during most of the sampling period.
Still, some samples separated clearly from this clustering pattern

FIGURE 2 | Hierarchical clustering of log10 + 1 transformed microbial abundance data of all participants across time points, with samples representing one
sampling week. Highlighted are samples collected from two participants (HA in red, HT in blue), numbers indicate sampling weeks.
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(e.g., weeks 14, 15, 16, 25, and 26), which could be due to higher
abundance of Proteobacteria (see below, Figure 3B).

Multidimensional Scaling and Core
Microbiome
In order to illustrate temporal changes in community abundance
and composition, we selected two participants of the study, HT
and HA. HT did not report any health issues throughout the study
period, while HA reported cold symptoms during weeks 14 and
26 (Figure 3, C1 and C2 marked with arrows).

The relative abundance of the dominant phyla was generally
more similar between time points in participant HT, and showed

less variability in HA. This was specifically evident during and
perhaps preceding the reported cold incident (C1) in week
14, characterized by a greater abundance of Proteobacteria
(Figure 3A). This was also apparent when investigating
abundance of the 20 most common OTUs (Figure 3B), with
some variability in HT, but an increase in OTU 14 (genus Serratia
of the Proteobacteria) during C1 for participant HA. Serratia is
commonly reported to be associated with a variety of human
infections (Elston and Magnuson, 1965). These findings are
supported by the NMDS plot, with the sample obtained in week
14 clustering away from the main centroid, showing differences
in community composition associated with increased abundance
of OTU 14 (Figure 3C). The second incident of self-reported cold

FIGURE 3 | Example of temporal changes in community composition over the course of the data collection for two participants of this study: (A) HA (self-reporting a
cold during weeks 14 annotated C1 and 26 annotated C2, C1, and C2, respectively) and (B) HT (self-reportedly healthy throughout the sampling period): (A) Relative
abundance (%) of dominant phyla, (B) heatmap of the 20 most abundant OTUs, (C) non-metric multidimensional scaling ordination of bacterial community structure
[dashed ellipse represents the 95% confidence interval for the centroid of each stratification group as calculated by ordiellipse (Oksanen et al., 2018)].
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(C2) is also evident in the NMDS plot, correlated with a greater
abundance of more rare species (i.e., Others in Figure 3C), as well
as OTU 2 (Streptococcus), a common genus in the oropharynx,
that can be associated with disease. This suggests that self-
reported infections can be associated with changes in microbial
community composition.

We also calculated mean species richness for samples with
and without cold symptoms for all participants, with ANOVA
(ANOVA F1, 115 = 32.61, p < 0.001) indicating samples had
significantly lower species richness in participants showing cold
symptoms cold (mean = 149.25 OTUs, sd = 44.21) compared to
those without cold symptoms (mean = 149.25, 35.75).

We subsequently identified the core microbiome of these two
individuals. Instead of initially defining specific parameter values
for OTU abundance and prevalence, we followed an approach
suggested previously, using adjustable parameter values, i.e.,
prevalence and abundance (Jalanka-Tuovinen et al., 2011). The
ranges of relative abundance and prevalence values ranged from
0.001 to 0.2 and from 5 to 100%, respectively, in all samples
(Figure 4). Given that the parameter values are adjustable
rather than specific, the common core defined here was not a
single value, but a continuum. At low levels of required relative
abundance, the individual core microbiome included a relatively
large number of OTUs in both participants. Similarly, if the
prevalence threshold was set low, more OTUs were included
in the core. We detected 49 and 45 OTUs in the cores of
participant HT and HA, respectively, suggestive of a comparable

core size. At detection threshold of 0.1 and prevalence of
0.5, the core microbiome consisted of 19 and 13 OTUs for
HT and HA, respectively, nine of which the two participants
shared, indicating relatively high similarity and overlap in
the microbial core.

We subsequently explored the common core shared across
all healthy individuals. The number of OTUs included in the
common core decreased with increasing parameter values (i.e.,
increasing relative abundance and prevalence across samples,
Figure 5A). Considering the range of parameters values (i.e.,
relative abundance values of 0.001–0.2 and prevalence of
5–100%), the common core consisted of 40 OTUs (Figure 5B).
At a detection threshold of 0.1 and prevalence of 0.5, there were
12 OTUs, suggesting the common core across all participants
was smaller than the individual cores discussed earlier. The
common core included OTUs from the genus Streptococci
(OTU 1 and OTU2) found in high relative abundance and
prevalence across all participants (as shown earlier), as well as
Veillonella (OTU7), occurring at lower abundances but with high
prevalence across samples.

