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The stringent response regulates bacterial growth rate and is important for cell survival
under changing environmental conditions. The effect of the stringent response is
pleiotropic, affecting almost all biological processes in the cell including transcriptional
downregulation of genes involved in stable RNA synthesis, DNA replication, and
metabolic pathways, as well as the upregulation of stress-related genes. In this Review,
we discuss how the stringent response affects chromosome replication and DNA
repair activities in bacteria. Importantly, we address how accumulation of (p)ppGpp
during the stringent response shuts down chromosome replication using highly different
strategies in the evolutionary distant Gram-negative Escherichia coli and Gram-
positive Bacillus subtilis. Interestingly, (p)ppGpp-mediated replication inhibition occurs
downstream of the origin in B. subtilis, whereas replication inhibition in E. coli takes
place at the initiation level, suggesting that stringent cell cycle arrest acts at different
phases of the replication cycle between E. coli and B. subtilis. Furthermore, we address
the role of (p)ppGpp in facilitating DNA repair activities and cell survival during exposure
to UV and other DNA damaging agents. In particular, (p)ppGpp seems to stimulate the
efficiency of nucleotide excision repair (NER)-dependent repair of DNA lesions. Finally,
we discuss whether (p)ppGpp-mediated cell survival during DNA damage is related to
the ability of (p)ppGpp accumulation to inhibit chromosome replication.

Keywords: (p)ppGpp, DNA replication, DNA repair, stringent response, genome stability, Escherichia coli, Bacillus
subtilis

INTRODUCTION

Bacteria respond to a variety of changing environmental conditions by inducing the stringent
response. Known inducers of the stringent response include nutrient limitations such as amino
acids, fatty acids, carbon and nitrogen starvation, and other stresses such as high temperature and
low pH (Gallant et al., 1977; Gentry and Cashel, 1996; Wells and Gaynor, 2006; Winther et al., 2018;
Sinha et al., 2019; Schafer et al., 2020). The hallmark of stringent response is the accumulation of
guanosine tetra- or pentaphosphate, ppGpp and pppGpp, respectively [collectively called (p)ppGpp
or alarmone], which leads to reprogramming of cell physiology facilitating cell survival under stress
(Potrykus and Cashel, 2008; Hauryliuk et al., 2015). Importantly, (p)ppGpp plays a role in antibiotic
tolerance and is essential for virulence in pathogenic bacteria (Dalebroux et al., 2010; Hauryliuk
et al., 2015). Additionally, (p)ppGpp regulates bacterial growth rates even in the absence of external
environmental stress (Potrykus et al., 2011).
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Alarmones are synthesized and hydrolyzed by the long
RelA/SpoT Homolog (RSH) protein superfamily. In the Gram-
negative γ–proteobacterium Escherichia coli, two paralogous
enzymes modulate (p)ppGpp levels; monofunctional RelA, which
has only synthetase activity, and bifunctional SpoT, which
has both synthetase and hydrolase activities. In the spore-
forming Gram-positive bacterium, Bacillus subtilis, (p)ppGpp
levels are metabolized by one long RSH superfamily protein
Rel and two small alarmone synthetases (SASs) called RelP
and RelQ (Liu et al., 2015; reviewed in Ronneau and Hallez,
2019). Accumulation of (p)ppGpp rapidly alters the levels of
a wide range of gene transcripts and metabolites to allow cell
survival and adaptation to new growth conditions (Eymann
et al., 2002; Traxler et al., 2008). The major changes involve
transcriptional down-regulation of genes involved in stable
RNA (rRNA and tRNA) synthesis, DNA replication, and
metabolic pathways, whereas genes engaged in stress and amino-
acid biosynthesis are activated (Sanchez-Vazquez et al., 2019;
Gummesson et al., 2020). In E. coli, (p)ppGpp directly binds
two sites on RNA polymerase (RNAP) to allosterically alter
its binding to- and efficiency at different gene promoters,
which results in genome-wide transcriptional reprogramming.
(p)ppGpp binding to RNAP and the consequent RNAP-driven
transcriptional response is potentiated by another small RNAP
binding protein, DksA (reviewed in Gourse et al., 2018). In
B. subtilis, RNAP lacks critical (p)ppGpp binding sites and
no DskA homologs have been identified. As a consequence,
(p)ppGpp does not directly target B. subtilis RNAP. Instead
(p)ppGpp synthesis strongly depletes the pool of available
GTP, which leads to an indirect inhibition of stable RNA
promoter activity since GTP is used as start nucleotide for
most of the stable RNAs (Krasny and Gourse, 2004; Gourse
et al., 2018; Sanchez-Vazquez et al., 2019). Importantly, apart
from transcriptional responses, (p)ppGpp directly targets many
other proteins to affect metabolic processes such as nucleotide
metabolism and biosynthetic pathways (Zhang et al., 2018, 2019;
Wang et al., 2019).

