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The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) constrains 
production in major rice growing countries of Asia. Xoo injects transcription activator-like 
effectors (TALEs) that bind to and activate host “susceptibility” (S) genes that are important 
for disease. The bacterial blight resistance gene xa5, which reduces TALE activity generally, 
has been widely deployed. However, strains defeating xa5 have been reported in India 
and recently also in Thailand. We completely sequenced and compared the genomes of 
one such strain from each country and examined the encoded TALEs. The two genomes 
are nearly identical, including the TALE genes, and belong to a previously identified, highly 
clonal lineage. Each strain harbors a TALE known to activate the major S gene SWEET11 
strongly enough to be effective even when diminished by xa5. The findings suggest 
international migration of the xa5-compatible pathotype and highlight the utility of whole 
genome sequencing and TALE analysis for understanding and responding to breakdown 
of resistance.

Keywords: bacterial blight of rice, single molecule real-time sequencing, transcription activator-like effectors, 
susceptibility genes, SWEET genes

INTRODUCTION

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight of rice, a yield-reducing disease 
widespread in Asia and Africa (Nino-Liu et al., 2006). Xoo relies on type III secreted, transcription 
activator-like effectors (TALEs) that directly activate specific host genes, called “susceptibility” 
(S) genes, which contribute to disease development (Hutin et  al., 2015). A TALE finds its 
DNA target by virtue of a central repeat region (CRR) in the protein composed of nearly 
identical, direct repeats of 33–35 amino acid residues. Residues at the twelfth and thirteenth 
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positions in each repeat, together the “repeat-variable diresidue” 
(RVD), correspond to a single nucleotide in the effector binding 
element (EBE) in the DNA in a contiguous, code-like fashion 
such that the number and composition of RVDs predict the 
sequence of the EBE (Boch et al., 2009; Moscou and Bogdanove, 
2009). The first residue of each RVD plays a stabilizing role 
and the second is the base-specifying residue. Characterized 
Xoo strains harbor 9 to nearly 20 different TALE-encoding 
(tal) genes, of which only one or two may encode a major 
virulence factor (Yang and White, 2004; Bogdanove et al., 2011; 
Hutin et  al., 2015). All strains examined to date activate one 
of three members of clade III of the SWEET sucrose transporter 
gene family in rice (SWEET11, SWEET13, and SWEET14). 
These genes are major S genes and targeted by diverse TALEs 
from different strains (Hutin et  al., 2015). In an experimental 
context, each of the other two members of SWEET clade III 
(SWEET12 and SWEET15), and no other SWEET genes tested, 
also functioned as a major S gene (Antony et al., 2010; Streubel 
et  al., 2013). SWEET activation apparently leads to sucrose 
export into the xylem vessels, facilitating Xoo proliferation and 
symptom development by an as yet uncharacterized mechanism.

Host resistance is the most effective means of controlling 
rice bacterial blight. To date, 46 bacterial blight resistance 
genes, called Xa (or xa) genes, have been identified from 
cultivated and wild rice species (Chen et al., 2020; Kumar 
et al., 2020; Neelam et al., 2020). The functions of most of 
the dozen or so Xa and xa genes that have been cloned and 
characterized relate to TALEs. A few are dominant, so-called 
executor resistance genes that function when transcriptionally 
activated by a TALE. Several are recessive, and all but one of 
these are alleles of a SWEET gene with a mutation at the 
EBE that prevents binding and activation by the cognate TALE, 
conferring resistance through reduced susceptibility. For example, 
xa13 is a variant of SWEET11 that lacks the EBE for TALE 
PthXo1 in its promoter and thereby confers resistance to strains 
that depend on PthXo1, such as the Philippines strain PXO99A 
(Yang and White, 2004; Chu et al., 2006). A strain can overcome 
xa13 if it expresses a TALE (such as PthXo2, PthXo3, AvrXa7, 
or TalC) that activates an alternate clade III SWEET gene 
(Zhou et  al., 2015). The recessive bacterial blight resistance 
gene that is not a SWEET allele, xa5, acts more broadly. It 
is an allele of the general transcription factor subunit gene 
TFIIAγ5. The protein encoded by the dominant allele is an 
apparent contact point between TALEs and the transcriptional 
machinery. The product of xa5 harbors a single amino acid 
substitution that interferes with its interaction with TALEs 
and thereby reduces the ability of TALEs to activate their 
targets (Iyer-Pascuzzi et  al., 2008; Huang et  al., 2016). Notably, 
xa5 is overcome by strains, like PXO99A, that carry PthXo1 
(Huang et al., 2016). This “compatibility” was revealed to be due 
to the unusually strong activation of SWEET11 by PthXo1, 
which even diminished in the xa5 background is high enough 
to render the plant susceptible: strains with SWEET gene 
activators such as PthXo2, PthXo3, or AvrXa7, which activate 
their targets less strongly than PthXo1 activates SWEET11 
(Yang and White, 2004), are not able to cause disease in the 
xa5 homozygous rice variety IRBB5. Furthermore, while those 

