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As obligate biotrophic symbionts, arbuscular mycorrhizal fungi (AMF) live in association
with most land plants. Among them, Gigaspora margarita has been deeply investigated
because of its peculiar features, i.e., the presence of an intracellular microbiota with
endobacteria and viruses. The genome sequencing of this fungus revealed the presence
of some hybrid non-ribosomal peptide synthases-polyketide synthases (NRPS-PKS)
that have been rarely identified in AMF. The aim of this study is to describe the
architecture of these NRPS-PKS sequences and to understand whether they are
present in other fungal taxa related to G. margarita. A phylogenetic analysis shows
that the ketoacyl synthase (KS) domain of one G. margarita NRPS-PKS clusters with
prokaryotic sequences. Since horizontal gene transfer (HGT) has often been advocated
as a relevant evolutionary mechanism for the spread of secondary metabolite genes,
we hypothesized that a similar event could have interested the KS domain of the
PKS module. The bacterial endosymbiont of G. margarita, Candidatus Glomeribacter
gigasporarum (CaGg), was the first candidate as a donor, since it possesses a large
biosynthetic cluster involving an NRPS-PKS. However, bioinformatics analyses do not
confirm the hypothesis of a direct HGT from the endobacterium to the fungal host:
indeed, endobacterial and fungal sequences show a different evolution and potentially
different donors. Lastly, by amplifying a NRPS-PKS conserved fragment and mining the
sequenced AMF genomes, we demonstrate that, irrespective of the presence of CaGg,
G. margarita, and some other related Gigasporaceae possess such a sequence.

Keywords: polyketides evolution, arbuscular mycorrhizal fungi, endobacteria, Candidatus Glomeribacter
gigasporarum, Burkholderiaceae, NRPS-PKS, horizontal gene transfer
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INTRODUCTION

Fungi play crucial roles in the life on our planet: one of
their most important and investigated feature is the production
of secondary metabolites, which include polyketides, non-
ribosomal peptides, terpenes, and indole alkaloids (Keller
et al., 2005). Systematic studies on these products have led
to the finding of an impressive number of useful bioactive
molecules, like cyclosporins and statins, as well as potent poisons,
like mycotoxins (Gallo et al., 2013).

Polyketide synthases (PKS) are mostly responsible for the
production of polyketides. Their activity is finely regulated along
the fungal life cycle by physiochemical environmental conditions
as well as the competition with other microbes (Stroe et al.,
2020). The genome sequencing of fungi from the Fungal Tree
of Life1 has revealed that the genes encoding PKS are mostly
arranged as biosynthetic gene clusters (BGCs). The latter are
often associated with non-ribosomal peptide synthases (NRPS),
which are also involved in siderophore formation (Carroll and
Moore, 2018), leading to hybrid BGCs. These genomic regions
are frequently co-regulated depending on the ecological function
of their encoded product (Keller, 2019), meaning that their
expression is modulated by environmental conditions related to
a specific development stage of the fungus.

Non-ribosomal peptide synthases-polyketide synthases are
produced by filamentous fungi mostly belonging to Dikarya, both
to Pezizomycotina (Ascomycetes) and many Basidiomycetes. In
addition to Fungi, an atlas of NRPS-PKS biosynthetic pathways
enlarged the analysis to Bacteria and Archaea, examining a
total of 2,699 genomes (Wang et al., 2014). Ascomycetes were
confirmed to possess the highest number of BGCs among
Fungi, while Bacteria showed the highest frequency of NRPS
and PKS gene clusters when compared with Archaea or
Eukarya. A phylogenomic analysis of 100 fungal genomes
(Koczyk et al., 2015) showed that over 400 PKS originated
from a burst of duplications in early Pezizomycotina, and also
indicated potential horizontal transfers, pinpointing alternative
donor–recipient scenarios. By contrast, information on early
diverging fungi are more limited: a systematic review of publicly
available non-Dikarya fungal proteomes (Sista Kameshwar
and Qin, 2019) investigated the genome-wide annotations
of 56 fungi belonging to Glomeromycotina, Mucoromycotina,
Mortierellomycotina, Zoopagomycota, Blastocladiomycota,
Chytridiomycota, Neocallimastigomycota, Microsporidia,
and Cryptomycota from JGI-MycoCosm repository. This
bioinformatic analysis reveals that the capacity to produce
secondary metabolites is widespread also among the early
diverging fungi. The results obtained from this comparative
analysis show that arbuscular mycorrhizal fungi (AMF)
(Glomeromycotina, according to Spatafora et al., 2016) exhibit a
number of genes encoding for secondary metabolite biosynthesis,
transport and catabolism.

Arbuscular mycorrhizal fungi are obligate biotrophs which
associate with more than 72% of land plants (Brundrett and
Tedersoo, 2018). While plant responses to fungal colonization
have been deeply investigated, and many genetics and molecular

1https://mycocosm.jgi.doe.gov/programs/fungi/1000fungalgenomes.jsf

bases underlying the mechanisms that control the establishment
of the mycorrhizal symbiosis have been detected (Delaux et al.,
2015; Lanfranco et al., 2018; Genre et al., 2020), the biological
features of AMF have not been fully deciphered yet. The genome
sequencing of some fungal species (Chen et al., 2018; Kobayashi
et al., 2018; Morin et al., 2019; Sun et al., 2019; Venice et al.,
2020) demonstrated that they possess limited capacity to degrade
plant cell wall polymers, and they are auxotrophic for lipids
and thiamine, since they lack fatty acid synthase and thiamine
biosynthase. Indeed, as demonstrated in the AMF species
Rhizoglomus irregulare (sensu Sieverding et al., 2014) (formerly
classified as Rhizophagus irregularis), the treatment with a
medium supported with myristate strongly pushes the growth
and reproduction of these fungi so far described as unculturable
(Sugiura et al., 2019). However, the secondary metabolites of
Glomeromycotina have never been deeply investigated.

The AMF species Gigaspora margarita BEG34 has the largest
fungal genome sequenced and annotated so far (more than
700 MB) (Venice et al., 2020). G. margarita BEG34 hosts
a Burkholderia-related endobacterium (BRE) (Bonfante and
Desirò, 2017), Candidatus Glomeribacter gigasporarum (CaGg)
(Bianciotto et al., 2003), which contributes to shape some
of the genetic features of the fungal host. Since NRPS-PKS
sequences were found in the genome of G. margarita, here, we
describe the architecture of one of them, and reveal that at
least one of its domains is placed among prokaryotic sequences
by phylogenetic analyses. Since secondary metabolite genes are
often horizontally transferred (Koczyk et al., 2015), our first
hypothesis involved a direct horizontal gene transfer (HGT) of
the domain from the bacterial endosymbiont to G. margarita.
Indeed, CaGg possesses a large biosynthetic cluster involving
a NRPS-PKS. However, bioinformatic analyses did not confirm
the direct HGT from the endobacterium to the fungus. Lastly,
by amplifying a conserved fragment of the fungal NRPS-PKS
from several Gigasporaceae isolates and mining the sequenced
AMF genomes, we demonstrated that G. margarita and other
related taxa possess such a sequence, regardless of the presence
of the endobacterium. The results indicate that G. margarita
genome has a chimeric mosaic structure where specific genes may
have a bacterial signature, in addition and independent of the
endobacterial presence.

