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Deep waters represent the largest biome on Earth and the largest ecosystem of
Costa Rica. Fungi play a fundamental role in global biogeochemical cycling in marine
sediments, yet, they remain little explored. We studied fungal diversity and community
composition in several marine sediments from 16 locations sampled along a bathymetric
gradient (from a depth of 380 to 3,474 m) in two transects of about 1,500 km length
in the Eastern Tropical Pacific (ETP) of Costa Rica. Sequence analysis of the V7-V8
region of the 18S rRNA gene obtained from sediment cores revealed the presence of
787 fungal amplicon sequence variants (ASVs). On average, we detected a richness of
75 fungal ASVs per sample. Ascomycota represented the most abundant phylum with
Saccharomycetes constituting the dominant class. Three ASVs accounted for ca. 63%
of all fungal sequences: the yeast Metschnikowia (49.4%), Rhizophydium (6.9%), and
Cladosporium (6.7%). We distinguished a cluster composed mainly by yeasts, and a
second cluster by filamentous fungi, but we were unable to detect a strong effect of
depth and the overlying water temperature, salinity, dissolved oxygen (DO), and pH on
the composition of fungal communities. We highlight the need to understand further the
ecological role of fungi in deep-sea ecosystems.

Keywords: deep-sea, aquatic fungi, biodiversity, Metschnikowia, Costa Rica

INTRODUCTION

Fungi inhabited the oceans, including the deep-sea ecosystem, long before they conquered
terrestrial environments. In addition, considering that the deep sea represents the largest biome
on Earth, there is a paucity of studies on the diversity and ecology of fungi in this ecosystem
compared to the rest of the ocean. Furthermore, what is known about the microbial ecology in deep-
sea sediments is mainly about bacteria and archaea (Edgcomb et al., 2011; Nagano and Nagahama,
2012; Dekas et al., 2016; Xu et al., 2018). Therefore, detailed knowledge of deep-sea fungi is required
to understand better the overall fungal contribution to marine food webs and biogeochemical cycles
at the global scale (Manohar and Raghukumar, 2013; Barone et al., 2018; Drake and Ivarsson, 2018;
Grossart et al., 2019; Román et al., 2019; Hassett et al., 2020).

Fungal communities have been studied in only a small part of the great variety of habitats
that exist in deep waters. Some of these habitats include sediments of hydrothermal vents,
methane-cold seeps, oxygen-minimum zones, and associated with other macro-organisms
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(Nagahama et al., 2011; Zhang et al., 2016; Batista-García et al.,
2017). In addition, some studies have shown that the subseafloor
represents a vast ecosystem where micro-aerobic respiration
occurs and where microbial life subsist, even hundreds of meters
below the seafloor (D’Hondt, 2002; Roy et al., 2012; D’Hondt
et al., 2015; Ivarsson et al., 2016a; Nagano et al., 2016).

In recent years, there has been a growing interest in studying
fungal communities in deep-sea environments using culture-
dependent and, to an increasing extent, culture-independent
methods. Abundant fungal populations have been observed in a
variety of deep-sea locations such as asphalt seeps in São Paulo
Plateau (Nagano et al., 2017), methane seeps in the Kuroshima
Knoll (Takishita et al., 2006), hydrothermal vents in the Mid-
Atlantic Ridge (Le Calvez et al., 2009; Xu et al., 2017), sediments
of the Peru Trench (Edgcomb et al., 2011), the East Indian
Ocean (Zhang et al., 2014), the High Arctic (Zhang et al., 2015),
the Mariana Trench (Xu et al., 2016, 2018), the Yellow Sea (Li
et al., 2016), the Mediterranean Sea (Barone et al., 2018), the Yap
Trench (Li et al., 2019), and subsurface sediments in Suruga-Bay
(Nagano et al., 2016).