Here, we discuss how the stringent response affects
chromosome replication, DNA damage and repair activities,
focusing mainly on recent studies done in the evolutionarily
distant E. coli and B. subtilis.

ROLE OF THE STRINGENT RESPONSE
IN CHROMOSOME REPLICATION

In E. coli, chromosome replication initiates at a single origin of
replication, oriC, which contains an AT-rich region and multiple
binding-sites for the initiator protein, DnaA (Leonard and
Mechali, 2013). DnaA belongs to the family of AAA + proteins
and binds ATP and ADP with similar affinity (Sekimizu et al.,
1987), of which only the ATP-bound form, DnaAATP, is required
for oligomerization at oriC, and hence active for initiation
(reviewed in Skarstad and Katayama, 2013; Riber et al., 2016).
Origin unwinding leads to loading of DNA helicase, DnaB, onto
single-stranded DNA (ssDNA) by the helicase loader, DnaC,
followed by recruitment of primase, DnaG, as well as assembly

of two replisomes to direct replication bidirectionally, until the
replication forks meet and terminate at the terminus region,
opposite to oriC (Kornberg and Baker, 1992). In B. subtilis,
chromosome replication is mediated by the same overall steps,
but the bipartite replication origin, containing two DnaA-box
clusters separated by the dnaA gene (Moriya et al., 1992), is
structurally different as compared to the continuous replication
origin of E. coli. Also, assembly of the helicase, DnaC, onto
ssDNA by the helicase loader, DnaI, occurs via a different
mechanism known as “ring assembly” (Soultanas, 2012), but the
following recruitment of DnaG primase and assembly of the
replication elongation machinery is largely similar to that of
E. coli (reviewed by Jameson and Wilkinson, 2017).

Highly different strategies have been adopted for (p)ppGpp-
mediated chromosome replication inhibition in E. coli and
B. subtilis. It is widely accepted that replication arrest in B. subtilis
occurs downstream from the origin (i.e., on the elongation level),
whereas replication inhibition in E. coli occurs at the initiation
level, suggesting that stringent cell cycle arrest points differ
between E. coli and B. subtilis (Levine et al., 1991).

(p)ppGpp-Mediated Inhibition of
Initiation of Chromosome Replication
High levels of (p)ppGpp inhibit chromosome replication
initiation in E. coli (Levine et al., 1991; Schreiber et al., 1995;
Ferullo and Lovett, 2008; Riber and Lobner-Olesen, 2020),
but the exact mechanism responsible for this inhibition has
been somewhat unclear. However, several recent papers have
made crucial discoveries adding valuable insight into this
area of research.

Previously, the transcriptional activity of both dnaA operon
promoters was reported to be stringently controlled (Chiaramello
and Zyskind, 1990; Zyskind and Smith, 1992), suggesting that
reduced dnaA gene transcription, and hence lowered de novo
DnaA protein synthesis, could explain the initiation arrest
observed in the presence of elevated (p)ppGpp levels. This was
supported by a recent study, reporting that continued DnaA
synthesis, expressed from a (p)ppGpp-insensitive T7 RNAP-
dependent promoter, allowed for replication initiation during
(p)ppGpp accumulation (Riber and Lobner-Olesen, 2020).
Additionally, it was reported that polyphosphate during the
stringent response activates Lon protease to degrade DnaAADP.
As several regulatory systems work in concert to convert
DnaAATP into DnaAADP (Katayama et al., 1998; Kato and
Katayama, 2001; Kasho and Katayama, 2013), this indirectly
lowers the amount of active DnaAATP, causing replication
initiation to cease (Gross and Konieczny, 2020). However,
degradation of DnaA has been reported only for Caulobacter
crescentus, and not for E. coli (Gorbatyuk and Marczynski,
2005; Katayama et al., 2010). Also, recent data give no
indication of DnaA degradation during (p)ppGpp accumulation
(Riber and Lobner-Olesen, 2020).