RESULTS

As a first step of the investigation, the genome of G. margarita
(Venice et al., 2020) was screened with the antiSMASH v.5
(Blin et al., 2019) and BIG-SCAPE (Navarro-Muñoz et al., 2020)
pipelines for the identification of the three main enzyme classes
that participate to the biosynthesis of secondary metabolites in
fungi, that is PKS, NRPS, and NRPS-PKS hybrids (Keller, 2019).
We found three Type 1 PKS (T1PKS) genes, nine NRPS-like
genes and six hybrid NRPS/PKS, five of which consist of isolated
genes. No similarities with known BGCs were observed for these
fungal sequences.

Gigaspora margarita PKS
Gigaspora margarita possesses three T1PKS (Figure 1A). All the
sequences have the same domain architecture. They all possess
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FIGURE 1 | Predicted biosynthetic genes for secondary metabolites in G. margarita, including T1PKS (A), NRPS/NRPS-like (B), and hybrid NRPS-PKS (C).
A genomic window is shown for each gene according to the antiSMASH v.5 output (Blin et al., 2019), including flanking genes and their annotations (Venice et al.,
2020). Core biosynthetic genes are connected by dashed lines, and a prediction of PFAM functional domains (shown in the legends) has been carried out with
BIG-SCAPE (Navarro-Muñoz et al., 2020). Based on the BIG-SCAPE pipeline, some biosynthetic genes (AF0453213.1, KAF0373356.1, KAF0441073.1,
KAF0441085.1, and KAF0480591.1) and their surroundings were clustered together due to >45% sequence similarity.

an Acyltransferase (AT) domain that incorporates the elongation
group (i.e., malonyl-CoA, as predicted by antiSMASH) to an
Acyl Carrier Protein (ACP). The ACP-bound group is then
condensed by the β-ketoacyl synthase (KS) domain into the
forming polyketide chain. The G. margarita sequences present
a Phosphopantenine (PP) swinging tail that transfers the ACP-
bound condensed product to the catalytic site, i.e., the C-terminal
Thioesterase (TE) domain, which releases the final product
and can influence its final structure (Newman et al., 2014).
The identification of a putative final product, which is based
on collinearity with highly characterized and publicly available
sequences (Blin et al., 2019), did not return any result. However,
due to the domain architecture, and to the absence of a domain
that operates β-keto reduction, G. margarita PKS could be
classified as Non-Reducing PKS (NR-PKS), which use an iterative
mechanism to produce true polyketides. Fatty acid derivatives,
which might be the alternative products, are instead produced
by Partially and Highly reducing PKS (Cox, 2007); based on
literature information, the starting substrate may be either a fatty
acid, acyl-CoA, or another PKS products (Ray and Moore, 2016).

Gigaspora margarita NRPS
The minimal composition of NRPS consists of an Adenylation
(A) domain, a condensation (C) domain and a thioesterase or
peptidyl carrier protein (T or PCP; Miller and Gulick, 2016).
Through binding with adenosine monophosphate (AMP), the A
domain selectively activates and incorporates amino acids into

a growing product, tapping into a pool composed by the 20
proteinogenic amino acids, and up to 500 non-proteinogenic
amino acids; the C domain is then responsible for the formation
of peptide bonds (Walsh et al., 2013). The T or PCP domains
release the final product, and possess a PP swinging tail that
works as in PKS (see above). Only one G. margarita NRPS
(KAF0480590.1) meets this canonical composition (Figure 1B).
By contrast, the other eight sequences should be considered
as NRPS-like, as they all lack a C domain. For example,
KAF0374315.1 possesses the A and PCP domains, lacks a C
domain, and is terminated by a reductase (NAD_binding_4). As
demonstrated in Trichoderma virens (Mukherjee et al., 2012),
the NAD_binding_4 domain converts a PCP-bound peptide to
its corresponding primary alcohol. This domain is also similar
to that of Arabidopsis thaliana MALE STERILITY 2 (MS2),
which reduces palmitoyl-CoA to C16:0 alcohol, influencing
exins development and determining pollen fertility (Wang
et al., 2018). Almost all the other G. margarita NRPS-like
contain the NAD_binding_4 domain, preceded by either A and
PP (KAF0453213.1, KAF0407949.1, and KAF0373357.1) or A
and ACP (KAF0524772.1 and KAF0524775.1) domains. The
genomic context of two NRPS/NRPS-like genes (KAF0480590.1
and KAF0511667.1) suggests they may be part of ancestral,
fragmented NRPS/PKS hybrid genes, as they are located in the
immediate surroundings of genes with a predicted T domain
(which is typical of PKS). However, these T domain-containing
genes do not meet the minimal composition of PKS and it
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is unlikely that their assemblage with the NRPS-like genes
results in a functional BGC. The same hypothesis could be
formulated for KAF0481106.1, an NRPS-like gene that possesses
a T domain itself, but does not meet the full composition of true
NRPS/PKS hybrids.

In summary, the G. margarita NRPS-like products may
be simple amino-alcohols, or alcohols of amino-acyl products
(as for the case of KAF0524775.1). Finally, a G. margarita
NRPS-like (KAF0481106.1) starts with an N-terminal Acyl-
CoA ligase, which activates a carboxylic acid through binding
with CoA. Based on the composition of the other domains
in the same sequence, such a product could be transferred to
an ACP and, finally, to a T domain containing a PP-binding
region. Such organization is observed in several bacterial NRPS
(Zhang et al., 2009), which, however, are larger and always
contain a domain that allows the incorporation of the acyl-ACP
product into a forming peptide, a feature that is missing in the
G. margarita sequence.

