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Metagenomics-based high-throughput sequencing (HTS) enables comprehensive
detection of all species comprised in a sample with a single assay and is becoming
a standard method for outbreak investigation. However, unlike real-time PCR or
serological assays, HTS datasets generated for pathogen detection do not easily
provide yes/no answers. Rather, results of the taxonomic read assignment need to
be assessed by trained personnel to gain information thereof. Proficiency tests are
important instruments of validation, harmonization, and standardization. Within the
European Union funded project COMPARE [COllaborative Management Platform for
detection and Analyses of (Re-) emerging and foodborne outbreaks in Europe], we
conducted a proficiency test to scrutinize the ability to assess diagnostic metagenomics
data. An artificial dataset resembling shotgun sequencing of RNA from a sample of
contaminated trout was provided to 12 participants with the request to provide a table
with per-read taxonomic assignments at species level and a report with a summary
and assessment of their findings, considering different categories like pathogen,
background, or contaminations. Analysis of the read assignment tables showed
that the software used reliably classified the reads taxonomically overall. However,
usage of incomplete reference databases or inappropriate data pre-processing
caused difficulties. From the combination of the participants’ reports with their read
assignments, we conclude that, although most species were detected, a number of
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important taxa were not or not correctly categorized. This implies that knowledge of and
awareness for potentially dangerous species and contaminations need to be improved,
hence, capacity building for the interpretation of diagnostic metagenomics datasets
is necessary.

Keywords: background contamination, diagnostic assessment, high-throughput sequencing, metagenomics,
pathogen, proficiency test, training

INTRODUCTION

Approaches for the investigation of food-borne outbreaks
regarding pathogen characterization, source attribution and risk
assessment need to be precise, fast and independent from slow
and biased cultivation techniques. Metagenomics-based high-
throughput sequencing (HTS) is becoming a standard method
for outbreak investigations of non-culturable, difficult-to-culture
or slow-growing microorganisms (Koutsoumanis et al., 2019)
yet protocols and analysis pipelines need to be standardized
for routine use. In addition, training in result assessment and
interpretation is needed for unexperienced users to be applicable
as gold standard.

Problems with the analysis and the diagnostic assessment
of HTS datasets may occur in several sample processing steps
including sequencing, and during bioinformatics analysis. Beside
the contamination of a sample during sampling and sample
processing, microbial DNA can be introduced within the reagents
during the preparation of sequencing libraries (Salter et al.,
2014). Therefore, the specific reagent background should be
known in ideal circumstances (Kirstahler et al., 2018; Wylezich
et al., 2018) and at the very least, should be taken into
consideration when assessing the taxa found in metagenomics
datasets. Cross-contamination of multiplexed libraries is possible
due to adapter swapping (Sinha et al., 2017) or carry-over
between runs (Illumina, 2013; Höper et al., 2016). Furthermore,
the interpreter of data should be aware of possible false-positives
detected due to contaminated genomes and insufficiently curated
databases (e.g., Kirstahler et al., 2018). All these points are very
important when interpreting metagenomic datasets in search
for possible pathogens that may be less abundant in terms of
sequencing reads.

Some ring trials and proficiency tests have previously
been conducted to push forward the standardization of HTS
approaches and their implementation into clinical diagnostic
routine and diagnosis reporting systems. Metagenomics-based
proficiency tests for pathogen detection have often been focused
on virus detection (Brinkmann et al., 2019; Junier et al.,
2019; Zamperin et al., 2019). These studies highlighted that
recognition of viruses that exhibit high mutation rates can cause
some difficulties and might only be possible by inclusion of
protein-based alignment approaches (Brinkmann et al., 2019).
In addition, the undetected pathogen of relevance can also be
a bacterial or parasite pathogen, which could be comprised in
the sample but be masked by the sample background. Thus,
interpreters need to train their capability recognizing the different
categories of contaminations.