We then used heatmaps to explore abundance differences
between OTUs in the common cores across participants
(Figure 6). It was evident that core communities were generally
comparable across participants. Yet, there were some participants
which showed significantly different abundances of some core
OTUs, such as participant HD, who showed significantly higher
expression of Prevotella, compared to most other participants.

FIGURE 4 | Phylogenetic core of the oropharyngeal microbiome of participants HA (A) and HT (B) based on abundance (% relative abundance) and prevalence (%
occurrence in samples) in accordance with previous studies (Jalanka-Tuovinen et al., 2011), data was bootstrapped to standardize sampling effort. Relative
abundance values ranged from 0.001 to 0.2 and prevalence from 5 to 100%. Overlapping OTUs between participants are highlighted bold.
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FIGURE 5 | Bacterial core of the oropharyngeal microbiome from the 18 participants of the study based on selected abundance (% relative abundance) and
prevalence (% occurrence in samples), data was bootstrapped to standardize sampling effort. Relative abundance values ranged from 0.001 to 0.2 and prevalence
from 5 to 100%. (A) Core size as a function of prevalence and (B) bacterial taxa as a function of detection threshold and prevalence.

DISCUSSION

While the human oral microbiome has been extensively studied,
less attention has been paid to the oropharyngeal microbiome
and, to our knowledge, replicated time series data from a group
of generally healthy participants has not been available until
now. The oropharyngeal microbiome harbors a highly diverse
bacterial community. Here, we have created a phylogenetic tree
of the oropharynx comprising 1,450 OTUs, providing an in-
depth picture of this specific oral site. The taxa found in high
abundances, Firmicutes (specifically of the genus Streptococcus),
as well as the Bacteroidetes, Proteobacteria, and Actinobacteria,
have also been reported in other oral niches (Aas et al., 2005;
Zaura et al., 2009; Dewhirst et al., 2010; Griffen et al., 2011;
Segata et al., 2012; Belstrøm et al., 2016; Li and Ma, 2020). In
line with previous culture-independent massive metagenomic
sequencing studies (Bogaert et al., 2011; Morris et al., 2013),
the genus Streptococcus, a very heterogeneous group comprising
both commensals and pathogens, formed the dominant genus
in the oral microbiome (Picard et al., 2004; Huang et al., 2011;
Moon and Lee, 2016; Edouard et al., 2018), due to their ability
to colonize a wide range of oral niches including epithelium,
tooth surface, enamel, tonsils, or tongue (Nobbs et al., 2009).
Veillonella, often associated with Streptococci (Jenkinson, 2011),
is another abundant genus of the Firmicutes; they are a small
group of generally strict anaerobic, non-fermentative Gram-
negative cocci, which have been found in high abundance
elsewhere in the oral microbiome, as well as in respiratory tract,

small intestine, and vagina (Leuckfeld et al., 2010; Yi et al., 2014).
Prevotella (Bacteroidetes) is often associated with the healthy oral
microbiome but has also been linked to oral diseases (Paster et al.,
2001; Huang et al., 2011).

Our longitudinal data suggested moderately high variation in
community composition within participants over time, indicative
of reasonable levels of stability in assemblage composition.
However, the variability appears larger than that reported by
others (Zoetendal et al., 1998; Scanlan et al., 2006; Jalanka-
Tuovinen et al., 2011). This difference may be due to
physiological or ecological characteristics of different body sites.
The oral cavity is arguably a more heterogenous habitat (in
terms of, for example, pH, flow rate, morphology, tissue types,
or available surfaces), compared to the gastrointestinal tract
resulting in greater availability of distinct habitats (Zaura et al.,
2009; Jenkinson, 2011; Simon-Soro et al., 2013). Further, the
higher rate of immigration/emigration of taxa within the oral
cavity (Dewhirst et al., 2010) may require a wider range of
adaptations, resulting in the evolution a greater number of
functionally interchangeable taxa. As expected, inter-individual
variation was higher than intra-individual variation, suggesting
that individuals were characterized by having varying, but
characteristic taxa. This finding is in line with conclusions drawn
by a number of other studies (Costello et al., 2009; Caporaso et al.,
2011; Stahringer et al., 2012; Flores et al., 2014; Cameron et al.,
2015; Utter et al., 2016), from oral data (saliva, tongue, and dental
plaque), where inter-individual variation in microbial assemblage
was greater than intra-individual variation. This may be due to
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FIGURE 6 | Heat tree matrix comparing OTUs of the bacterial core of the oropharyngeal microbiome from the participants of this study. Lower left-hand side
diagram shows the phylogeny of the pooled data set and the sizes of the circles associated with different taxa indicate their relative abundances. Brown and cyan
colors indicate significant differences across pairwise abundances, while gray represent no significant difference in relative abundance.

extrinsic factors including diet, medication, or intrinsic factors
such as immune system differences.