Gigaspora margarita NRPS-PKS
Non-ribosomal peptide synthases-polyketide synthases in
G. margarita are more similar among them, compared to
NRPS. They have comparable composition in terms of core
domains, and have a higher degree of sequence similarity
(Figure 1C). The NRPS module contains C and A domains,
followed by a PP-binding site (KAF0502938.1) or a PCP
domain (KAF0497156.1, KAF0480591.1, KAF0441072.1, and
KAF0441085.1). The PKS modules in the same genes contain
KS and AT domains, a PP-binding (KAF0502938.1) or a PCP
domain (other), and an N-terminal T domain that releases
the final product. The only exception is a putative NRPS-PKS
BGC composed by KAF0489659.1 and KAF0489660.1, which
results in an incomplete composition due to the lack of both
C and T domains. The BIG-SCAPE analysis revealed that
three hybrid NRPS/PKS genes (KAF0441073.1, KAF0441085.1,
and KAF0480591.1) can be clustered together due to their
sequence similarity and are thus likely to possess a phylogenetic
relationship, such as paralogy.

We compared the PKS, NRPS and NRPS-PKS composition
in AMF and related fungi, and found that no NRPS-PKS nor
PKS are present in the genomes of other AMF besides Gigaspora
(Table 1), whereas almost all possess NRPS or NRPS-like. Even if
NRPS and NRPS-like seem to be ubiquitous in Glomeromycotina,
we found limited similarities between Gigaspora and Rhizoglomus
sequences. At least one NRPS gene belongs to a genomic
region that is conserved in all sequenced Rhizoglomus species
(Supplementary Figure S1), and that contains a sexuality-related
HMG-box gene (Chen et al., 2018).

Gigaspora margarita Putative BGCs
Genes for the biosynthesis of secondary metabolites may be
present as isolated genes or in tandems, which may be referred
to as BGCs and are often co-regulated and participate to the
concerted biosynthesis of a single product (Keller, 2019).

Polyketide synthases, NRPS, and NRPS-PKS in G. margarita
mostly consist of isolated genes, with two exceptions:
KAF0524772.1 and KAF0524775.1 are two NRPS genes

that form a putative BGC in the same 45 Kbp genomic region,
while one NRPS-PKS consists of two neighboring genes within a
window of about 47 Kbp (KAF0489659.1 and KAF0489660.1).

We wondered whether such genes showed a co-regulation,
as is often true for BGC (Keller, 2019). We performed a co-
regulation analysis on a set of 24 RNA-seq libraries from
different stages of G. margarita life cycle (Supplementary
Table S1). The algorithm divided the 26,604 G. margarita genes
in 4,950 virtual groups based on their co-expression values,
which ranged from 0 (no correlation) to 1 (full correlation).
No co-expression was observed for either of the four genes
belonging to putative BGCs. By contrast, one group of co-
expressed genes among those with better support (i.e., average
correlation >0.6), contained two PKS genes that are located on
different genomic scaffolds (KAF0532303.1 and KAF0524901.1).
These genes were among the top 15 co-expressed genes present
in the group (Supplementary Figure S2A), which contained
a total of 568 genes. The list included a cytochrome P450
(KAF0532302.1) located directly upstream of KAF0532303.1.
Given the known role of cytochrome P450 in fungal and
bacterial secondary metabolites biosynthesis (Chadha et al., 2018;
Shin et al., 2018), this could be an evidence of enzymatic
cooperation between KAF0532302.1 and the two PKS. Other
genes consistently co-regulated with the two PKS included
a dihydroxy-acid dehydratase which may participate in CoA
production, a general substrate transporter, and a deacetylase
with chitin or peptidoglycan as predicted substrates.

Among the NRPS and NRPS-PKS genes, only one was found
in a group meeting an average correlation >0.6. This group
gathered 430 genes, and the NRPS-PKS gene was found among
the top 40 co-regulated genes (KAF0441072.1; Supplementary
Figure S2B). As described for KAF0532302.1 and KAF0532303.1,
a cytochrome P450 and a general substrate transporter are among
the co-regulated genes, together with an alpha/beta hydrolase.
However, no co-regulation with other secondary metabolites-
producing genes was observed.

In summary, mining the genome of G. margarita led to the
discovery of three PKS, nine NRPS/NRPS-like, five NRPS-PKS
hybrids, and three situations where NRPS-like and PKS-like
genes co-localize, but lead to a likely incomplete BGC due to the
absence of key domains. The data confirmed the analysis by Sista
Kameshwar and Qin (2019), claiming that most Mucoromycota
genomes encode for NRPS and NRPS-like genes, while PKS are
less common and present in lower numbers. However, the only
species that seems to encode for hybrid NRPS-PKS is Gigaspora
rosea, the closest sequenced relative of G. margarita. This result
has also been confirmed through a genome-scale phylogeny,
including all the sequenced Glomeromycotina, that showed that
NRPS-PKS belong to a recently expanded gene family exclusive of
the two so far sequenced Gigaspora species (Venice et al., 2020).

NRPS-PKS in the Endobacterium of
Gigaspora margarita
Gigaspora margarita BEG34 harbors a population of obligate
and vertically transmitted endobacteria named CaGg (Bianciotto
et al., 2003). As other obligate endosymbionts, CaGg possesses a
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TABLE 1 | PKS, NRPS/NRPS-like, and NRPS-PKS content in the sequenced genomes of Glomeromycotina and their relatives from Mucoromycota. The same screening
was carried out for bacterial endosymbionts of Mucoromycota which genome is available. Reference studies for the analyzed genomic sequences are shown.

Organism PKS NRPS NRPS-like Hybrid NRPS-PKS* References

Gigaspora margarita BEG34 3 1 8 6 Venice et al., 2020

Gigaspora rosea DAOM 194757 0 0 9 5 Morin et al., 2019

Diversispora epigaea IT104 0 0 2 0 Sun et al., 2019

Rhizoglomus irregulare DAOM 181602 0 1 1 0 Chen et al., 2018

Rhizoglomus irregulare A1 0 1 1 0 Chen et al., 2018

Rhizoglomus irregulare A4 0 1 0 0 Chen et al., 2018

Rhizoglomus irregulare C2 0 1 1 0 Chen et al., 2018

Rhizoglomus irregulare A5 0 1 0 0 Chen et al., 2018

Rhizoglomus clarus HR1 0 0 3 0 Kobayashi et al., 2018

Glomus cerebriforme DAOM 227022 0 1 1 0 Morin et al., 2019

Rhizoglomus diaphanum MUCL43196 0 1 1 0 Morin et al., 2019

Mortierella elongata AG-77 0 0 3 0 Uehling et al., 2017

Jimgerdemannia lactiflua OSC166217 0 0 3 0 Chang et al., 2019

Jimgerdemannia flammicorona GMNB39 0 0 1 0 Chang et al., 2019

Jimgerdemannia flammicorona AD002 0 0 2 0 Chang et al., 2019

Endogone sp. FLAS59071 0 0 2 0 Chang et al., 2019

Rhizopus microsporus var. microsporus ATCC52813 0 1 3 0 Mondo et al., 2017

Candidatus Glomeribacter gigasporarum (bacterial
endosymbiont of Gigaspora margarita BEG34)

