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One of the fundamental tenets of biology is that the phenotype of an organism (Y )
is determined by its genotype (G), the environment (E), and their interaction (GE).
Quantitative phenotypes can then be modeled as Y = G + E + GE + e, where e is
the biological variance. This simple and tractable model has long served as the basis for
studies investigating the heritability of traits and decomposing the variability in fitness.
The importance and contribution of microbe interactions to a given host phenotype is
largely unclear, nor how this relates to the traditional GE model. Here we address this
fundamental question and propose an expansion of the original model, referred to as
GEM, which explicitly incorporates the contribution of the microbiome (M) to the host
phenotype, while maintaining the simplicity and tractability of the original GE model. We
show that by keeping host, environment, and microbiome as separate but interacting
variables, the GEM model can capture the nuanced ecological interactions between
these variables. Finally, we demonstrate with an in vitro experiment how the GEM model
can be used to statistically disentangle the relative contributions of each component on
specific host phenotypes.

Keywords: microbiome, plant–microbe interactions, microbiome associated phenotype, microbial ecology,
microbiome engineering, GEM

THE GENETIC BASIS OF ECOLOGICAL INTERACTIONS

Leveraging the beneficial interactions between plant hosts and their microbiomes represents a new
direction in sustainable crop production. In particular, the emergence of microbiome-associated
phenotypes (MAPs), such as growth promotion and disease suppression, is expected to reduce
our dependency on energy-intensive and environmentally disturbing management practices. This
may either be achieved through the addition of probiotics and prebiotics, or through breeding
programs targeting MAPs to develop a next generation of “microbiome-activated” or “microbe-
assisted” crop production systems (Busby et al., 2017; Oyserman et al., 2018). Hence, a major
challenge is to identify the genotypic underpinning of emergent MAPs and understanding the
pivotal role of the environment. The interaction between genotype (G) and environment (E) has
long been recognized as an important factor both in evolutionary biology (Via and Lande, 1985;
Anderson et al., 2013) and breeding programs (Allard and Bradshaw, 1964). While a significant
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body of literature exists on quantitative investigations of GE
interactions (El-Soda et al., 2014), the bulk of this work
has focused on abiotic parameters and has largely overlooked
the microbiome. Nevertheless, the interactions between hosts,
microbiomes, and their environments are coming into increasing
focus and scrutiny (Dal Grande et al., 2018; Wallace et al.,
2018; Beilsmith et al., 2019; Bonito et al., 2019). Indeed,
researchers investigating pathogens often refer to the ‘disease
triangle’ (Sandermann, 1996), whereas researchers investigating
mycorrhizal–plant interactions often refer to the “context
dependency” of inoculation success (Hoeksema et al., 2010),
demonstrating a long history of investigations on GEM
interactions. Consequently, as the prominence and importance of
host-associated microbiome in modern biotechnology increases,
it is important to explicitly integrate this variable into the widely
accepted GE conceptual framework.

One current opinion is that rather than viewing host plants
and animals as individuals, they should be viewed together with
their microbiomes as single cohesive unit of selection termed a
“holobiont” with a “hologenome” (Bordenstein and Theis, 2015;
Moran and Sloan, 2015; Douglas and Werren, 2016). Under this
view, the microbiome (M) could be integrated into the G term of
the GE model of host phenotypes. However, others have pointed
out that treating hosts and their microbiomes as a single unit
does not capture the broad range of interactions and fidelity
between host and microbe (Douglas and Werren, 2016). Another
popular opinion is that, as the environment is classically defined
to include “physical, chemical, and biotic factors (such as climate,
soil, and living things) that act upon an organism” (Definition
of Environment, 2019), M should be integrated into the E term
of the GE model. However, an important distinction exists
between E and M components; M is dynamic (i.e., have many
interdependencies and may adapt or evolve through time), while
E is driven through external processes. Here, we address these two
viewpoints and propose that it is useful to introduce microbiomes
and MAPs as a discrete unit within the GE model. In doing so,
we put forth an updated GEM model that explicitly incorporates
the microbiome (M) and its respective interactions with the
genotype (G) and environment (E). Using these mathematical
representations, we conceptually emphasize interesting cases
that emerge from this framework (Figure 1). Next, we present
a simple “one-microbe-at-a-time” experiment to highlight key
features and challenges of unearthing GEM interactions, and to
statistically disentangle the relative contributions of each of the
GEM model components (Figure 2). Finally, we highlight the key
challenges for moving forward in operationalizing such models
effectively in complex natural systems.