weaker SWEET gene activators expressed from a plasmid do 
not restore a pthXo1 mutant of PXO99A to compatibility on 
IRBB5 plants, pthXo1 does render those xa5-incompatible 
strains compatible on IRBB5 plants (Huang et  al., 2016).

The xa5 gene has been widely deployed, both singly and in 
combination with other Xa genes (Jeung et  al., 2006; Shanti 
et  al., 2010; Khan et  al., 2014). When deployed singly, like other 
Xa genes xa5 has tended to break down over time (Khan et  al., 
2014). For example, in India, which is the second largest producer 
of rice behind China and has a highly diverse Xoo population 
(Midha et  al., 2017), xa5-compatible Xoo isolates can be  found 
throughout the country (Mishra et  al., 2013; Yugander et  al., 
2017). In contrast, in Thailand, another major rice producer, xa5 
has largely remained effective (Wonglom et al., 2015); only recently 
have xa5-breaking Thai strains been isolated and they are not 
yet widespread (Wonglom et al., 2015). We chose an xa5-compatible 
strain from India, IX-280, isolated in Andhra Pradesh (Yugander 
et al., 2017) and one from Thailand, SK2-3, isolated in Sukhothai 
Province (Wonglom et  al., 2015; Supplementary Figure S1) for 
genome sequencing to gain insights into their ability to overcome 
the resistance gene. We report here a comparison of the genomes 
of these two strains, with a focus on their TALE content. The 
results reveal surprising, near perfect identity of the two genomes, 
suggesting international migration, and a TALE repertoire that 
explains compatibility with xa5.

MATERIALS AND METHODS

The authors state that the experimental work with Xanthomonas 
oryzae was conducted in accordance with pertinent 
regulatory policies.

Genomic DNA Extraction and Sequencing
DNA for complete-genome sequencing was isolated using the 
protocol described by Booher et  al. (2015) with the following 
two modifications: after overnight culture and centrifugation, 
extracellular polysaccharide was removed by washing the bacterial 
pellet 7–8 times with NE buffer (0.15  M NaCl and 50  mM 
EDTA), and after cell lysis, DNA was extracted four times 
with phenol/chloroform and once with chloroform/isoamyl 
alcohol. For each strain, 4–7  μg of genomic DNA was used 
to prepare a 20  kb library and each library was sequenced 
by SMRT technology to >150X genome coverage using P6-C4 
chemistry (Pacific Biosciences, Menlo Park, CA, USA), as 
described (Booher et  al., 2015).

Genome Sequence Assembly
De novo assembly of the sequence reads was performed using 
HGAP v.2.0 (HGAP2) and HGAP v. 3.0 (HGAP3) (Chin et al., 
2013) as described (Booher et  al., 2015). Since TALE encoding 
(tal) genes are often clustered and their repetitive sequences 
can lead to misassembly even using long-read technology, tal 
gene-containing regions were separately assembled using the 
PBX toolkit, a pipeline that uses long, tal gene sequence-
containing seed reads to assemble tal clusters with more accuracy 
(Booher et  al., 2015). Length cut-off settings used for these 
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seed reads were 16 kb (pbx16000), 12 kb (pbx12000), or 10 kb 
(pbx10000). After HGAP and PBX assemblies were completed, 
the HGAP assemblies with the fewest unitigs and the majority 
of the tal gene sequences found by PBX were chosen for 
manual closure and finishing.