0 1 0 1 Ghignone et al., 2012

Mycoavidus cysteinexigens AG-77 (bacterial
endosymbiont of Mortierella elongata AG-77)

0 3 0 0 Uehling et al., 2017

Mycoavidus cysteinexigens FMR23-6 I-B1 (bacterial
endosymbiont of Mortierella elongata FMR23-6 I-B1)

0 0 0 0 Fujimura et al., 2014

MRE bacterial endosymbiont of Rhizophagus clarus
NB112A

0 0 0 0 Naito et al., 2015

MRE bacterial endosymbiont of Racocetra verrucosa
VA103A

0 0 0 0 Naito et al., 2015

MRE bacterial endosymbiont of Claroideoglomus
etunicatum CA-OT135

0 0 0 0 Naito et al., 2015

Mycetohabitans endofungorum ATCC BAA-463 0 3 0 0 Johnson et al., 2015

Burkholderia xenovorans BXA 2 Chain et al., 2006

Paraburkholderia rhizoxinica HKI 454 4 16 0 2 Lackner et al., 2011

Burkholderia phymatum STM815 0 3 0 1 Moulin et al., 2014

reduced genome, which couples with a nutritional dependence on
its fungal host (Ghignone et al., 2012).

To understand whether NRPS-PKS sequences of the fungus
are shared with its endobacterium, an antiSMASH analysis was
performed on the bacterial genome. The analysis detected the
presence of a large gene cluster (around 65 Kbp; Figure 2)
composed by an NRPS (protein ID: 29522647) and a NRPS-
PKS (protein ID: 29522647). The NRPS possesses two domains:
one with an A and PCP domains, and glycine as putative
substrate, and the second with a C, A, and PCP domains,
with cysteine as the putative substrate. The NRPS portion
of 29522648 consists of three domains: two have a C-A-PCP
organization, which is followed by an Epimerization (E) domain
in the other domain. The predicted substrates are serine and
D-cysteine. Notwithstanding a similar domain composition, the
CaGg cluster shows limited sequence similarity with any of
the G. margarita sequences, as already evident due to its size
and the lack of BLAST homology (Supplementary Table S2).
By contrast, it has homology with the MIBiG BGC0001415.1

and BGC0000955.1 reference clusters for the biosynthesis of
althiomycin, an antibiotic produced by Serratia marcescens and
the bacterial predator Myxococcus xanthus (Cortina et al., 2011;
Gerc et al., 2012). A transposon (protein ID: 29522626) is
also present in the genomic region surrounding the CaGg
gene cluster; as already observed, transposons may mediate the
HGT of even large gene clusters from distantly related bacteria
(Hagen et al., 2018).

Hybrid NRPS-PKS sequences have not been found in the
genome of Mycoavidus cysteinexigens, a bacterial endosymbiont
related to CaGg (Ohshima et al., 2016; Uehling et al., 2017), nor in
its fungal host Mortierella elongata (Uehling et al., 2017), a taxon
of Mortierellomycotina (Mucoromycota) closely related to AMF
(Spatafora et al., 2016). By contrast, Paraburkholderia rhizoxinica,
the endobacterium of Rhizopus microsporus (Mucoromycotina),
encodes for two NRPS-PKS that are involved in the biosynthesis
of the phytotoxin rhizoxin (Lackner et al., 2011). The genomes
of the closest CaGg relatives with free-living capabilities,
Mycetohabitans endofungorum and Burkholderia xenovorans
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(Table 1), do not encode for hybrid NRPS-PKS. An exception
is represented by Burkholderia phymatum, a nitrogen-fixing
bacterium (Moulin et al., 2014) that codes for a NRPS-
PKS. As expected, no secondary metabolites genes have been
found in the strongly reduced genomes of the Candidatus
Moeniiplasma glomeromycotorum (Naito et al., 2017), a different
taxon of bacterial endosymbiont hosted in AMF and other
Mucoromycota lineages.

The genome of the CaGg endobacterium of G. margarita
contains a BGC that, based on its size and on BLAST results,
does not seem to be the related to those of its fungal host. The
highest similarity for this BGC is found in bacterial groups that
are distant from CaGg.

The Sequence of G. margarita
NRPS-PKS Reveals Homologies With
Sequences From Free-Living Bacteria
Horizontal gene transfer events have been hypothesized to be
important for secondary metabolite production in fungi (Koczyk
et al., 2015), and potential HGT events have been identified in the
genome of G. margarita (Venice et al., 2020). Thus, we wondered
about the prokaryotic or eukaryotic origin of G. margarita NRPS-
PKS sequences.

Due to its high expression level in all the fungal life stages
(Venice et al., 2020), KAF0502938.1 from G. margarita was

selected to perform a BLASTp (Supplementary Table S2).
The search retrieved almost exclusively bacterial sequences,
while no sequences from Mucoromycota (besides Gigaspora)
or Dikarya were present in the results. The top BLAST hits
were the ones with the chitin-degrading bacterium Archangium
gephyra (Sharma and Subramanian, 2017), but the list of
potential homologs also included proteins from nitrogen-fixing
bacteria, as well as from a few Bacillus and Pedobacter
species. Betaproteobacteria were under-represented, and this is
contrary to the evidence that these bacteria are very common
endosymbionts in Mucoromycota including Glomeromycotina
(Bonfante and Venice, 2020).

As a whole, the analysis excluded relevant similarities of
G. margarita sequences with those of other early diverging
or Dikarya fungi, while revealing a relatedness with sequences
belonging to free-living bacteria.

HGT Inference Through Phylogenetic
Reconstructions
Since the previous analyses revealed that, among AMF, NRPS-
PKS seem to be limited to the genus Gigaspora, and the
G. margarita KAF0502938.1 has homology with bacterial
sequences, we further investigated the putative HGT origin of
such NRPS-PKS sequences in G. margarita and G. rosea. We
used a phylogenetic approach involving both fungal and bacterial

FIGURE 2 | Genomic region containing the putative biosynthetic cluster in the CaGg endobacterium. The cluster contains a NRPS-PKS gene and a neighboring
NRPS (29522648 and 29522647, respectively). Protein IDs were retrieved from the MicroScope MaGe platform (https://mage.genoscope.cns.fr/microscope/
home/index.php). A similarity was found with the MIBiG reference clusters for the biosynthesis of althiomycin of Serratia marcescens and Myxococcus xanthus
(BGC0000955.1 and BGC0001415.1, respectively). The core biosynthetic genes are linked with dashed lines. Sequence alignment, as well as the distance tree and
the PFAM domains prediction, were obtained with BIG-SCAPE.
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sequences. A phylogeny was built starting from the NRPS-PKS of
both G. margarita and its CaGg endobacterium (KAF0502938.1
and 29522648, respectively), together with the homolog from
G. rosea (RIB14068.1). Since NRPS-PKS are highly modular and
variable in the composition of their domains, we reconstructed
the phylogenetic models based on single domains, rather than
full length sequences. We choose the KS and A domains as
representatives of the PKS and NRPS modules, respectively. Since
the KS domain is present in both PKS and NRPS-PKS, and the
sequence selection was based on BLAST homology, several PKS
were also included in the tree along NRPS-PKS.