To some extent, the wet lab procedures for metagenomics-
based pathogen detection were already standardized within
the European Union funded COMPARE-network.1 Within
this framework, a first metagenomics-based virus detection
proficiency test with separate parts addressing bioinformatics
only or sample processing combined with bioinformatics and
result assessment, respectively, was conducted (Brinkmann et al.,
2019). Due to the importance of foods in the transmission of
zoonotic agents, a second proficiency test for metagenomics-
based pathogen detection in food was organized in 2018 within
the COMPARE network. Again, this proficiency test consisted of
two independent parts addressing either the sample processing
(wet lab) or bioinformatics combined with result assessment
(dry lab). In the laboratory part (wet lab), the participants had
to generate a metagenomic sequence dataset from a piece of
smoked salmon that was spiked with a complex mock community
(bacteria, fungi, eukaryotic parasite, and virus). The wet lab
part was analyzed and is published separately in a companion
manuscript (Sala et al., Unpublished). In the present study, the
bioinformatics and assessment part (dry lab), the participants had
to analyze a synthetic dataset and assess their obtained result.
While here the analysis of the same dataset by all participants
ensured the comparability of the submitted results, in the wet
lab part, the comparison of the wet lab workflows was ensured
by the centralized sequence data analysis. Moreover, participants
were free to decide in which of the two independent parts
they participated.

Whereas in the first COMPARE virus proficiency test
(Brinkmann et al., 2019) the quality of the data analysis
software was in the focus, in the present proficiency test we
focused on the participants assessment of the results obtained
by the software. Hence, the purpose was (i) testing the
interpretation of results obtained from the software analysis by
the participants, i.e., the recognition of potentially dangerous
species and (ii) the awareness of artifacts occurring in the sample
processing and sequencing.

MATERIALS AND METHODS

Organization of the Dry Lab Proficiency
Test
Like the COMPARE virus proficiency test (Brinkmann
et al., 2019), the food metagenomics proficiency test dry
lab part was initiated within the COMPARE network, and

1https://www.compare-europe.eu/library/protocols-and-sops
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arranged by the network partner Friedrich-Loeffler-Institut
between April and June 2018. The participants of the dry
lab part of the food metagenomics proficiency test received
a synthetically generated complex metagenomics sequencing
dataset that they had to analyze and assess their obtained results
regarding potentially present pathogens, sequencing artifacts,
potential lab contaminations, and other information deemed
relevant for assessment.

Participants of the Dry Lab Part
Twelve participants applied for the COMPARE food
metagenomics dry lab proficiency test and completed the
survey. Participants were registered from Denmark (n = 1),
Germany (n = 3), Luxembourg (n = 1), Ireland (n = 1), Italy
(n = 1), Netherlands (n = 1), Singapore (n = 1), Spain (n = 1),
Sweden (n = 1), and United Kingdom (n = 1). The 12 participants
represented 12 different institutes or organizations. Information
about the participants’ background is given in Table 2.

Creating a Synthetic Metagenomics
Dataset
The synthetic metagenomics dataset was created using
ART_Illumina, Q Version 2.5.8 (Huang et al., 2012) and a
number of EST (expressed sequence tag) and coding sequence
data retrieved from the NCBI database (see Table 1). For
details of the dataset creation, please refer to Supplementary
Materials and Methods.

Requirements to Participants
In parallel with the dry lab synthetic dataset, an email (see email
1 in the Supplementary Materials and Methods) was sent to
all participants that included the necessary instructions for the
data and assessment preparation and delivery. The requirements
were later further specified (see email 2 in the Supplementary
Materials and Methods). Briefly, the participants were asked to
use their routine bioinformatics for taxonomic read classification
and to submit a table in which the taxonomic classification
for all reads was recorded in two columns (“Read accession”
and “Species”). Hereinafter, this table is called “read assignment
table.” Furthermore, they were asked to prepare a report as
Word file or pdf containing their summary and assessment of
the read classifications. They were asked to especially consider
potentially present pathogens, sequencing artifacts, possible
sequencing lab contaminations, and other facts they deemed
important. This document is called “summary and assessment
file” in the following.

The participants had about 50 days (25 April–15 June
2018) for conducting a bioinformatics analysis with the dataset
provided and for assessing the results from obtained data until
the delivery of their results.