In general, Ascomycota and Basidiomycota are the most
abundant groups in deep-sea ecosystems, representing between
70–80% and 10–20% of the sequences, respectively. Some of the
most abundant filamentous fungal genera include Penicillium,
Aspergillus, Cladosporium, and Fusarium, while some of the most
abundant yeasts include Rhodotorula, Cryptococcus, Candida,
Rhodosporidium, and Metschnikowia (Li et al., 2016, 2019; Xu
et al., 2016, 2019; Zhang et al., 2016; Nagano et al., 2017; Barone
et al., 2018; Wang et al., 2019).

In deep waters, fungi must be adapted to the total absence
of light, low temperatures, and high hydrostatic pressure. Fungi
in the deep-sea sediments may survive on marine snow, which
consists of organic matter derived from photosynthesis that takes
place in the photic layer (Bochdansky et al., 2017). In addition
to performing aerobic respiration, fungi could be capable of
carrying out processes such as fermentation, sulfate reduction,
methanogenesis (D’Hondt, 2002; Lenhart et al., 2012), and
possibly lithoautotrophy (López-García et al., 2003; Nealson
et al., 2005; Ivarsson et al., 2016b). Transcriptomic analyses
also confirm fungi as active members of deep-sea sediments,
performing activities related to complex carbon and fatty acid
metabolism (Pachiadaki et al., 2016). These metabolic processes
may be more critical for fungi in deep waters since it has been
observed that as depth increases, fungal populations exhibit a
more multitrophic lifestyle (Li et al., 2019).

Considering the enormous area to be explored for fungal
diversity and function in deep-sea sediments, the existing studies
are minimal and often lack an adequate spatial and temporal
resolution (Grossart and Rojas-Jimenez, 2016; Grossart et al.,
2019; Morales et al., 2019). Therefore, there is still a large
number of geographical locations that have not yet been studied,
including the Eastern Tropical Pacific (ETP). The deep-sea waters
of the ETP constitute a particularly important ecosystem in
Costa Rica since they represent about 90% of the whole territory
(Cortés, 2016, 2019).

The Costa Rican ETP comprises a chain of mountains
and submarine volcanoes across the subduction zone of the

Cocos and Caribbean tectonic plates. Here, there is a high
diversity of microhabitats (Lizano, 2001; Protti et al., 2012; Rojas
and Alvarado, 2012) including methane seeps (Sahling et al.,
2008; Levin et al., 2012, 2015). Previous studies have shown
high endemism and diversity of macro- and microorganisms
in this region (Rusch et al., 2007; Cortés, 2008, 2019; Rojas-
Jiménez, 2018). Also, the Costa Rican ETP is part of a marine
corridor that extends through Isla del Coco to the Galapagos
Islands in Ecuador, which represents an essential site for the
conservation and regeneration of marine species throughout the
ETP (Cortés, 2012).

In this work, we have explored the diversity and composition
of fungal communities in deep-sea sediments of the Costa
Rican ETP. Two expeditions were carried out with transects
of approximately 1,500 km length each, and sediments were
sampled at 16 locations at depths between 380 m and 3,474 m.
We extracted DNA from subsamples of each sediment core,
sequenced the 18S rRNA gene, and performed a subsequent
bioinformatic analysis. This work confirms the high abundance
and diversity of fungi in sediments of the ETP region. We expect
that our results will support current efforts to conserve this region
by providing a baseline of the high diversity of fungal species and
microhabitats found in its deep-sea waters.

MATERIALS AND METHODS

We analyzed the fungal community composition in sediments
along a depth gradient in the ETP of Costa Rica, across
two transects of ca. 1,500 km length each (Figure 1). All