Sixty-seven sequences were included in the phylogenetic
reconstruction. With the exception of Gigaspora, KAF0502938.1
does not have any fungal sequence among the best BLAST
hits (Supplementary Table S2). To further confirm that the
origin of the Gigaspora sequence is outside of the fungal lineage,
we included distant fungal homologs, by using a taxonomy-
oriented BLAST search. In addition, sequences of Burkholderia-
related bacteria were introduced in the set, despite their low
BLAST homology with KAF0502938.1. This bacterial group has
in fact a well-known history of co-existence with Mucoromycota
(Bonfante et al., 2019), and the CaGg endobacterium is
Burkholderia-related. Therefore, these sequences were used to
test whether the evolution of NRPS-PKS retraces such symbiotic
history. The resulting tree is shown in Figure 3.

The automated procedure of sequence selection (see
section “Materials and Methods”) confirmed the absence
of PKS or hybrid NRPS-PKS in all Mucoromycota besides
Gigaspora, with the exception of Pyromyces finnis. The Maximum
Likelihood (ML) and Bayesian phylogenetic analyses highlighted
a separation between KS domains of other fungi, and those
belonging to bacteria and Gigaspora species together. The only
other Mucoromycota fungus included in our selection, P. finnis,
is an anaerobic fungus from Neocallimastigales (Haitjema
et al., 2014); its KS domain, however, seems to possess a
fungal signature.

The Gigaspora KS domains form a separate clade with no
affiliation with either bacterial or fungal sequences, indicating
that none of the BLAST hits found in Supplementary Table S2
are to be considered donor sequences, including the best BLAST
hit from A. gephyra, REG14281.1. By contrast, the sequence
of CaGg has well supported phylogenetic relatedness with
the sequences from two Myxococcus species, which confirms
their similarities in terms of domains composition (see section
“NRPS-PKS in the Endobacterium of Gigaspora margarita”).
A. gephyra belongs to myxobacteria as well, but its placing in the
phylogenetic tree suggests that its sequence has diverged earlier
than those of CaGg and Myxococcus. The placement of the KS
domain of B. phymatum, and of the rhizoxin-related sequences
from P. rhizoxinica, is poorly supported or external to the main
clades, indicating unrelatedness with the included sequences.
According to the reconstruction in Figure 3, twenty-nine highly
diversified sequences from Cyanobacteria may share the same
common ancestor of the CaGg-Myxococcus-B. phymatum group.
Secondary metabolites genes in Cyanobacteria have already been
described as spectacularly diversified and frequently involved in
HGT events (Calteau et al., 2014), but their similarities with

members of Glomeromycota and their associated endobacteria
need further investigation.

To further validate our phylogenetic reconstruction, we
generated three additional ML trees (Supplementary File S1)
with different constraints: in the first reconstruction, the two
Gigaspora and all bacteria were forced to be monophyletic; in the
second analysis, we assumed a monophyly between all fungi (i.e.,
Gigaspora, Dikarya, and P. finnis). The first constraint was used
to enforce the hypothesis of HGT from bacteria to Gigaspora,
while the second was used as null hypothesis. All the models were
tested with several statistical tests including the Approximately
Unbiased test, a standard procedure in validating HGT events
for metabolic gene clusters in fungi (Wisecaver and Rokas,
2015). The unconstrained phylogeny, together with the first
constrained model, i.e., the one assuming monophyly between
Gigaspora and bacteria, had the best log-likelihood scores and
was accepted by all tests, while the null hypothesis was rejected
(Supplementary File S1).

The same procedure of sequence selection was used to build
up a dataset based on the A domain of the KAF0502938.1
NRPS module, but low support values were obtained
(Supplementary Figure S3). NRPS are more widespread
than PKS in Mucoromycota and their associated bacteria
(Table 1); for this reason, we were able to include a higher
number of sequences from close relatives of CaGg, such as
M. cysteinexigens and M. endofungorum, while no significant
similarities were detected between the Gigaspora A domains
and those of other Mucoromycota. Both Bayesian and ML
reconstructions indicated no relatedness between the Gigaspora
domains and bacterial domains, highlighting a fungal signature.
By contrast, the placement of CaGg had high support values
along the tree: its A domain appeared to be unrelated to those of
its close relatives, but again clustered with the same Myxococcus
genes included in the KS-based tree (Figure 3).

In conclusion, the analysis suggested a potential HGT-
mediated hybridization of secondary metabolites genes in
Gigaspora, as the two phylogenies built for different domains
of the same sequences gave different results. The HGT event
observed for the KS domain, however, seem to be independent
of the CaGg endobacterium and related bacteria, which are
unlikely to be the potential donors. Sequences from Myxococcus
have strong relatedness with CaGg, but not with G. margarita,
supporting the hypothesis of separate HGT events.

Homologs of G. margarita NRPS-PKS
Are Present in the Genome of Several
Gigasporaceae Taxa
We investigated 28 AMF isolates that belonged to several genera
of Gigasporaceae (Table 2) in order to understand if the HGT
event occurred in other fungal taxa related to G. margarita
BEG34. Among them, eighteen isolates hosted CaGg whereas ten
were devoid of it (Table 2). PCR amplification was performed
by selecting a 732 bp fragment from the hybrid NRPS-
PKS KAF0502938.1. The fragment was successfully amplified
from 14 fungal isolates, nine of which were associated with
CaGg. Phylogenetic reconstructions (Figure 4) generated a tree
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FIGURE 3 | ML tree based on the KS domain of KAF0502938.1, a hybrid NRPS-PKS of G. margarita. The sequence of G. margarita, as well as that of its
endobacterium, CaGg, are highlighted. The sequences of G. margarita and G. rosea are gathered into a bacterial clade which is well separated from the Dikarya
group. The sequence of the CaGg endobacterium clusters into a sub-clade which is well separated from the Gigaspora sequences, but which contains sequences
from Myxococcus. Despite its homology with the Gigaspora sequences, the PKS from the basal fungus P. finnis seems to have a fungal signature. Bootstrap support
values are shown on the tree nodes. Thick lines indicate Bayesian posterior probability ≥95%.

that mirrored the Gigasporaceae phylogeny (Supplementary
Figure S4). Indeed, taxa within Dentiscutataceaeae clustered
together and were sister to the Gigasporaceae clade that
encompassed all Gigaspora spp. isolates. These findings showed
that the presence of the NRPS-PKS gene is not a unique feature
of G. margarita BEG34, but it is shared by different taxa
in Gigasporaceae.