Genome Finishing, Assembly Verification, 
and Annotation
To finish the genomes, the circular assemblies were polished 
twice more with Quiver and then checked for structural variants 
and misassemblies using PBHoney (English et  al., 2014). The 
tal gene repertoires were verified by consensus with the local 
tal assemblies made with PBX and by Southern blots of genomic 
DNA digested with either BamHI or SphI, or with BamHI 
and EcoRI, and probed with the tal gene specific probe 
pZWavrXa7 (Yang and White, 2004). To confirm the absence 
of plasmids smaller than 20  kb that could have been excluded 
during library preparation, total DNA was prepared and examined 
by agarose gel electrophoresis as described, using Xanthomonas 
campestris pv. vesicatoria 85-10, which has four plasmids, as 
a positive control (Booher et  al., 2015). After finishing and 
assembly verification, genomes were annotated using the NCBI 
Prokaryotic Genome Annotation Pipeline (Tatusova et al., 2016), 
and tal gene annotations were manually corrected.

Genomic Comparisons
For structural comparison, complete genomes were aligned 
using progressiveMauve (Darling et al., 2010) in the MegAlign 
Pro module of the DNAStar Suite (Lasergene 13.0.0.357) with 
default settings. For phylogenetic analysis, complete and draft 
genomes were aligned using Mauve v2.3.1 (Darling et  al., 
2004), and core alignment was used to infer phylogeny using 
PhyML v3.1 (Guindon et  al., 2010). The core alignment and 
maximum likelihood tree were further subjected to 
ClonalFrameML (Didelot and Wilson, 2015) analysis with 
100 bootstrap replicates to refine the phylogeny considering 
the impact of recombination. The ClonalFrameML tree was 
visualized using iTOL v3 (Letunic and Bork, 2016).

TALE Analysis
All tal gene sequences were extracted using the PBX exporter 
(Booher et al., 2015) or AnnoTALE (Grau et al., 2016). Orthology 
of IX-280 and SK2-3 TALEs to previously sequenced TALEs 
was determined using FuncTAL (Perez-Quintero et  al., 2015) 
and AnnoTALE (Grau et al., 2016). RVD or amino acid sequence 
was used as input for FuncTAL and DNA sequence for 
AnnoTALE. AnnoTALE class builder files used to assign TALEs 
to families were downloaded on July 1, 2017. The results from 
the two tools were consistent.

Bacterial and Plant Growth Conditions and 
Disease and Gene Expression Assays
Plants were grown in a growth chamber maintained at 28°C and 
85% relative humidity with a photoperiod of 12  h. Xanthomonas 
strains were cultured at 28°C on modified Wakimoto agar or 

glucose yeast extract medium. For the disease assay, bacterial 
cells were resuspended in sterile water at an OD600 of 0.5 and 
clip-inoculated (Kauffman, 1973) to fully expanded leaves of 
40–45-day-old plants. Lesions were measured 14  days later. For 
gene expression assays, bacterial suspensions at an OD600 of 0.2 
were infiltrated into leaves of 3-week-old plants using a needleless 
syringe. Water was used for mock inoculation as a control. The 
inoculated portions of leaves were harvested 24  h later, and total 
RNA was extracted using the PureLink™ RNA Mini kit (Invitrogen, 
Carlsbad, California, USA) following the manufacturer’s instructions. 
RNA was further treated with DNase (Invitrogen) to remove 
genomic DNA contamination. Quality and quantity of RNA were 
analyzed by 1.0% agarose gel electrophoresis and spectrophotometry 
using a Nanodrop (Thermo Scientific, Waltham, Massachusetts, 
USA). cDNA was generated from 1  μg purified RNA using the 
Superscript™ Vilo™ cDNA synthesis kit (Invitrogen) with random 
primers. Quantitative real-time PCR (qPCR) was performed on 
a Light cycler® 480 Instrument II (Roche Molecular Diagnostics, 
Santa Barbara, California, USA). About 250  ng of cDNA was 
used for each qPCR reaction with gene specific primers 
(Supplementary Table S1). Each gene was tested with three 
biological replicates, with three technical replicates each. The 
average threshold cycle (Ct) was used to determine the fold change 
of gene expression. The expression of each gene was normalized 
to the expression of the 18S rRNA gene. The 2-ΔΔCt method was 
used for relative quantification (Livak and Schmittgen, 2001).