FIGURE 1 | The geographical location of sampling points in the Eastern
Tropical Pacific of Costa Rica. The points indicated with the letter A and yellow
line correspond to the route followed by the RV Atlantis and while letter F and
red lines correspond to the route of RV Falkor. The map was generated with
the ggmap package using a Google satellite image.
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samples were collected with the permission of the Ministry of
Environment and Energy of Costa Rica (SINAC-CUSBSE-PI-
R-032-2018; R-070-2018-OT-CONAGEBIO). The RV Atlantis
surveyed the Pacific continental margin of Costa Rica from
October 24th to November 5th, 2018, from the continental
slope to the offshore seamounts across a subduction zone.
In this region, several methane-rich seeps have been detected
(Sahling et al., 2008; Levin et al., 2012, 2015). All sediment
cores were collected by the human-occupied vehicle (HOV)Alvin
equipped with mechanical, maneuverable arms. We analyzed
eight sediment-cores from this expedition. The following year,
the RV Falkor surveyed the seamounts extending from the
mainland to the Isla del Coco National Park between January
6th and 21st, 2019. This region comprises several seamounts
and natural gas seeps and provides an important corridor for
highly specialized biological communities occupying the area.
The sediment cores were collected employing the remotely
operated vehicle (ROV) SuBastian, which is also equipped with
mechanical, maneuverable arms. We analyzed another eight
sediment cores from this expedition. The cores consist of an
acrylic sleeve (6.7 cm diameter by 25.4 cm long) with a PVC
cap and a rubber flap on the top to allow for water to escape
while inserting the core while sealing as the core is removed
from the sediment. The cores were kept in a “quiver” which is
a PVC sleeve with a stopper at the bottom. They are sealed to
the outside and are not contaminated by seawater on the way
to the surface. Because the cores traveled from a higher pressure
to a lower pressure, we rule out seawater intrusion. The transit
time of the ROV on the longest recovery (>3,200 m depth) was
approximately 2 h. Further details of the sampling sites, dates,
depth, temperature, salinity, dissolved oxygen (DO), and pH are
shown in Table 1.

We used the top 15 cm of the cores. Nearly one
gram of the upper (1–2 cm), middle (6–7 cm), and lower

(13–14 cm) parts of each core was deposited into a 1.5 ml
tube, stored at −20◦C on board the vessel and at −80◦C
in the laboratory. The sediment DNA was extracted with
a DNA isolation kit (PowerSoil R©, Qiagen, Carlsbad, CA,
United States) following the manufacturer’s instructions. From
some subsamples, unfortunately, it was not possible to obtain
enough DNA for subsequent analyzes, so in total, we retrieved
40 DNA samples (out of the 48 possible) from the 16 cores
sampled in both transects. The V7 and V8 regions of the 18S
rRNA gene were amplified with primers FF390/FR1 (Vainio
and Hantula, 2000), using the HotStarTaq Plus Master Mix Kit
(Qiagen, Carlsbad, CA, United States). The PCR conditions
consisted of 95◦C for 3 min initial denaturation followed by
35 cycles at 95◦C for 45 s, 53◦C for 1 min, 72◦C for 1 min,
and a final extension at 72◦C for 5 min. Multiple samples are
pooled together in equal proportions based on their molecular
weight and DNA concentrations. Pooled samples were purified
using calibrated Ampure XP beads. The pooled and purified PCR
product of nearly 350 bp were used to prepare illumina DNA
library. Sequencing was performed at MR DNA1 (Shallowater,
TX, United States) on a MiSeq sequencer with v3 2 × 250 nt
chemistry (Illumina, San Diego, CA, United States).

We used the DADA2 pipeline version 1.16 to process the
Illumina-sequenced paired-end fastq files and to generate a table
of ASVs, which are higher-resolution analogs of the traditional
OTUs (Callahan et al., 2016). Briefly, we removed primers and
adapters, inspected the quality profiles of the reads, filtered
and trimmed sequences with a quality score <30, estimated
error rates, modeled and corrected amplicon errors and inferred
the sequence variants. Then, we merged the forward and
reverse reads to obtain the full denoised sequences, removed
chimeras, and constructed the ASV table. To assign taxonomy

1www.mrdnalab.com

TABLE 1 | Sites of the Eastern Tropical Pacific of Costa Rica sampled in this study, with the respective values of the environmental variables measured.