DISCUSSION

The genome mining of G. margarita has revealed the
presence of genes involved in the biosynthesis of secondary
metabolites, a class of compounds that have a crucial role
in pathogenic fungi (Keller, 2019), but have been poorly
investigated in symbiotic ones. Indeed, PKS and their
biosynthetic genes have been identified in lichenizing,
ectomycorrhizal, and ericoid fungi (Bertrand and Sorensen,
2018; Martino et al., 2018; Armaleo et al., 2019), whereas the
molecular determinants leading to such biosynthetic activity
have been rarely considered in studies of AMF genomes
(Venice et al., 2020).

By using in silico analyses, we demonstrate that PKS, NRPS,
and NRPS-PKS sequences are present in G. margarita genome
and, at least in the case of two PKS (KAF0532303.1 and
KAF0524901.1), they show patterns of co-expression along the
fungal life cycle, suggesting they act as a BGC. This gene
equipment is also similarly present in the genome of G. rosea

(Morin et al., 2019), the most closely related AMF taxon to
G. margarita.

Looking at the genome scale phylogeny of AMF as
reconstructed by orthologous-based data (Sun et al., 2019;
Venice et al., 2020), the NRPS-PKS result to be absent in
the genomes of the widespread Glomerales, and present in
Gigasporaceae. The reason for their absence in Glomerales
genomes might be explained by an ancient loss of these fungal
sequences. The alternative scenario could be represented by
an HGT event that only involved the common ancestor of
Gigasporaceae and Dentiscutataceaeae as recipient, without
entailing Glomerales and other AMF taxa. This could be
related to the peculiar and still poorly understood dynamics
that make Gigaspora genomes weakly shielded against the
insertion of foreign DNA, as demonstrated by their expanded
genomes that are dominated by transposons (Morin et al.,
2019; Venice et al., 2020). In this context, Gigasporaceae could
act as recipient from many potential donors: other soil fungi,
associated free-living bacteria, as well as their interacting-host
plant. As other AMF, Gigasporaceae are in fact component
of the plant microbiota, but, in the meantime, they also host
their own microbiota (Bonfante et al., 2019). In addition to the
two classes of endobacteria thriving in Gigasporaceae (Desirò
et al., 2014), AMF are colonized by many saprotrophic bacteria
that live at the spores and hyphal surface, as seen under
transmission electron microscope (Bonfante and Anca, 2009),
and identified in some AMF isolates (Naumann et al., 2010;
Agnolucci et al., 2019).
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TABLE 2 | List of isolates used in the PCR screening for NRPS-PKS
in Gigasporales.

Species Isolate/
Voucher

Origin CaGg
presence

References

Cetraspora helvetica SAF15 Switzerland − this study

Cetraspora pellucida MAFF520083 Japan − this study

Cetraspora pellucida MN408A United States X Mondo et al.,
2012

Cetraspora pellucida BR208A Brazil X Mondo et al.,
2012

Cetraspora pellucida CL750A Colombia X Mondo et al.,
2012

Dentiscutata cerradensis MAFF520056 Japan X this study

Dentiscutata colliculosa FC1* Brazil X this study

Dentiscutata nigra NC182 United States − this study

Fuscutata aurea FC2* Brazil − this study

Fuscutata heterogama FC3* Brazil X this study

Fuscutata heterogama URM FMA 06 Brazil − this study

Gigaspora decipiens URM FMA 15 Brazil X this study

Gigaspora gigantea HC/FE30 United States − Bianciotto
et al., 2000

Gigaspora margarita CM21 Cameroon X Desirò et al.,
2014

Gigaspora margarita CM23 Cameroon X Desirò et al.,
2014

Gigaspora margarita CM52 Cameroon X Desirò et al.,
2014

Gigaspora margarita JA201A Japan X Mondo et al.,
2012

Gigaspora margarita MR104 Morocco X Mondo et al.,
2012

Gigaspora margarita BEG34+ New Zealand X Bianciotto
et al., 2000

Gigaspora margarita BEG34− New Zealand − Lumini et al.,
2007

Gigaspora rosea BEG9 United States − Bianciotto
et al., 2000

Racocetra castanea BEG1 France X Mondo et al.,
2012

Racocetra coralloidea CA260 United States X this study

Racocetra fulgida FC6* Brazil X this study

Racocetra fulgida IN212 United States X this study

Racocetra gregaria NC210 United States − this study

Racocetra verrucosa HA150A United States X Mondo et al.,
2012

Scutellospora calospora AU212A Australia − this study

Species, isolate/voucher, place of origin, CaGg presence, and reference study
reporting the presence/absence of CaGg are shown.
*Field collected isolate.

On the basis of these considerations, we hypothesized that
other not yet sequenced Gigasporaceae and Dentiscutataceaeae
may contain such NRPS-PKS genes. Experimental results
confirmed the hypothesis, as a successful amplification of a
fragment located in the PKS module of a NRPS-PKS gene
has been achieved from 14 out of 28 Gigasporaceae isolates
analyzed in this study. Furthermore, the phylogenies obtained
with the NRPS-PKS and common AMF markers showed similar

topologies, suggesting that the gene acquisition might have
occurred before the diversification of taxa within the genera
Dentiscutata and Gigaspora.

A detailed investigation of the G. margarita KAF0502938.1
NRPS-PKS sequence revealed a complex mosaic structure. While
the A domain from the NRPS module clustered with other
fungal sequences, the KS domain from the PKS module of the
same sequence showed a clear prokaryotic signature. Our first
and simplest hypothesis was that the bacterial endosymbiont
of G. margarita had transferred this domain to its fungal
host through HGT events. Indeed, we demonstrated that
CaGg possesses NRPS-PKS sequences coding for a hypothetical
antibiotic-like compound. However, different in silico tools did
not confirm a direct HGT from CaGg as a donor and G. margarita
as a recipient. While the prokaryotic origin of the fungal domain
remains unsolved, CaGg NRPS-PKS can be considered as a
close relative of Myxococcus sequences. Indeed, phylogenetic
reconstructions for both A and KS domains point to the same
relatedness. M. xanthus, the model species for Myxobacteria, is
a predatory bacterium that feeds on other bacteria and even
fungi (Thiery and Kaimer, 2020), a capacity which is mediated by
induced prey lysis from the outside. Such a trophic behavior may
facilitate HGT events through the integration of undegenerated
prey DNA (Goldman et al., 2006): this leaves opens the question
about alternative donor and recipient scenarios for CaGg and
M. xanthus in our reconstruction. In addition, the exchange of
the bacterial NRPS-PKS sequences might have been supported by
the presence of a transposon located in the proximity of the CaGg
gene, acting as a vehicle for HGT, as reported in other bacterial
models (Hagen et al., 2018).