Data Analyses
The submitted read assignment tables were analyzed using
R and RStudio (R v3.6.2, R Core Team, 2019; RStudio
v1.2.5033).2 For an assessment of the taxonomic classifications
reported in the participants’ read assignment tables, sensitivity,

2https://rstudio.com/

specificity, correct classification rate, positive predictive value,
and negative predictive value were calculated from the read-
to-taxon assignments. For further details of these calculations,
please see Supplementary Materials and Methods. For the final
rating of the participants’ assessments, the expected assessments
were defined as shown in Table 1. The submitted assessments
were rated in five different classes: (i) species detected and rated
by the participant as expected, (ii) species detected and rated
more serious than expected, (iii) species detected but assessed
less critical than expected, (iv) species detected but not assessed,
and (v) species not detected (according to the submitted read
assignment table).

Data Availability
The synthetic metagenomics dataset simulating a contaminated
trout was submitted to European Nucleotide Archive and is
accessible under the study accession number PRJEB37463. The
read-accessions in this file comprise the database identifiers
of the used reference sequence and the suffix “-fpt2018” with
a continuous numbering per input sequence, for instance
“lcl|NC_026023.1_cds_YP_009113336.1_1-fpt2018105”.

RESULTS AND DISCUSSION

The aim of the present proficiency test was in particular to
test the interpretation of results obtained from metagenomics
sequencing datasets based on the software analysis performed
by the participants. For this purpose, the detection of potentially
dangerous species was most important but also the awareness and
recognition of artifacts that may occur during the wet lab sample
processing and sequencing.

General Considerations of the Provided
Files
All participants except one (P10) uploaded the requested
read assignment table with the read to species assignments
output by their applied software pipeline, eight of which in
due time, and three with a delay. All participants sent in a
summary and assessment file of their obtained results (see
Supplementary Material).

The format requested for the preparation of the read
assignment tables (see above and in Supplementary Materials
and Methods) turned out to be not clear for all participants. Six
participants sent in incomplete tables, only reporting assignments
for a small fraction of reads (see Figure 1). Moreover, only five
participants sent in their read assignment tables in the requested
format. In the remaining cases, participants reported more details
with strain or isolate names or incomplete assignments only
to a level between superkingdom and genus. Especially the
users of Kraken did not report in the requested format but
used the Kraken format including the full taxonomic path up
to the most specific level reported. A similar observation was
recently made by the organizers of another ring trial, who stated
that the participants did not in all cases use official scientific
names. They emphasized the importance of using a standardized
set of species names based on NCBI taxonomy for reporting
(Junier et al., 2019).
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TABLE 1 | Composition of the simulated sequence dataset.

Species Super-Kingdom Category Rationale Number Reads

Bacteroides fragilis Bacteria Opportunistic pathogen Analogous to wet-lab proficiency test mock community 20,000

Burkholderia pseudomallei Bacteria Pathogen Burkholderiaceae also found in real smoked salmon
sample

8,000

Escherichia coli Bacteria Pathogen Analogous to wet-lab proficiency test mock community,
also found in real smoked salmon sample

80,000

Salmonella enterica Bacteria Pathogen Analogous to wet-lab proficiency test mock community 125,000

Fusobacterium nucleatum Bacteria Opportunistic pathogen Analogous to wet-lab proficiency test mock community 40,000

Lactobacillus acidophilus Bacteria Background Food additive 175,000

Lactobacillus delbrueckii Bacteria Background 25,000

Listeria monocytogenes Bacteria Pathogen Frequently found as food contamination 10,000

Mycobacterium colombiense Bacteria Opportunistic pathogen Mycobacteria with increasing impact as food spoilage 2,000

Pseudomonas libanensis Bacteria Background P. libanensis previously detected in food;
Pseudomonadaceae also found in real smoked salmon
sample

200

Anisakis berlandi Eukaryota Pathogen Analogous to Cryptosporidium parvum from wet-lab
proficiency test mock community