Sample RV Site Date Depth (m) Temperature (◦C) Salinity (PSU) DO (mg/L) pH Data sources*

A1 Atlantis Mound 12** 24/10/18 996 5.06 34.57 1.10 7.62 1, 6

A2 Atlantis Quepos slide** 25/10/18 380 11.75 34.76 0.20 7.71 1, 7

A3 Atlantis Quepos plateau 26/10/18 2,200 2.06 34.60 3.73 8.06 2, 4, 6

A4 Atlantis Seamount 3 28/10/18 1,383 3.35 34.60 1.67 7.70 2, 4, 6

A5 Atlantis Mound 11** 3/11/18 1,024 4.83 34.57 1.24 7.67 6, 7

A6 Atlantis Jaco scar** 4/11/18 1,788 2.54 34.63 2.42 7.61 1, 6

A7 Atlantis Parrita seep** 5/11/18 1,410 3.41 34.60 2.21 7.71 6

A8 Atlantis Quepos plateau 26/10/18 1,873 3.50 34.61 3.11 8.06 1, 3

F1 Falkor The thumb** 10/1/19 1,072 4.54 34.58 1.22 7.69 4, 7

F2 Falkor Parrita scar 11/1/19 1,419 3.35 34.61 2.08 7.67 4, 5

F3 Falkor Rio bongo 13/1/19 659 14.41 34.93 1.50 7.60 4, 7

F4 Falkor Subduction seep 14/1/19 3,474 1.88 34.66 4.20 7.71 4, 5

F5 Falkor Seamount 5.5 15/1/19 1,540 3.00 34.62 2.64 7.70 4, 5

F6 Falkor Seamount 7 16/1/19 1,320 4.11 34.59 1.80 7.67 4, 5

F7 Falkor Coco Canyon 18/1/19 950 5.02 34.57 1.40 8.12 4, 5

F8 Falkor Mound Jaguar** 25/1/19 1,903 2.43 34.63 3.13 7.75 4, 5

*1, AUV Sentry sensors; 2, HOV Alvin sensors; 3, HOV Alvin niskin bottle; 4, ROV SuBastian sensors; 5, ROV SuBastian niskin bottle; 6, RV Atlantis CTD; 7, RV Falkor CTD.
**Seep areas.
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to the ASVs we used the function assignTaxonomy, which is an
implementation of a naive Bayesian classifier method using as
input the set of sequences to be classified and a training set of
reference sequences with known taxonomy, which in this case
was Silva SSURef NR 1322 (Quast et al., 2013). The assignments
were verified and further curated using the BLAST tool of NCBI
Genbank. All ASVs that appeared only once in the dataset were
discarded. The sequence data were deposited into the NCBI
Sequence Read Archive under BioProject PRJNA632873 and
BioSample accessions: SAMN14924417-SAMN149244563.

Statistical analyses and their visualization were performed
with the R statistical program (R-Core-Team, 2019) and the
RStudio interface. Package Vegan v2.5-6 (Oksanen et al., 2020)
was used to calculate alpha diversity estimators and, non-metric
multidimensional scaling analyses (NMDS). Data tables with
the ASV abundances were normalized into relative abundances
and then converted into a Bray–Curtis similarity matrix. To
determine if there were significant differences between the fungal
community composition according to factors such as depth or
transect, we used the non-parametric multivariate analysis of
variance (PERMANOVA) and pairwise PERMANOVA (adonis2
function with 999 permutations). For the network analysis, we
selected the 10 most abundant fungal ASVs, which corresponded
to 82% of the total number of fungal sequences. We considered
a valid co-occurrence event if the Spearman’s correlation
coefficient was >0.5 (Junker, 2008). The resulting correlation
matrix was converted into an undirected matrix. We used the
R package igraph v1.2.4.2 to generate the network based on the
Kamada–Kawai layout algorithm (Csardi and Nepusz, 2006).