In conclusion, according to the view that eukaryotic genomes
are evolutionary chimeras with most of the genes stemming from
bacteria (Brueckner and Martin, 2020), G. margarita appears to
be a complex organism where nuclear and mitochondrial fungal
sequences co-exist with viral and endobacterial ones: all these
features give rise to a genome identified as a metagenome (Venice
et al., 2020). The detailed analysis of a class of genes encoding
for enzymes leading to polyketides, non-ribosomal peptides, and
hybrid NRPS-PKS showed a further level of complexity. Indeed,
NRPS-PKS sequences, which are in themselves hybrid sequences,
contain modules with prokaryotic signatures, confirming the
mosaic structure of this fungal genome. It seems that G. margarita
and CaGg genomes have been built up by a number of molecular
pieces, which - as these NRPS-PKS sequences - likely originated
from separate evolutionary events.

MATERIALS AND METHODS

Prediction of Secondary Metabolites
Genes in the G. margarita and CaGg
Genomes
The identification of G. margarita genes involved in secondary
metabolites production was performed with antiSMASH v.5 (Blin
et al., 2019). The parameters used were “–cb-general –cb-known
clusters –cb-subclusters –asf –pfam2go –smcog-trees –taxon

Frontiers in Microbiology | www.frontiersin.org 9 November 2020 | Volume 11 | Article 581313

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-581313 November 21, 2020 Time: 17:10 # 10

Venice et al. NRPS-PKS in Gigaspora margarita

FIGURE 4 | Phylogenetic placement of NRPS-PKS sequences identified in 14 AMF isolates. NRPS-PKS sequences cluster into two main clades. The first clade
encompasses sequences from species in the Gigasporaceae family; the second clade includes sequences from taxa that belong to the Dentiscutataceae family. The
tree shows the topology obtained with the Bayesian method; branches with Bayesian posterior probabilities ≥0.95 are thickened and ML bootstrap support values
≥70 are shown. The isolates shown in blue color do not host CaGg. Gigaspora margarita BEG34- and G. margarita BEG34+ are isogenic, but the first was artificially
cured from its endobacterium (Lumini et al., 2007).

fungi” and the inputs were the G. margarita assembled scaffolds
and gene annotations in GFF3 format, as retrieved from the
NCBI BioProject PRJNA575165. The output of antiSMASH was
then fed into the BIG-SCAPE (Navarro-Muñoz et al., 2020) to
annotate the functional domains of the candidate genes and to
verify their co-relatedness, and relatedness with known BGCs
present in the MIBiG repository. The chosen similarity threshold
for clustering of related genes or BGC was 50%. The same
procedure was applied for the CaGg genome, found at https://
mage.genoscope.cns.fr/microscope/home/index.php, and for all
the genomes presented in Table 1.

Genes Co-expression Analysis
The co-expression analysis has been performed in the R
environment with the WGCNA package (Langfelder and
Horvath, 2008). The absolute read counts-per-gene were
obtained with salmon v.0.13.1 (Patro et al., 2017) as described
in Venice et al., 2020. Briefly, the libraries (Supplementary
Table S1) were obtained from different fungal life stages, both
pre-symbiotic (spores germinating in presence or absence of
GR24, a synthetic analog of strigolactones, used to simulate plant
signals) and symbiotic (intra- and extra-radical mycelium from
mycorrhizal roots of Lotus japonicus). The R2 cutoff was set
to 0.9 in order to choose the soft thresholding power needed

for adjacency calculation and topological overlap matrix (TOM)
construction. Among the predicted co-expressed gene groups,
those showing a correlation of >60% were selected. For each
of the two co-expressed gene groups shown in Supplementary
Figures S1, S2, only 15 and 40 top co-expressed genes were
selected. The networks were generated with WGCNA functions
and visualized in Cytoscape v.3.7.22.

Selection of Sequences for HGT
Inference and Phylogenetic
Reconstruction
Homology searches, combined with multiple sequence alignment
and distance calculations were used. As suggested by Li et al.
(2018) for the assessment of HGT events in R. irregulare, an
untargeted BLAST search is insufficient to assess similarity
with sequences from distant taxonomical groups (i.e., bacteria
and fungi). This is due to the fact that BLAST outputs are
limited, and distant taxonomic groups may not be covered.
According to this methodology, we first created three different
subsets of the nr NCBI protein database (as of June 2019);
one containing all bacterial sequences (Taxonomy ID: 2),

2https://cytoscape.org/index.html
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one for the Dikarya (Taxonomy ID: 451864) and one for
Mucoromycota (Taxonomy ID: 1913637). The KS and A domain
of G. margarita KAF0502938.1 were then queried with BLASTp
(Altschul et al., 1997) against the three databases separately.
For both domains, five hundred BLAST hits were picked for
Bacteria and Dikarya, while Mucoromycota BLAST hits were
limited to few hundreds. To validate the protein dataset, each
BLAST hit was fetched in its mRNA form with the Entrez
Direct E-utilities3 to be analyzed with antiSMASH v.5 (Blin
et al., 2019); this was needed to confirm that each protein
in the datasets was potentially involved in the biosynthesis of
secondary metabolites, as the antiSMASH v.5 pipeline needs a
nucleotide input to work properly (Blin et al., 2019). Protein
sequences which didn’t belong to a coding locus classified as
PKS, NRPS, or NRPS-PKS were removed; for each remaining
protein, only the regions that, according to BLASTp, had the
highest similarity with the KS or A domains of KAF0502938.1
were kept in the datasets. The reduced KS and A sets produced
this way for Bacteria, Dikarya and Mucoromycota were aligned
separately with MAFFT v.7.132b (Katoh and Standley, 2013),
and outliers and too identical sequences were removed with
T-Coffee v.13.41 “+trim” command (Notredame et al., 2000),
by setting a threshold of at least 25%, and at most 99%
similarity. The resulting sets were merged, aligned and trimmed,
so that each sequence in the final alignment had reciprocal
similarities comprised between 27 and 99% for the KS domains
dataset, and between 25 and 99% for the A domains dataset.
The sequences of betaproteobacteria species, as the one from
CaGg, did not survive the selection procedure, but were
forcedly inserted in the analysis due to their importance for the
hypothesis testing.