1,212

Anisakis brevispiculata Eukaryota Pathogen 246

Anisakis paggiae Eukaryota Pathogen 248

Anisakis pegreffii Eukaryota Pathogen 2,051

Anisakis physeteris Eukaryota Pathogen 262

Anisakis simplex Eukaryota Pathogen 6,044

Anisakis typica Eukaryota Pathogen 247

Aspergillus flavus Eukaryota Opportunistic pathogen Analogous to Saccharomyces cerevisiae from wet-lab
proficiency test mock community, toxin producer

5,000

Danio rerio Eukaryota Database misclassification 4,310

Brugia malayi Eukaryota 64

Caenorhabditis remanei Eukaryota 193

Scomber japonicus Eukaryota 181

Oncorhynchus mykiss Eukaryota Food O. mykiss EST data as host background 9,451,675

African swine fever virus (ASFV) Viruses Run contamination DNA virus; barcode mis-alignment/index swapping on
Illumina MiSeq

15

Norwalk virus Viruses Pathogen RNA virus; typical food contaminant 946

Escherichia virus phiX174 (phiX174) Viruses Run contamination Barcode mis-alignment/index swapping on Illumina
MiSeq

735

Aspergillus foetidus dsRNA
mycovirus (AfdsV)

Viruses Background Model for virus of the contaminant Aspergillus flavus 107

Sum 9,958,736

The summary and assessment files of four participants
(P2, P4, P5, and P10) only contained the requested summary
table without an assessment. The remaining eight participants
provided both the requested summary table and an assessment
of the reported results.

Insights From Analysis of the Read
Assignment Tables
Of the uploaded 11 read assignment tables, only five (from P1,
P3, P4, P8, and P11) contained an assignment for all reads
of the dataset; the remaining six contained assignments for
approximately 3–18% of the reads (Figure 1). The reasons not
to report assignments for the missing reads were (i) filtered low

quality (P2, P6, P7, and P9), (ii) filtered eukaryotic sequences (P2,
P5, P6, and P9), or (iii) no justification (P12). In two cases (P1
and P3; see Figure 1) the majority of the reads (approximately
95%) was reported “unclassified.” In one case (P1), this was partly
due to incomplete classification to higher-level taxonomic entities
only. Three participants (P4, P8, and P11; Figure 1) reported
classifications for the majority of the reads and only in these cases
the overall composition resembled the actual one (Figure 1).

The provided read assignments were used to calculate the
key characteristics of the classifications. Namely, specificity,
correct classification rate, and negative predictive values
(Supplementary Figures 1–3), as well as positive predictive value
(Figure 2) and sensitivity (Figure 3) were determined. While the
specificity, correct classification rate (except for host sequences),
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TABLE 2 | Participants, their background and applied data processing and important comments from their summaries.

Participants Participants’
sector

Data processing workflow Participants comments

P1 Food – Quality assessment w/FastQC (Wingett and Andrews, 2018)
– Quality trimming w/fastp (Chen et al., 2018)
– Taxonomic classification w/Kraken (custom database and

MiniKraken DB; Wood and Salzberg, 2014)
– Additionally pathoLive analysis for classification of viral reads

(Tausch et al., 2018)

– FastQC revealed bases of bad quality at the beginning of the
reads. Therefore the reads were trimmed

– kraken analysis with custom database resulted in many
false-positive results; therefore, results were confirmed with
BLASTn (Boratyn et al., 2012).

P2 Human – Quality assessment w/FastQC (Wingett and Andrews, 2018)
– Quality trimming w/Trimmomatic (Bolger et al., 2014)
– Taxonomic classification based on mapping and assembly

w/Pikavirus (in-house in-development tool at
https://github.com/BU-ISCIII/PikaVirus)

– Taxonomic classification based on mapping and assembly
w/oases (Schulz et al., 2012)

– Taxonomic classification based on rRNA clustering w/MeTRS
(Cottier et al., 2018)

– Taxonomic classification based on protein identity analysis
w/Kaiju (Menzel et al., 2016)

– trimming parameters: nucleotides at 3′ with phred quality <10
or average quality ≤15 (window size 4), removal of reads
shorter 50 bp

– trimming dropped 8137323 sequences (81.71%)
– unusual bad quality 5′ end was observed at the 25 firsts bases

P3 Human – Taxonomic classification w/Kraken (Wood and Salzberg, 2014)
as implemented on Galaxy public server

– Norovirus GV (murine norovirus, not a human pathogen) Unlikely
to be on food sample

– Hepatitis C virus (human pathogen, but route of transmission is
via blood), highly unlikely to be found on food sample, and
contamination with human blood?