The environmental data was collected from measurements
performed in the water column overlying the sediment cores
and for which various instruments and sensors were used
(Table 1). Temperature and salinity data were obtained from
the conductivity-temperature-depth (CTD) sensors on the HOV
Alvin (CTD SeaBird SBE49) and ROV SuBastian (CTD Seabird
FastCAT SBE49), which were also equipped with Niskin bottles
for water sampling. There was a DO optode on the ROV
SuBastian (Aanderaa 3841 O2 Optode) as well as the autonomous
underwater vehicle (AUV) Sentry which was deployed over some
of the sites during the 2018 Atlantis expedition. Niskin rosettes
with attached CTDs were also deployed from the Atlantis and
Falkor over the sites, and the Falkor CTD had a DO optode
as well. DO data were compiled from a combination of these
sources. DO data for the samples from the 2018 Alvin dives were
derived from either the Sentry data (if available from the site) or
calculated from a curve fitted from the closest CTD cast, typically,
from the same site. DO data for the 2019 SuBastian push core
samples was determined from SuBastian optode. The pH data
were exclusively from the water samples obtained by the rosette
deployed from the ship or the niskin bottles on the submersibles.
Water samples were brought to room temperature and the pHT
(total scale) was measured using an Orion 5 Star pH meter
and glass electrode (ROSS Ultra pH/ATC Triode 8107BNUMD,

2https://www.arb-silva.de/documentation/release-132/
3https://www.ncbi.nlm.nih.gov/bioproject/PRJNA632873

Hamilton, NJ, United States) in triplicate within 4 h of collection
(Dickson et al., 2007).

RESULTS AND DISCUSSION

We determined the presence of 787 fungal ASV in marine
sediments of the Eastern Tropical Pacific of Costa Rica,
obtained from 16 locations (40 subsamples) along a bathymetric
gradient from 380 to 3,474 m. Fungi represented 59.72% of
the 2,746,436 sequences obtained from the specific primers
used for the amplification of the V7-V8 region of the 18S
rRNA gene. Ascomycota was the most abundant phylum, which
represented 43% of all fungal sequences and 71% of the ASVs.
The second most abundant fungal group was Basidiomycota,
representing nearly 3% of the sequences but 22% of the ASVs.
Most of the ASVs within Basidiomycota were assigned to
the order Agaricales. Chytridiomycota represented the third
most abundant fungal group, with 3.5% of the sequences and
2.79% of the ASVs. Other less frequent fungal groups observed
in this ecosystem were, Blastocladiomycota, LKM11, LKM15,
Mucoromycota, and Zoopagomycota (Figure 2).

When analyzing the relative abundances at the class level, we
detected a total of 32 classes in the deep-sea sediments, where
Saccharomycetes was the most prominent in the majority of the
samples. In samples where Saccharomycetes was dominant, they
were typically accompanied by the presence of Chytridiomycetes.
There was a second group of samples with high abundances
of Eurotiomycetes, Dothideomycetes, and Agaricomycetes, but

FIGURE 2 | The relative abundance of fungal groups in deep-sea sediments
of the Eastern Tropical Pacific of Costa Rica concerning the number of
sequences and amplicon sequence variants (ASVs).
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FIGURE 3 | The relative abundance of fungi, at the taxonomic level of class, in deep-sea sediments of the eastern tropical Pacific of Costa Rica. The proportions
within sampling points of the core subsamples for each of the cruise transects are shown. The samples were ordered according to the depth gradient. Gray circles
indicate active methane seeps.

where Saccharomycetes were practically absent (Figure 3). This
observation was consistent with positive correlations within each
group. For example, the correlation calculated with the Spearman
method between Saccharomycetes and Chytridiomycetes was
0.80, which implies that they were present in almost all the same
samples and that they presented high values of their relative
abundances. On the other hand, it was also determined that the
correlations between the group dominated by Saccharomyces
and the other dominated by filamentous fungi were negative
(Supplementary Figure 1).

These results are consistent with those obtained, at the phylum
level, in deep-sea sediments from places such as the Western and
Central Pacific, the Mediterranean Sea or the São Paulo Plateau,
which show Ascomycota as the most abundant group, together
with the presence of Basidiomycota and Chytridiomycota in
lower proportions (Li et al., 2016, 2019; Xu et al., 2016, 2019;

Zhang et al., 2016; Nagano et al., 2017; Barone et al., 2018;
Wang et al., 2019). However, this is the first work that shows,
to our knowledge, the fungal class Saccharomycetes as the most
abundant, and also highly correlated with Chytridiomycetes, in
deep-sea sediments.