The alignments produced following the procedure described
above were analyzed with prottest v.3.4.2 (Darriba et al.,
2011) to select the best model of amino acid substitution (all
distributions were tested). The best model according to Akaike’s
information criterion (AIC) was LG+G+I for the KS dataset
and the A dataset. The trees were produced with RAxML
v.8.2.10 (Stamatakis, 2014) using the autoMR option of automatic
“bootstopping” (Pattengale et al., 2010). Bayesian analyses were
performed with MrBayes 3.2.6 (Ronquist et al., 2012) on the
CIPRES portal (Miller et al., 2012). For each, two independent
runs were performed with 500,000 generations. The number
of chains was set to 8, the temperature parameter to 0.2, the
sampling frequency was 10,000, and 25% of the samples were
discarded as burnin. The output trees were midpoint rooted with
figtree4 and manually edited.

In addition, we performed a constraint analysis to confirm the
HGT origin of the KS domain of KAF0502938.1. The analysis
is used for hypothesis testing and consists in the comparison of
different tree topologies, with the aim of computing likelihood
scores for each. In addition to the unconstrained tree, we
generated two additional trees: in one tree, Gigaspora species were
considered to be monophyletic with the Dikarya and P. finnis,
i.e., it was assumed that the domain had a fungal origin. In

3https://www.ncbi.nlm.nih.gov/books/NBK179288/
4http://tree.bio.ed.ac.uk/software/figtree/

addition, a tree was generated in which the Gigaspora species
were constrained to be monophyletic with bacteria. All the trees
were generated with RAxML v.8.2.10 using the LG+G+I model
and the autoMR option, and the constraints were passed to the
command line using the -g option. The three topologies were
tested for significance in IQ-TREE v.1.6.12 (Minh et al., 2020).

Molecular Analyses and Phylogenetic
Reconstructions
Twenty-eight AMF spore isolates, belonging to seventeen
different Gigasporaceae species, were investigated. For each
isolate, 10–15 spores were surface sterilized as described by
Lumini et al. (2007) and genomic DNA was extracted by using
a CTAB-based method (Doyle and Doyle, 1990). To confirm the
presence/absence of CaGg, a partial fragment of the 23S rRNA
gene was amplified using PhusionTM High-Fidelity Taq (Thermo
Fisher Scientific, Waltham, MA, United States) with the primer
pair GlomGIGf-GlomGIGr (Salvioli et al., 2008). The cycling
conditions were the same used by Salvioli et al. (2008).

A partial fragment of the NRPS-PKS was amplified
using PhusionTM High Fidelity Taq with the new primers
PKSf (5′-GCCTGTGCGTGCAAAAGCTACC-3′) and PKSr
(5′-GGCCCATTGTCCAGTAGCA-3′). This primer pair
targeted a region of about 730 bp from the hybrid NRPS-PKS
KAF0502938.1, since this gene revealed the highest expression
levels in all the fungal life stages (Venice et al., 2020), and has
the best reciprocal BLAST hit (RIB14068.1) among the genes
of the closely related G. rosea. The cycling conditions were: an
initial step at 99◦C for 3 min, 35 cycles of 98◦C for 10 s, 60◦C
for 30 s, 72◦C for 30 s and a final extension step at 72◦C for
7 min. A partial fragment (∼700 bp) of the 28S rRNA gene was
amplified using DreamTaq DNA polymerase (Thermo Fisher
Scientific) with the primers LR1 (Van Tuinen et al., 1998) and
28G2 (Silva et al., 2006). The cycling conditions were: an initial
step at 95◦C for 5 min, 40 cycles of 94◦C for 45 s, 56◦C for 1 min,
72◦C for 1 min and a final extension step at 72◦C for 7 min.

Non-ribosomal peptide synthases-polyketide synthases
amplicons were cloned using TOPO-TA cloning kit (Thermo
Fisher Scientific). Clones were sequenced on an ABI 3730
capillary sequencer using BigDye v. 3.1 sequencing chemistry
(Applied Biosystems, Foster City, CA, United States).

Sequences were assembled and curated in Geneious v. 8.1.7
(Kearse et al., 2012) and used as queries to conduct BLAST
searches on GenBank (Benson et al., 2008). Sequences were
then aligned with MAFFT (Katoh and Standley, 2013), Prior
to phylogenetic reconstruction, best-fit nucleotide substitution
model was estimated with jModelTest v.2.1.10 (Darriba et al.,
2012). Phylogenetic reconstructions were carried out with
RAxML v.8.2.10 (Stamatakis, 2014) and MrBayes v.3.2.7
(Ronquist et al., 2012). ML analyses were conducted with
the autoMR option of automatic “bootstopping” (Pattengale
et al., 2010) under GTRCAT (NRPS-PKS) and GTRGAMMA
(28S rRNA gene) nucleotide substitution models. Markov
chain Monte Carlo was run for 5 million generations under
the TVM+G (NRPS-PKS) and TIM3+G (28SU rRNA gene)
nucleotide substitution models.
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Supplementary Figure 3 | ML tree based on the A domain of KAF0502938.1, a
hybrid NRPS-PKS of G. margarita. The sequence of G. margarita, as well as that
of its endobacterium, CaGg, are highlighted. Differently from the KS domain
(Figure 3), a clustering of Gigaspora sequences in a bacterial clade is not
observed in the A tree. The sequence of the CaGg endobacterium clusters into a
sub-clade which is well separated from the Gigaspora sequences, but which
contains sequences from Myxococcus. Bootstrap support values are shown on
the tree nodes. Thick lines indicate Bayesian posterior probability ≥95%.

Supplementary Figure 4 | Phylogenetic reconstruction of LSU rRNA sequences
from Gigasporales isolates. Isolates which were analyzed for the presence on
NRPS-PKS in the present study are shown in bold. The tree shows the topology
obtained with the Bayesian method; branches with Bayesian posterior
probabilities ≥0.95 are thickened and ML bootstrap support values ≥70 are
shown. The tree was rooted by Pacispora scintillans.
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co-expression analysis, and the related publications/projects.

Supplementary Table 2 | List of BLAST homologs of G. margarita NRPS-PKS,
KAF0502938.1, sorted by E-value. Except for hits from the closest sequenced
relative, G. rosea, the list is dominated by bacterial homologs.

Supplementary File 1 | List of topologies obtained for the KS domain of
KAF0502938.1 by using different constraint analyses in RAxML. To confirm the
bacterial signature of the domain, the unconstrained (A) topology was compared
with other constrained topologies where Gigaspora species and bacteria (B) and
all fungi (C) were considered to be monophyletic. For each tree, probabilities were
calculated with the one-sided Kishino–Hasegawa test (p-KH; Kishino and
Hasegawa, 1989), the Shimodaira–Hasegawa test (p-SH; Shimodaira and
Hasegawa, 1999), and the Approximately Unbiased test (p-AU; Shimodaira,
2002). Bootstrap proportions according to the RELL method (bp-RELL; Kishino
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