P4 Food – Quality assessment w/FastQC (Wingett and Andrews, 2018)
– Quality/Adapter trimming w/BBduk v. 36.49

(https://sourceforge.net/projects/bbmap/)
– Taxonomic classification w/MGmapper (Petersen et al., 2017)

– mapped against a phiX174 reference sequence to remove
potential control library reads

– Certain contaminations can be difficult to identify without control
samples. For example, certain microorganisms may be part of
the natural microbiome of fish or could have been introduced
during sample handling and processing.

P5 Veterinary – Quality assessment w/FastQC (Wingett and Andrews, 2018)
– Quality/Adapter trimming w/Trimmomatic (Bolger et al., 2014)
– Host sequence removal w/BWA-MEM (Li, 2013)
– Taxonomic classification w/Kraken (MiniKraken database; ref.

Wood and Salzberg, 2014)

– Filtered for minimum read count (threshold 500 reads)
– species for which there were less than 1,000 reads would need

further confirmation before release of the information
– PhiX carry over from the sequencing lab

P6 Human – Quality assessment w/FastQC (Wingett and Andrews, 2018)
– Quality trimming w/Trimmomatic (Bolger et al., 2014)
– Host sequence removal w/BBmap (id threshold 0.65;

https://sourceforge.net/projects/bbmap/)
– Taxonomic classification w/Kraken (database version

13/10/2017; Wood and Salzberg, 2014)

– FastQC result: No adapters detected

P7 Human – Quality/Adapter trimming w/Trimmomatic (Bolger et al., 2014)
– Host sequence removal w/Bowtie2 (Langmead and Salzberg,

2012)
– Taxonomic classification w/MALT (Herbig et al., 2016),

DIAMOND (Buchfink et al., 2015), MEGAN (Huson et al., 2016),
custom database with refseq viruses, bacterial, fungi, and
protists

– Pathogen of importance is Norovirus GV
– Abundance of a cloning vector could be an artifact of

sequencing reagents and preparation

P8 Veterinary – Quality trimming w/RIEMS (Scheuch et al., 2015)
– Taxonomic classification w/RIEMS (Scheuch et al., 2015); ncbi

nt

– The Calicivirdae/Norwalk virus reads indicate the presence of
noroviruses in the sample. This is the most important
entero-pathogenic virus in the analyzed sample

P9 Food – Species-level classification w/Kraken (Wood and Salzberg,
2014)

– Multi-locus sequence types (MLSTs) reconstructed
w/MetaMLST (Zolfo et al., 2017)

– Strain-level identification w/PanPhlAn (Scholz et al., 2016)

None

P10 Food – Quality assessment w/FastQC (Wingett and Andrews, 2018)
– Quality trimming w/cutadapt (part of MGmapper processing;

(Martin, 2011)
– Taxonomic classification w/MGmapper (Petersen et al., 2017)

– no hits w/default settings, re-analysis w/adjusted parameters
(max mismatch ratio = 0.15, min read count = 20)

– sequence GC content measured by FastQC is reported as
failure

(Continued)
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TABLE 2 | Continued

Participants Participants’ sector Data processing workflow Participants comments

P11 Veterinary – Host sequences were removed by blasting (BLASTn) against a database
created from the Oncorhynchus mykiss isolate Swanson WGS data (NCBI acc.
MSJN00000000.1) using an E-value cutoff 1E-100

– Taxonomic classification w/carried out by blasting (BLASTn) the remaining reads
against an NCBI nt database using TimeLogic R© DeCypher R© server (Active Motif
Inc., Carlsbad, CA, United States) with an E-value cutoff of 1E-5. The
assignment of sequences to species were carried out by an in-house Python
script using the nucl_gb.accessions2taxid (accession to taxid) and names.dmp
(taxid to scientific names) files available from the resources at NCBI