We also observed high variability in the fungal composition
within the horizons of some samples. In this sense, the
homogeneity or heterogeneity of the horizons could be related
to the specific conditions of the sampled site, which include
the geochemical characteristics of the region, the sedimentation
time, as well as the microbiological activity. A limitation
of this study is the lack of geochemical data on sediment
cores, since the data on the environmental variables of the
overlying water column are not sufficient to explain what is
happening in the vertical gradient of sediments. Some studies
have shown large variations in physicochemical conditions in
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the profile of deep-sea sediments (Roy et al., 2012; D’Hondt
et al., 2015; Román et al., 2019). Therefore, it will be
necessary to continue exploring in more detail the variations
in fungal communities that occur along the vertical gradient of
sediment profiles.

The samples of the deep-sea environment studied,
characterized by high hydrostatic pressure, low temperatures,
and the absence of light, presented an average richness of 75
fungal ASVs per sample (range 13–147), while the average value
of the Shannon index was 1.77 (range 0.84–2.68). As with the
community analyses, there were no significant differences in
the alpha diversity estimations between depths and expeditions
(Kruskal–Wallis, p > 0.05). The average value of the Pielou’s
evenness was 0.42 (range 0.21–0.71), indicating a certain
uniformity in the abundances of most of the observed ASVs
(Supplementary Figure 2).

The genus Metschnikowia was the most abundant within the
class Saccharomycetes and also the most abundant in the majority
of the sediments analyzed. The genus Metschnikowia comprises
single-celled budding yeasts known for its participation in
fermentation processes and wine production, reported mainly
in terrestrial environments (Kang et al., 2017; Wang et al.,
2017; Pawlikowska et al., 2019). There are few references to the
presence of this genus in deep waters, although its presence had
been previously reported in subtropical Chinese seas, including
the southern and northern Yellow Sea and the Bohai Sea (Li
et al., 2016), but with lower abundances than those reported in
this study. Also, we showed that this fungal genus was present
in a wide depth gradient, from 380 to 3,474 m, indicating
that it can be highly tolerant to gradients in temperature,
DO, food supply, and the hydrostatic pressure associated with
this change in depth. However, in six of the studied sediment
cores Metschnikowia was almost absent, pointing more to
microhabitat variability.

The most abundant genus within Chytridiomycetes was
Rhizophidium which can function as parasite and decomposer
(Letcher et al., 2006; Kagami et al., 2007; Frenken et al.,
2017), while the most abundant genera of Eurotiomycetes
and Dothideomycetes were Aspergillus and Cladosporium,
respectively. Previous studies have shown that Aspergillus and
Penicillium are common inhabitants of deep-sea sediments;
likewise, the presence of yeasts in this ecosystem has been
frequently detected, but mainly related to genera such as
Pichia, Cryptococcus, Malassezia, and Rhodotorula (Takishita
et al., 2006; Zhang et al., 2015; Nagano et al., 2016, 2017;
Grossart et al., 2019). Within Agaricomycetes, the most
abundant ASV had a percentage of identity of 98.73% with
Armillaria, a saprophytic genus of wood that was particularly
abundant in Coco Canyon (F7) at a depth of 950 m, which
is also the site furthest from the coast. With the available
information it is difficult to determine if this fungus, which
is known to occur in terrestrial ecosystems, is active in
these sediments.

Statistical analyzes, at the ASV level, did not show
significant differences (PERMANOVA, p > 0.05) in the
structure of fungal communities by depth, expeditions or
between filtration/non-filtration areas. Neither according

to variables of the overlying water columns of sediments
such as pH, salinity and DO (Supplementary Table 1 and
Supplementary Figure 3). For example, we showed that
depth (and, consequently, hydrostatic pressure) does not
have an apparent effect on the composition of communities,
given the wide distribution range of species. In addition, the
temperature, salinity, DO and pH values of the water column
overlying the habitats of the two fungal clusters identified were
similar (Table 2). Therefore, it seems that the conditions of
the deep waters are not limiting for the growth of the fungi
and that other factors, likely more related to the geochemistry
of the sediments, can be influencing the composition of
the communities.