RESULTS

Assembly of the Complete IX-280 and 
SK2-3 Genomes
Single molecule real-time (SMRT) DNA sequence data for 
IX-280 assembled using either HGAP2 or HGAP3 (see Methods) 
resulted into two contigs, corresponding to a chromosome and 
43  kb plasmid. We  named the plasmid pXOO43. The HGAP2 
assembly, though it yielded an intact, self-complementary 
chromosomal contig, collapsed one cluster of four tal genes 
into three, indicated by a coverage spike in that cluster. A 
comparison of the ends of the misassembled cluster to pbx12000 
and pbx16000 assemblies generated using the PBX toolkit (Booher 
et al., 2015) showed overlap with several that included an intact 
cluster of four tal genes. We chose a pbx16000 contig assembled 
using settings of 3,000  kb read overlap and 97% read identity 
to replace the misassembled cluster in the HGAP2 assembly. 
We  also verified the presence of the cluster of four tal genes 
in the raw sequence of IX-280. To further confirm our final 
assembly, we  obtained additional long reads from a separate 
DNA preparation of the same isolate and reassembled with 
HGAP3 using all available reads; the resulting HGAP3 assembly 
was consistent with the manually corrected HGAP2 assembly.

HGAP2 and HGAP3 assemblies of SK2-3 yielded a single 
chromosomal contig, but each terminated at a partial cluster of 
four tal genes. The intact cluster was present in pbx10000 assemblies. 
We  selected a contig assembled using settings of 3,000  kb read 
overlap and 97% read identity to replace the broken cluster in 
the HGAP2 assembly and manually closed the genome.
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The quality-control tool PBHoney (English et  al., 2014) 
indicated no major inversions, deletions, or duplications in 
the assemblies. The proportion of mapped reads to post-filtered 
reads was 94.9% for IX-280 and 92% for SK2-3. Coverage 
graphs for the final assemblies showed no unusual peaks or 
dips that might indicate collapsed or expanded genomic repeats. 
PBX results were consistent with tal gene sequences extracted 
from the genomes, as were Southern blots hybridized with a 
tal gene-specific probe (Supplementary Figure S2). Separate 
DNA extraction and gel electrophoresis for both strains confirmed 
the absence of any small plasmids that might have been missed 
by SMRT sequencing (not shown).

Comparison of the IX-280 and SK2-3 
Genomes
The IX-280 plasmid pXOO43 has not been found in other 
Xanthomonas genomes, but some regions have a high degree 
of nucleotide identity with regions of pXAC64 from Xanthomonas 
citri ssp. citri (da Silva et  al., 2002). There are no predicted 
type III effector genes on the plasmid, but it harbors a cluster 
of genes annotated as type VI secretion genes. Associated with 
this cluster is an apparent operon containing pemK, encoding 
a toxin in a toxin/antitoxin system (Agarwal et  al., 2007), and 
a gene encoding a protein of the XF1863 family, hypothesized 
to function as its antitoxin (Makarova et  al., 2009). None of 
the pXOO43 content is found in the SK2-3 genome.

The IX-280 and SK2-3 chromosomes are entirely syntenous 
(Figure  1A and Supplementary Figure S3), including the tal 
genes, which show no duplications, deletions, or rearrangements 

in one genome relative to the other (Figure  1B). To determine 
how the genome structure of IX-280 and SK2-3 compares with 
that of other Xoo strains, we  aligned the genomes with those 
of select other strains representing three East Asian lineages 
and a more distant African lineage (Quibod et  al., 2016): 
Philippines strain PXO71 and Japanese strain MAFF311018 
representing lineage PX-A, Philippines strain PXO86 representing 
lineage PX-B, Philippines strain PXO99A representing lineage 
PX-C, and the African strain AXO1947. The alignment shows 
no relationship between geographic area of isolation and genome 
arrangement (Figure  1A). Like IX-280 and SK2-3, the genome 
structures of PXO71 (Philippines) and MAFF311018 (Japan) are 
similar to one another, despite the strains being from different 
countries. In contrast, PXO86, PXO71, and PXO99A, all from 
the Philippines, have undergone genomic rearrangements relative 
to one another. The genome structure of the African strain, 
AXO1947, is distinct from those of the other Xoo strains, showing 
some of the genomic variability encompassed by the species. 
Though there are areas of similarity, the genomic arrangement 
of IX-280 and SK2-3 is not shared by any of the other strains.