– We included Murine norovirus in the
table despite it is not human pathogen

P12 Veterinary/Food – Quality assessment w/FastQC (Wingett and Andrews, 2018)
– Quality/Adapter trimming w/cutadapt (part of MGmapper processing) (Martin,

2011) Taxonomic classification w/MGmapper (Databases: Bacteria,
Bacteria_draft, Human Microbiome, Virus, Fungi, Protozoa,and
MetaHitAssembly) (Petersen et al., 2017)

None
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FIGURE 1 | Summary of the read assignments at the superkingdom-level for 11 participants that provided the requested read assignment table with the read to
species assignments (except P10). Only five read assignment tables (P1, P3, P4, P8, and P11) contained an assignment for all reads of the dataset. Only the
compositions reported by P4, P8, and P11 fit the known actual composition (actual; upper left) of the dataset.

and negative predictive value (except for host sequences) were
in all analyses high, the positive predictive value (Figure 2)
and especially the sensitivity (Figure 3) were in some cases

insufficient. Both the positive predictive value and the sensitivity
appear to be compromised by either the use of incomplete
databases for the taxonomic classification and/or by improper
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FIGURE 2 | Positive predictive values of read assignments calculated from the complete read set, calculated based on the species assignments. Sequences of the
taxa labeled gray (Brugia malayi, Caenorhabditis remanei, Danio rerio, and Scomber japonicus) were downloaded unintentionally as part of the Anisakis sequence
dataset.

pre-processing of the dataset (compare data analysis workflows
and comments in Table 2). In three cases (P2, P6, and P7),
pre-processing using software default or otherwise accepted
parameters appears to have removed reads by chance, because
the sensitivity is at the same low level for all detected species,
meaning that this was not a species-specific effect (see results
for participants P2, P6, and P7 in Figure 3). The high rate of
discarded reads could have prevailed the respective participants
to have a closer look at the reason for this phenomenon and
modify the software settings depending on the dataset quality.
The notion that this was not a species-specific effect is also
emphasized by the high specificity mentioned above and by the
unaltered sensitivity in case of calculation at the genus, instead
the species level (see Figure 3B). If it was a species-specific effect,
this should result in an improved sensitivity because then reads
that are classified to closely related species should improve the
result, as can indeed be seen by comparison of results obtained for
participants P8 and P11 (compare Figure 3B). This was possibly
the case with Pseudomonas libanensis in the results of participants
P3, P4, P7, and P9 (Figure 3B).

Despite the partly suboptimal results calculated from
the submitted complete classifications, Figure 4A clearly
demonstrates that in most cases the majority of the comprised
species were detected by the used software. A marked exception
were those species that were not deliberately included in the

dataset, namely Scomber japonicus, Brugia malayi, Danio rerio,
and Caenorhabditis remanei. These were only detected by three
participants (P4, P8, and P11) who used (nearly) complete
databases for the taxonomic classification. All other participants
reported to have used custom databases or the MiniKraken
database that also comprises only selected sequences (Wood and
Salzberg, 2014). This database effect is also highlighted by the
fact that at least seven and five participants, respectively, failed
to detect Anisakis simplex and Aspergillus flavus, two eukaryotic
taxa. This emphasizes the impact of the database used for
taxonomic classification to obtain a comprehensive classification.
This result is in contrast to the results of another proficiency
test (Junier et al., 2019), where the impact of the database was
negligible compared with the influence of the applied algorithms.