THE MICROBIOME AS A PHENOTYPE
OR MICROBIOME-ASSOCIATED
PHENOTYPES?

The relationship between the host and its microbiome may be
generally defined and viewed in two ways. First, microbiome
community structure may be considered a phenotype of the
host (Y), henceforth “microbiome as a phenotype” (Belheouane

et al., 2017; Rothschild et al., 2018; Walters et al., 2018). Under
this view, taxonomic/functional features of the microbiome are
treated as the phenotype of the host (Y). In this manner, Y (e.g.,
the abundance of a taxon or functional gene) may be represented
based on the contribution and interaction between the genotype
(G), the environment (E), and the remaining variance (e) (Eq. 1).
In extension, microbiome (M) components may also be included
as predictive variables. For example, the successful establishment
of rhizobia inoculants is often dependent on the abundance
of indigenous rhizobia (Thilakarathna and Raizada, 2017), and
the establishment of fungal pathogens may be dependent on
the presence of arbuscular mycorrhizal fungi (AMF) (Berdeni
et al., 2018). In these two examples, the abundance of beneficial
inoculants or fungal pathogens may be treated as the phenotype
of the host (Y) and modeled through the interactions of GE
and M, where M is represented by the abundance of indigenous
rhizobia and AMF, respectively.

Second, a microbiome may be quantified by their impact
on the host phenotypes (Kopac and Klassen, 2016; Oyserman
et al., 2018). In this view, MAPs such as plant growth
promotion or plant tolerance to (a)biotic stress factors are
treated as the phenotype (Y) (Zeevi et al., 2019). Here, we again
suggest explicitly disentangling the environmental parameter
of the traditional GE model (Eq. 1), such that host genotype
(G), environmental factors (E), and microbiome structure and
function (M) and their interactions all contribute to the
observed host phenotype (Eq. 2). Thus, measurements of the
microbiome structure and function are used in conjunction
with genotypic and environmental data to explain a MAP,
an emergent phenotype of the host–microbe interaction.
Additional components may be added to the GEM model
to accommodate additional complexity. For example, M may
be split into i components, where Mi represents the ith
taxonomical or functional feature. In this way, the GEM
model is amenable for investigating the role of microbe–
microbe interactions within natural or synthetic communities,
the interactions between multiple environmental factors, or
any complex arrangements (see Supplementary Material for
discussion on an expanded GEM model).

In Figure 1, we exhibit some basic features of the GEM
model. In Figures 1A–E, quantitative microbiome features may
be treated as a host phenotype (Y). Observed values of Y may be
independent of changes in G and E (Figure 1A), dependent on E
but not G (Figure 1B), dependent on G but not E (Figure 1C),
dependent on G and E but not the interaction between GE
(Figure 1D; the lack of an interaction is indicated by the equal
slope of the two lines). Furthermore, Y may be dependent on
both G and E and GE interactions. In Figures 1F–O, M may be
integrated into the “microbiome as a phenotype” model (as in
the examples with rhizobia and AMF above), or as a predictive
variable of MAPs. In simple cases, M may not interact with
either G or E (Figures 1F–J), but interactions between the various
components of the GEM may also be observed (Figures 1K–
O). By exploring this model, practical insights may be gleaned.
For example, an optimal prebiotic would be conditionally neutral
and have a broad host range (Figure 1L). Finally, the GEM
model may be used to characterize complex interactions such as
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FIGURE 1 | Conceptualizing the GEM model: Here we graphically explore how the interactions between genotypes, environment, and microbiome may impact a
host phenotype (Y ). The two genotypes are indicated by G1 and G2, and the presence of a microbiome is indicated by solid circles (as shown in A). The different
environments are indicated as Env 1 and Env 2 on the X-axis. In each case (A–O), the corresponding equation is depicted over the figure itself. In cases when we
treat the microbiome as a phenotype of the host, the relative abundance of a particular taxon, or other features of a microbiome, may be considered as the sum of G
and E interactions (A–E). In simple cases, the relative abundance is independent of genotype (B) or environment (C). More likely, both genotype and environment,
and their interactions will contribute to relative abundance/function (D and E, respectively). (A–E) are special cases of the GEM model, indicating situations in which
the microbiome does not contribute to a particular host phenotype. Building complexity, each of G, E, and M may contribute to host phenotypes individually or in
combination, but without interaction (A–D,F–I). Finally, the highest level of complexity occurs once interactions between G, E, and M occur (E,J–O). A salient feature
of this representation is that when no interaction between variables exists, the slope is equal between treatments. This model may also provide practical insights,
such as identifying optimal prebiotics which may be expected to have a broad host range (no G interaction) and be conditionally neutral (L). Additionally, this model
may serve to characterize complex interactions, such as conditional symbiosis where a host fitness is reduced to zero without a microbiome (taxon or function) in a
particular environment (O).

conditional symbiosis (Figure 1O), and in this manner captures a
broad range of interactions and fidelity between host and microbe
(Douglas and Werren, 2016).