IX-280 and SK2-3 Belong to a Highly 
Clonal Lineage
The striking genomic similarity of IX-280 and SK2-3 despite 
their geographic separation led us to explore their relatedness 
with other Xoo strains more broadly. Using draft (short-read 
derived) genome sequences of 100 Indian Xoo strains previously 
subjected to phylogenetic analysis (Midha et  al., 2017) as well 
as several complete Asian Xoo genomes, we generated a phylogenetic 

A

B

FIGURE 1 | Synteny between IX-280 and SK2-3 genomes and comparison of their tal genes. (A) Progressive Mauve alignment of the chromosomes of IX-280 and 
SK2-3 and other representative Xoo strains. (B) Map of the tal genes in IX-280 and SK2-3. Black arrows represent full-length tal genes, gray arrows truncTALE 
genes, and white arrows tal pseudogenes. Solid lines connect tal genes with >99% nucleotide identity and identical RVD sequence, and dotted lines connect less 
similar but clearly orthologous genes.
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tree using regions not affected by recombination. The previous 
phylogenetic analysis of the 100 Indian strains had revealed five 
lineages (Midha et  al., 2017). Both IX-280 and SK2-3 map to 
the youngest and a highly clonal lineage, L-I (Figure  2). Of the 
strains examined, SK2-3 is the only non-Indian strain in this lineage.

The TALE Repertoires Are Nearly Identical 
and Include a PthXo1 Ortholog
The TALE repertoires of IX-280 and SK2-3 each consist of 
15 TALEs and two truncTALEs, which are TALE variants with 
shortened N- and C-termini that can function as suppressors 
of resistance mediated by certain non-executor resistance genes 
(Ji et  al., 2016; Read et  al., 2016); each strain also harbors a 
tal pseudogene (Figure  3). The RVD sequence of each IX-280 
TALE and truncTALE is identical to that of its counterpart 
in SK2-3, except for the truncTALE Tal2b, of which repeats 
10–15 are missing in SK2-3 (Supplementary Figure S4). Since 
truncTALEs do not bind DNA and a specific RVD sequence 
is not critical to their function (Read et al., 2016), this difference 
in Tal2b between the two strains is likely functionally irrelevant.

Tal1c of both strains is an ortholog of PthXo1 (Figure  3), 
which likely explains the ability of each strain to overcome xa5. 
PthXo1  in IX-280 and SK2-3 differs from PthXo1  in PXO99A 
at one RVD, but the base-specifying residue of that RVD is the 
same (Supplementary Figure S4). The strains harbor no other 
TALE predicted to target the promoter of any clade III SWEET 
gene. Notably, a nearly identical ortholog of PthXo7, the PXO99A 
TALE that induces TFIIAγ1, is also present in both strains (Tal7). 

Compatibility with xa5 had been postulated to be due to activation 
of the paralog TFIIAγ1 by PthXo7 (Sugio et  al., 2007), but it 
was recently shown that only TFIIAγ5, and not TFIIAγ1, interacts 
in planta with tested TALEs (Yuan et  al., 2016).

Based on the presence of the PthXo1 ortholog Tal1c, 
we  hypothesized that IX-280 induces SWEET11 sufficiently for 
virulence in IRBB5 plants. We compared expression of SWEET11 
in plants of the near-isogenic line IR24, which carries the 
dominant (non-functional with respect to resistance) allele, 
Xa5, and in IRBB5 plants, inoculated with IX-280, relative to 
mock inoculated plants, using quantitative RT-PCR of RNA 
harvested at 24  h. SWEET11 was induced 799 fold in IR24 
and 553 fold in IRBB5 (Figure  4). IX-280 and SK2-3 harbor 
an ortholog of the PXO99A TALE PthXo6, Tal3c, in addition 
to the PthXo7 ortholog, Tal7. PthXo6 induces the bZIP 
transcription factor gene TFX1. Thus, for reference, we  also 
examined expression of TFX1 and TFIIAγ1. Each of the 
transcription factor genes was moderately induced (20–35-fold) 
in IX-280-inoculated IR24 leaves relative to mock (Figure  4). 
This induction provides evidence that Tal7 and Tal3c are 
delivered and functional, and that the single RVD difference 
between PthXo7 and Tal7 does not impact targeting of TFIIAγ1. 
In IRBB5, TFX1 and TFIIAγ1 induction was reduced to just 
3–5-fold relative to mock (Figure 4). The results are consistent 
with the observation that the xa5 allele reduces generally the 
ability of TALEs to induce their targets (Yuan et  al., 2016) 
and suggest that, like PthXo1, Tal1c activates SWEET11 strongly 
enough to enable IX-280 and SK2-3 to overcome xa5.