The microbiome of the oropharynx showed high alpha
diversity, the values here were similar to those reported for other
oral sites (Zaura et al., 2009; Huang et al., 2011; Diaz et al.,
2012; Thomas et al., 2014; Zheng et al., 2015; Edouard et al.,
2018), indicative that our data set captures the diversity of the
oropharynx. There was considerable variation across individuals,
perhaps due to factors discussed previously, such as lifestyle (e.g.,
diet, oral hygiene, and travel), inherent genetic variation, immune
system or random colonization events. The results indicated
the dominance of few bacterial OTUs (such as Streptococcus)
(Moon and Lee, 2016).

By investigating the community composition of two
participants in more detail, it became apparent that microbial

community composition on the phylum level was generally
similar over time, suggestive of stability, and showed relatively
high commonality across the two participants, as discussed
elsewhere (Moon and Lee, 2016). Yet, our results suggest
that the microbial communities in the two participants are
personalized, varying in a participant-specific (Flores et al., 2014;
Edouard et al., 2018) manner (Flores et al., 2014; Edouard et al.,
2018). As expected, there was much variation across those two
participants at OTU level (e.g., Figures 4A,B), which similarly
to the results of the Pearson’s correlation findings, showed high
inter-participant variability in microbial community assemblage
structure. It is worth noting that there were indications of
changes in community composition in participant HA, when a
cold was reported, particularly evident in the NMDS plot, and
correlated to changes in abundance of specific OTUs (as seen by
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overlaid vectors). This suggests we are able to detect and describe
specific changes in abundance and assemblage composition in
disease states. This may also allow us to determine which OTUs
are disease-associated, using them as biomarkers for future
studies. When comparing across all participants, we also found
a significant decrease in species richness in participants reporting
cold symptoms, as evidenced by others (Yi et al., 2014; Korten
et al., 2016; Piters et al., 2016; Edouard et al., 2018). These
reductions are often associated with increasing abundances of
pathogenic species (e.g., Staphylococcus aureus, Streptococcus
pneumoniae, Moraxella catarrhalis, or Haemophilus influenzae).
To gain a deeper understanding in the species-specific changes,
species (rather than genus-level) resolution is required.

A key question of the Human Microbiome Project is,
whether it is possible to identify a core microbiome, consisting
of common organisms inhabiting similar habitats or body
sites that exist in the majority or all humans (Hamady and
Knight, 2009; Shade and Handelsman, 2012; de Cárcer, 2018).
The identification of this core microbiome has followed a
number of approaches. One such approach is to identify
shared OTUs (or phylotypes) across samples, reporting their
overlap from presence/absence data (Turnbaugh et al., 2007).
Thus, if found in a vast majority of participants, an OTU is
defined as a core taxon, irrespective of it occurring in high
or low abundances. An alternative and perhaps more stringent
definition of the core microbiome is where OTUs have to
occur in all participants (i.e., in 100% of all samples) (Huse
et al., 2012). Previously, the oropharynx core microbiome has
been identified on three participants by Zaura et al. (2009),
and on a greater sample size by Huse et al. (2012), defining
core as taxa shared in 95% of individuals. Neither of these
studies, however, have included time-series information. Time
series data has the potential to provide some general insights
before specifically defining microbiome as that consistently
observed across time points and shared across individuals (Shade
and Handelsman, 2012). Our approach here addressed the
individual core microbiome within two participants and the
common core across participants in a conceptual definition
across values of relative abundance and prevalence, and then
in a concrete manner by selecting specific thresholds. The
common core included fewer OTUs than the individual core,
which is perhaps not surprising given that it includes a greater
number of samples. The common core may consist of taxa
selected during the co-evolution of host and microbiome, and
once obtained, it may be possible to catalog the functional
roles of those microbes. Our results support that many
of the bacterial taxa are present in the oropharynx across
individuals, often in similar abundances as indicated by the
heat maps. Of those, Firmicutes (specifically Streptococcus sp.)
are highly represented in the two individual and common
cores, similar to other studies (Zaura et al., 2009; Eren et al.,
2014; de Cárcer, 2018). In identifying a core, we are moving
further toward resolving some of the immense complexity

and the significant intra and individual variability in the
microbial communities, which currently hamper our ability to
resolve differences between group and input models without
overparameterizing.

This work is the first to comprehensively define the
phylogeny of the human oropharynx based on 18 participants
sampled over a period of 40 weeks. We extend our
understanding of the species richness and evenness of the healthy
oropharyngeal microbiome, and its common core, allowing
us to move closer toward being able to define the healthy
oropharyngeal microbiome.
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