As noted earlier, an important distinction between E and
M is the dynamic nature of M. In other words, microbial
populations may evolve to adapt to G, E, or GE interactions.
Two simple illustrations of M adaptations to G were recently
shown through the experimental evolution of Aeromonas for
zebrafish colonization, and Pseudomonas protegens to Arabidopsis
thaliana (Robinson et al., 2018; Li et al., 2020). In a reciprocal
manner, M may precipitate adaptation in host G, as recently
demonstrated in Drosophila melanogaster populations (Rudman

et al., 2019). In this regard, the GEM model may be used
to formulate and test hypotheses on how interactions drive
evolutionary changes. From the “microbiome as a phenotype”
perspective, Y would be considered the frequency of single
nucleotide variants (SNV) or other marker of microbial
population structure (Garud and Pollard, 2020; Yan et al., 2020).
By using population genomics, the changes in SNV frequencies
of natural microbial populations adapted to different host
genotypes, and under specific conditions, may be reconstructed.
Combining microbial population genetics with sufficiently
large and genetically diverse host populations amenable to
genome wide association studies (GWAS), it will be possible
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FIGURE 2 | Extracting the GEMs from the simplified GEM experiment: (A) In this in vitro experiment, the contribution of G, E, M, and their interactions were
investigated in a fully factorial design. (B) In total, two tomato genotypes, two environments, and one microbe treatment were investigated. Various plant phenotypes
were measured, but for clarity, only the average dry root mass of each treatment are visualized here. (C) The GEM model shows that G, E, M, GM, and GEM all
contribute significantly to root mass. The ANOVA table displays the reported Df (Degrees of freedom), Sum sq (Sum-of-squares), Mean sq (Mean some-of-squares),
the F-value (the test statistic of an ANOVA), Pr(> F) (the p-value), and Signif. (a visual indication of the level of significance). (D) Here we present the ANOVA outcome
showing the percent of the total sum of squares for dry shoot mass, dry root mass, and root length. For shoot mass, plant genotype explained the greatest portion
of variance. In contrast, both E and M explained a greater amount of variation than plant genotype for root length. Importantly, for each of the three plant phenotypic
parameters measured, GM explained a greater amount of variation than GE.

for future studies to map the reciprocal adaptions between
host and microbe.

From the MAPs perspective, GEM interactions that result
in the emergence of beneficial traits such as stress tolerance
may lead to interesting eco-evolutionary dynamics. On the
one hand, if the environmental conditions persist, directional
selection may drive concerted fixation of host and microbe
variants leading to coevolution (O’Brien et al., 2019). On
the other hand, fluctuating selection driven by sufficient
temporal or spatial heterogeneity may hamper the fixation
of MAPs in a population, or over multiple generations. It
also important to understand the mechanisms that maintain
cooperation between host and microbiome and prevent the
emergence of cheating phenotypes (Figueiredo and Kramer,

2020). For example, it has been shown that AMF and host
use reciprocal rewards to stabilize beneficial interactions (Kiers
et al., 2011). Thus, the rate (e.g., number of generations)
at which host and microbiome may establish beneficial
interactions (αholo), and the stability of these interactions (σholo)
within a host population or over subsequent generations are
important parameters when investigating GEM interactions
(Oyserman et al., 2018).

EXTRACTING THE GEMS

To demonstrate how the GEM model may be used to
disentangle the relative influence of various factors on a

Frontiers in Microbiology | www.frontiersin.org 4 January 2021 | Volume 11 | Article 574053

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-574053 December 31, 2020 Time: 16:40 # 5

Oyserman et al. Extracting the GEMs

Y = G+ E +G : E + e

Equation 1 | The traditional model for GE interactions: In the canonical model of quantitative phenotypes, the host phenotype (Y ) is explained by the sum of G, E,
their interactions (G:E), and e the residual error. This model may be used to calculate the proportion of variance explained by the host genome and the environment
on a host associated microbiome community. In other words, the microbiome may be treated as Y, the phenotype of the host (e.g., “the microbiome as a
phenotype”). When E has no contribution to Y, only G determines the abundance or function of the microbiome (Figure 1C). On the other side of the spectrum, only
E determines to the abundance or function of the microbiome (Figure 1B).