FIGURE 2 | Positions of IX-280 and SK2-3 on a clonal lineage tree derived from genomic sequences of 100 Indian Xoo strains and other Xoo strains from Asia. 
Lineages are block shaded in different colors. IX-280 and SK2-3 (blue font) are in lineage L-I.
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DISCUSSION

In this study, we determined that an xa5 resistance-breaking strain 
of Xoo from India is nearly identical to one from Thailand. 
We  further determined that the strains harbor a TALE known 
to activate the major S gene SWEET11 strongly enough to 
be effective even when diminished by xa5. The genome comparisons 

we carried out (Figure 1A) and comparisons published elsewhere 
(Salzberg et  al., 2008; Quibod et  al., 2016) demonstrate the high 
level of variability in genome structure across different strains of 
Xoo and a general lack of relationship between genome structure 
and the geographical location at which a strain was isolated. Like 
other Xoo strains, both IX-280 and SK2-3 contain hundreds of 
IS elements and other transposons in their genomes (Table  1) 
that likely contribute to genome plasticity (Salzberg et  al., 2008; 
Booher et al., 2015). Despite the overall genome structure variability 
in the species and the geographic separation of IX-280 and SK2-3, 
strikingly these two strains are part of a young and highly clonal 
lineage prevalent in India, L-I (Midha et  al., 2017), in which no 
other characterized, non-Indian strains we  examined clustered. 
This observation and the relative rarity of xa5 compatibility in 
Thailand (Wonglom et  al., 2015) suggest introduction of SK2-3 
or a recent progenitor from lineage L-I to Thailand directly, or 
indirectly, from India. Since we cannot rule out L-I having originated 
outside of India, however, it is alternatively possible that members 
of the lineage were introduced separately to Thailand and to India.

The basis for the compatibility of IX-280 and SK2-3 with 
xa5 is almost certainly their PthXo1 ortholog, Tal1c. The single 
difference in RVD sequence between Tal1c and PthXo1 does 
not affect the base specifying residue (Supplementary Figure S3), 
so the two proteins can be  expected to function the same; and 
IX-280, like PXO99A, is able to strongly activate SWEET11 
even under the dampening effect of xa5 (Figure  4). Induction 
of TFX1 by Tal3c (the PthXo6 ortholog) and of TFIIAγ1 by 
Tal7 (ortholog of PthXo7), though reduced by xa5, may also 
contribute. PthXo6 is a demonstrated virulence factor and TFX1 
its verified S gene target (Sugio et al., 2007). And, studies suggest 

FIGURE 3 | RVD sequences of IX-280 and SK2-3 TALEs. RVDs in bold are different in PXO99A orthologs. A dagger indicates a truncTALE. The underlined RVD of 
Tal2a resides in a truncated (28 aa) repeat. Lower case italicized RVDs are untranslated following a frameshift. An asterisk indicates that the second amino acid in 
the RVD is absent, resulting in a 33 aa repeat.

FIGURE 4 | Induction of SWEET11, TFX1, and TFIIAγ1 by IX-280 in IR24 vs. 
IRBB5 plants. Shown is fold induction in IR24 (Xa5) and IRBB5 (xa5) at 
24–27 h after inoculation by syringe infiltration of IX-280 relative to mock 
(water)-inoculated leaves, measured by qRT-PCR. Each bar represents the 
mean of three replicates. Error bars represent standard deviation.
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that activation of TFIIAγ1 by PthXo7 contributes to susceptibility. 
Heterologous expression of PthXo7 in the xa5-incompatible strain 
PXO86 rendered the strain weakly virulent on IRBB5 plants 
(Sugio et  al., 2007), and silencing of TFIIAγ1 decreased 
susceptibility to PXO99A, even in an Xa5 background (Yuan 
et  al., 2016). We  observed that despite induction of TFIIAγ1 
by Tal7, activation of SWEET11, TFX1, and of TFIIAγ1 itself 
remain dampened in IRBB5 relative to IR24 (Figure  4). Thus, 
activation of TFIIAγ1 by Tal7 appears to contribute to susceptibility 
in some way other than providing a substitute for TFIIAγ5.

The clonality of IX-280 and SK2-3 indicates that immigration 
contributes to evolution of local Xoo populations. The discovery 
of a PthXo1 ortholog in these strains highlights the utility of 
complete genome sequence- and TALE analysis-based monitoring 
to understand breakdown of resistance genes. The results also 
highlight the need to continue to develop local varieties with 
different individual, or better, stacked resistance genes, for 
rapid deployment.
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