Insights From Evaluations of Participants’
Summary and Assessment Files
In the present proficiency test, the assessment of the results
turned out to be the most critical part. Overall, the quality of the
reports was varying. Although explicitly requested, the results of
the taxonomic binning were not in all cases assessed regarding the
requested categories (potentially present pathogens, sequencing
artifacts, possible sequencing lab contaminations, and other
important facts). Looking at the summary and assessment files,
there was no correlation between the overall quality of the
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FIGURE 3 | Sensitivity of read assignments calculated from the complete read set. (A) Sensitivities calculated based on the species assignments. (B) Sensitivities
calculated based on the genus assignments. Sequences of the taxa labeled gray (Brugia malayi, Caenorhabditis remanei, Danio rerio, and Scomber japonicus) were
downloaded unintentionally as part of the Anisakis sequence dataset.
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FIGURE 4 | Summary of the read-assignment tables (A), and assessment and interpretation of the assignments (B). Heatmap showing the positive (comprised
species detected; green) and negative (comprised species NOT detected; red) results of the software analyses. The results shown for participants are based on their
uploaded read assignment tables, except for P10, for which the results are derived from their summary table and assessment (A). Heatmap summarizing
assessments of the detected species by the participants (B). Sequences of the taxa labeled gray (Brugia malayi, Caenorhabditis remanei, Danio rerio, and Scomber
japonicus) were downloaded unintentionally as part of the Anisakis sequence dataset.

assessment and the background of the participant (compare
Table 2). Though most species were detected (Figure 4A), the
overall result was suboptimal (see summary in Figure 4B). For
this assessment, the participants’ assessments were compared
with the expected categorization of the respective species
(compare Table 1). The reasons for the observed deviations may
be diverse, located both at the technical level and at the individual
experiences of the personnel.

At the technical level, unsuitable parametrization of the
analysis may be a possible cause for missing important species
from the result the diagnostician gets for the assessment,
i.e., arbitrary thresholds for taking detected species into
consideration. For instance, thresholds set for read numbers
assigned to a single species can prevent detection, as was the

case with P5 (reporting a minimum read number of 500 for each
individual species) failing to recognize the African swine fever
virus (15 reads) and the Aspergillus foetidus dsRNA mycovirus
(107 reads). Moreover, minimum genome coverage of detected
species, or too stringent cut-offs for the identity of reads with
reference sequences may prevent species from appearing in the
table of the detected species. Another technical issue was the use
of incomplete databases for taxonomic binning (see above).

With regard to the individual experience of the personnel,
a number of different reasons could be considered. In two
cases (P3 and P11), the assessment of Norovirus was based on
the detected viral strain, which was closest to murine strains
and therefore assessed as “no human pathogen”. However,
indications of potential pathogens should always be followed

Frontiers in Microbiology | www.frontiersin.org 9 November 2020 | Volume 11 | Article 575377

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-575377 October 29, 2020 Time: 17:37 # 10

Höper et al. COMPARE Food Metagenomics Proficiency Test

up, because of the possibility of detecting a modified or novel
pathogen with only weak relationship with the closest known
relative in the database. In other cases, assessment of the software
output by personnel not trained for this task (e.g., assessment
by bioinformaticians instead of microbiologists, physicians, or
veterinarians), insufficient awareness of the impact of certain
species due to insufficient training, or maybe unsatisfactory
consideration due to time constraints may have caused the result.

CONCLUSION

The dry-lab part of this ring-trial showed that despite the
abovementioned shortcomings in some analyses (namely usage of
incomplete databases or unsuitable data pre-processing), overall
the used software appears to have matured over the last years to
allow for the correct identification of the majority of organisms
represented in a metagenomics dataset. However, for a truly
beneficial effect of diagnostic metagenomics for the detection of
potentially present pathogens, it is especially necessary to put
more effort into the training for the assessment and interpretation
of the results delivered by the different software pipelines for the
analysis of metagenomics data.

Two additional points should be stressed. First, in this
proficiency test dataset, we included African swine fever virus and
Escherichia virus phiX174 sequences as within run contaminants,
which only three and four participants, respectively, correctly
assessed. Noteworthy, the same effect frequently occurs in real
sequencing runs [Illumina, 2013 (between runs), Sinha et al.,
2017; Illumina, 2017 (within run)]. Therefore, knowledge of the
content of samples from the same and previous runs might be
necessary to take into account, information that was not available
for this proficiency test. Most importantly, however, awareness to
the problem needs to be raised. Second, the interaction between
the different sectors (human, veterinary, and food) and the
disciplines within these, e.g., virology, bacteriology, parasitology,
needs to be strengthened. This must necessarily include enhanced
awareness of the pathogens of importance for other sectors and
disciplines, including reporting to the respective colleagues in
case relevant pathogens are detected.
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