Y = G+ E +M+ G : E +G : M+ E : M+G : E : M+ e

Equation 2 | The new GEM model: When a microbiome has a quantitative impact on host phenotype, the traditional GE model may be expanded to incorporate M
and all respective interactions (GM, EM, and GEM). Unlike the GE model, which may be used to explain the microbiome, the expanded GEM model may be used to
disentangle the contribution of G, E, and M and their various interactions to changes in host phenotype. When M has no impact, this variable and those associated
with it fall out of the equation giving the GE model. These and other special cases are conceptually explored further in Figure 2. Thus, this model is capable of
capturing the nuanced dynamics of host–microbiome interactions, such as host–microbe interactions that are environment-specific, or otherwise have lower fidelity
than strict symbiosis (Douglas and Werren, 2016).

Y =

G+ E +M1 + M2+

G : E +G : M1 + G : M2 + E : M1 + E : M2 + M1 : M2+

G : E : M1 +G : E : M2 + G : M1 : M2 + E : M1 : M2+

G : E : M1 : M2

+ e

Equation 3 | A GEMM model: The basic GEM model may be expanded to include any number of complex interactions. Here we expand the GEM model to include
microbe–microbe interactions. This results in the addition of one-way, two-way, three-way, and four-way interaction terms, which are shown on separate
lines for clarity.

particular host phenotype, we investigated GEM interactions
in a simplified in vitro assay with one bacterial strain
(Bacillus sp., accession number MN512243) interacting with
two plant genotypes, a modern domesticated tomato cultivar
(Solanum lycopersicum var moneymaker) and a wild tomato
relative (Solanum pimpinellifolium) under two environmental
conditions. In this model system, all genotype, environmental,
and microbial parameters are controlled and therefore can be
systematically explored in a fully factorial design (details are
in the Supplementary Material). For each tomato genotype,
seedlings were grown in two environments, i.e., Murashige and
Skoog agar medium (MS0) and MS agar medium supplemented
with 10 g/L of sucrose (MS10). After germination, the root
tips were inoculated with the Bacillus strain, which was
originally isolated from the wild tomato rhizosphere. Control
seedlings were inoculated with buffer only (Figure 2A).
The plant phenotypes monitored were root length (using
WinRhizoTM) and root and shoot dry mass (Figure 2B). An
ANOVA was done to test the significance of each variable
in the GEM model (Figure 2C). Together, the microbiome
(M) and all interacting variables (GM, EM, and GEM)
explained 22% of root dry mass variance, 8% of shoot
dry mass variance, and 26% of root length total variance.
Furthermore, in all cases, the interacting parameters, GM, EM,
and GEM interactions explained greater variance than GE
interactions (Figure 2D).

A clear consensus is forming that microbiomes impact
host phenotypes, but its relative contribution to that host
phenotype is, in most cases, not known. The GEM model
provides a simple, tractable, and testable model demonstrating
that the interactions of the microbiome and other model terms
(GM, EM, and GEM) are also essential determinants of host
phenotypes. It is important to highlight that, in this case, GM
interactions actually explain more variability than canonical GE
interactions. Furthermore, the expanded GEM model captures
other important features that may otherwise be easily overlooked,
such as the genotype-independent interaction between EM. This
states that microbe and environment may interact to alter
host fitness independent of the genotype. For example, pre-
conditioning soil microbial populations to drought has been
shown to select for microbial communities which promote host
drought tolerance when compared with un-conditioned naive
soils (Lau and Lennon, 2012). Additionally, auxin is a plant
hormone that promotes growth that is also produced by bacteria.
Many bacterial cultures have differential auxin production
dependent on their environment (Tsavkelova et al., 2005);
therefore, it is likely that EM interactions can promote auxin
production and thus plant growth independent on genotype.
In practice, identifying EM may have important implications
for synbiotics (mixtures of probiotics and prebiotics) and the
development of self-assembled microbiomes (Gutierrez et al.,
2020). In this manner, the GEM model not only provides
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a model to disentangle the contribution of G, E, and M,
but also serves as a powerful tool for conceptualization and
experimental design.