As an empirical observation note, samples that contained
a higher proportion of mud were the ones that exhibited

TABLE 2 | Depth, temperature, salinity, dissolved oxygen, and pH values of the
water column overlying the habitats of the fungal clusters identified.

Variable Cluster 1
(yeast

dominated)

Cluster 2
(filamentous

forms)

Depth (m) 380–1,788 659–3,474

Temperature (◦C) 1.88–14.41 2.54–11.75

Salinity (PSU) 34.57–34.93 34.59–34.76

Dissolved oxygen (mg/L) 1.10–4.20 0.2–2.64

pH 7.60–8.06 7.61–7.70

FIGURE 4 | Network analysis highlighting the relationships between the most
abundant fungal classes. The analysis is based on the 10 most abundant
eukaryotic ASVs, which corresponded to 82% of the total number of fungal
sequences. Only positive connections are shown. Colors of the nodes
represent the taxonomic affiliation of the ASVs, while the size is proportional to
their relative abundance. The width of the edges is proportional to the
correlation value. The network was generated and visualized with package
igraph. The taxonomic classification of the ASVs at the genus level is shown
as follows: ASV1, Metschnikowia; ASV3, Rhizophydium; ASV4, Cladosporium;
ASV6, Aspergillus; ASV8, Aspergillus; ASV9, Aspergillus; ASV11, Exophiala;
ASV12, Neophaeosphaeria; ASV17, Pseudocamarosporium; ASV23,
Armillaria.
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a higher abundance of Saccharomycetes. In contrast, sandy
samples showed higher abundances of Eurotiomycetes and
Dothideomycetes, which are filamentous fungi. This observation
suggests a possible relationship between fungal morphology
and its ability to colonize substrates of different textures.
For example, yeasts may directly depend on the type and
concentrations of organic matter found in the habitat, but
could also perform fermentation processes in muddy sediments
(Takishita et al., 2006; Kutty and Philip, 2008; Zhang et al., 2015;
Taube et al., 2018).

We used network analysis to further explore possible
relationships between the fungal groups that coexist in deep
marine sediments of Costa Rica (Figure 4). This technique
allowed us to visualize positive associations between the most
abundant ASVs (representing 82% of the total sequences). We
report a single co-occurrence and positive correlation between
Metschnikowia and Rhizophydium. The association between
these two taxa occurred regardless of the depth, location or
conditions of the overlying water column. We have not found
previous reports of the strong association between these two
genera. We also report another group of co-occurring taxa
that includes Cladosporium (Dothideomycetes), Aspergillus and
Exophiala (Eurotiomycetes), and Armillaria (Agaricomycetes).
The co-occurrence and high abundance of Cladosporium and
Aspergillus is relatively common in deep-sea sediments (Li
et al., 2019; Wang et al., 2019; Xu et al., 2019). However,
with the available information it is difficult to determine
whether the positive co-occurrence can be coincidental or
can indicate a true positive interaction. Based on the results
of the network analysis, as a hypothesis generating tool, we
hypothesized that the fungi in both clusters can be carrying
out mainly heterotrophic activities, but probably in sediments
with different physicochemical conditions. The nature of the
interactions within clusters should be further explored. Finally,
we highlight the high prevalence of fungi in deep-sea sediments
of the ETP of Costa Rica. To our knowledge, this is the
first work showing a high abundance of Metschnikowia in
deep-sea ecosystems. The high abundance of this type of
yeasts should be further studied using cultivation-dependent
methods to provide better insights into the physiology, genomic
makeup, and their contributions to global biogeochemical
processes. Since it was difficult to distinguish the association
of specific environmental variables with variations in the
composition of fungal communities, particularly in the two
clusters identified, further research will be necessary to determine
how fungal communities in deep-sea waters are structured
as well as to determine their ecological role in the largest
biome on the planet.
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