THE GEM MODEL PARAMETERIZES
COMPLEX INTERACTIONS

As described above, genotype, environment, and microbiome
may influence organismal phenotype directly, but also through
their interactions. This dynamic is captured by the various terms
that make up the GEM model, providing a simple means to
parameterize an otherwise complex system. In its most basic
form (Eq. 2), the GEM model has eight terms in total. An
example of a term with a single variable is “G,” a two-variable
term would be “GM,” and three variable term would be “GEM.”
While the basic GEM model contains terms related to inter-
class interactions (GE, GM, etc.), it lacks terms representative
of intra-class interactions (M:M, E:E, etc.). By simply adding
additional variables to the GEM model, M:M and other
ecologically relevant interactions may be introduced as additional
terms. The number of terms in a model is dependent on the
number of variables (n) that can be mathematically represented
by Supplementary Equation 1. In addition, the number of
terms with r variables may be mathematically represented by
Supplementary Equation 2, where n is the total number of
variables and r is the number of variables in the term. From
this basis, a model of organismal phenotype which takes into
account ecosystem-level processes may be constructed. To this
end, we developed a simple Python script to generate a GEM
model based on user input for any number of G, E, and M
variables1.

To model the interactions between multiple microbiome
members, such as those found in natural or synthetic
communities, we provide a simple expansion in Eq. 3. The
result is a four-variable (GEM1M2) model that includes all
r-way interactions terms necessary to model the impact of a
two-member community on any number of plant genotypes
or environments. For clarity, Eq. 3 is presented with all r-way
interactions on separate lines. To show the versatility of the
GEM model, we provide another expansion in which multiple
hosts are interacting in a particular ecosystem (G1G2EM). In
this case, the fitness of one plant genotype (G1) is influenced
through interactions with a neighboring plant genotype (G2)
and their associated microbiomes. A prominent example of
this in literature are intercropping systems in which nitrogen
fixation through legume–microbiome interactions benefit other
non-leguminous plants in a nitrogen limited soil ecosystem
(Peoples et al., 1995). Indeed, the literature is filled with examples
that fit the GEM model, including interactions involving
mycorrhizal fungi (Hoeksema et al., 2010), rhizobia (Lau
et al., 2012), endophytes (Zhou et al., 2019), and concerning
a variety of emergent phenotypes from diverse interactions
(DeMilto et al., 2017).

1https://github.com/Oyserman/GEM

While the GEM model provides a simple conceptual
framework for understanding the microbiome contribution
to host phenotype, a key challenge will be incorporating
complex natural microbiomes containing hundreds of species
and thousands of interactions in natural settings. In addition,
it is likely that observational studies on GEM interactions
may be further hampered by covariance between microbiomes,
host genotype, and the environment. Altogether, a proper
statistical approach to handle GEM model should account
for: (i) the different data characteristics and sources; (ii)
the co-dependence structure between and within groups of
variables; (iii) the specific effect of each component (genes,
microbes, and environment) on the plant phenotype. To
date, few methods can capture this complexity. A promising
approach is via generalized joint attribute modeling (GJAM)
(Clark et al., 2017; Leite and Kuramae, 2020). GJAM allow
us to infer and interpret relationship between different groups
of variables (e.g., continuous such as plant biomass, or
compositional as the DNA copy number) on the observation
scale and to avoid distorted correlations. For example, GJAM
was recently applied to identify 12 AMF associated with
less foliar damage in seedlings from different plant species
in mid- and late-successional subtropical montane forests in
Puerto Rico (Bachelot et al., 2018). Therefore, GJAM combines
environmental factors and microbiome data with the plant
phenotype into a single framework. However, through careful
experimental design and reductionist approaches, it is likely
that the coming years will see rapid headway identifying genes
responsible for recruiting microbes (i.e., the microbiome as a
phenotype), and identifying the genes underlying the emergent
phenotypes from plant–microbe interactions (i.e., microbiome
associated phenotypes).

CONCLUSION

A fundamental tenet of biology is that genotype and environment
interact and impact the fitness and phenotype of an organism.
The GE model of organismal phenotype has been the cornerstone
of modern breeding programs. Part of the power of the
GE model is its simplicity and interpretability. However, the
important role of host-associated microbiomes has recently
come into focus. Here, we investigated how microbiomes
(M) fit into the GE model, suggest an explicit expansion
to include M, and argue that, because of its dynamic and
evolving nature, that M should not be collapsed within E.
We use a conceptual figure to show that the updated GEM
model captures the diverse possible outcomes of between
G, E, and M. To support our model, we present an
in vitro experiment with one microbe demonstrating not
only how to use the GEM model, but also showing that
GM interactions may explain more variability than GE
interactions. Finally, additional examples of expanded GEM
models which take into account M:M and G2:E:M interactions
are presented to demonstrate the ecological versatility of
the GEM model. Taken together, we propose that the GEM
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model provides a simple and interpretable expansion of the GE
model. Furthermore, given the important role of the microbiome,
any investigations into GE interactions must also account
or control for M.
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