Interestingly, several studies address the importance of DnaA
activity, i.e., the DnaAATP-to-DnaAADP ratio, during (p)ppGpp
accumulation. Continuous de novo DnaA synthesis was found to
allow for new rounds of replication initiation during (p)ppGpp
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accumulation (Riber and Lobner-Olesen, 2020). As the level of
ATP is more abundant than ADP in the cell (Petersen and
Møller, 2000), and because DnaA binds these nucleotides with
similar affinity (Sekimizu et al., 1987), de novo synthesized DnaA
will be mainly ATP-bound, which ensures that the pool of
DnaAATP is continuously being replenished. Thus, while overall
cell growth ceases due to (p)ppGpp accumulation DnaAATP

continues to increase due to de novo synthesis, which in turn
allows for continued replication initiation during high levels of
(p)ppGpp. In contrast, overproduction of DnaA during otherwise
normal cell growth does not notably increase the DnaAATP level
(Flatten et al., 2015). Following induction of (p)ppGpp in such
cells, transcription of dnaA will be repressed, which results in
insufficient accumulation of active DnaAATP to sustain further
initiations (Kraemer et al., 2019).

Altogether, these observations suggest that (p)ppGpp-
mediated replication initiation inhibition occurs through
prevention of de novo DnaA synthesis, which lowers both
the amount and activity (i.e., ATP-bound status) of DnaA.
In agreement with this, (p)ppGpp fails to arrest replication
initiation in cells where a hyperactive DnaA protein, mimicking
ATP-bound DnaA, is overproduced (Kraemer et al., 2019).

Limitation of DnaA does, however, not seem to be the sole
mechanism responsible of (p)ppGpp-mediated replication
initiation inhibition. Recent studies emphasize lack of
transcriptional activation of oriC to explain the negative
effect of (p)ppGpp on initiation. Here, (p)ppGpp-driven
reduction in transcriptional activity of promoters located close to
oriC, presumably preventing introduction of negative supercoils
in the wake of the migrating RNA polymerase complex, was
suggested to cause less transcriptional activation of the origin,
hence inhibiting initiation (Kraemer et al., 2019). Also, DNA
gyrase (gyrA) and topoisomerase IV (parC) expression was found
to be inhibited by high levels of (p)ppGpp, and the negative
superhelicity of oriC was suggested to be lowered, despite not
actually being measured (Fernandez-Coll et al., 2020).

Both mioC and gidA promoters, located adjacent to oriC,
can be deleted without measurable effects (Lobner-Olesen and
Boye, 1992; Bates et al., 1997; Lies et al., 2015), showing that
they are dispensable for replication initiation during normal
growth. However, when oriC becomes sufficiently impaired for
initiation, such as when DnaA box R4 is deleted, transcription
from these promoters becomes important (Bates et al., 1997).
This is supported by the initiation kinetics of rifampicin and
chloramphenicol. As rifampicin inhibits transcription initiation
(Hartmann et al., 1967) rifampicin-treated cells will gradually
stop to accumulate DnaA, but translation will continue
as long as intact dnaA mRNA is present. On the other
hand, chloramphenicol treatment will immediately block DnaA
translation (Vazquez, 1979). Yet, chloramphenicol did not inhibit
initiation as fast as rifampicin (Lark, 1972; Messer, 1972; Riber
and Lobner-Olesen, 2020). As transcription is still on-going
in chloramphenicol treated cells, this supports the ability of
transcriptional activation of oriC to allow for extra initiations
during suboptimal, e.g., DnaA limiting, conditions.

In conclusion, failure to de novo synthesize DnaA (i.e.,
reduced dnaA transcription) and to replenish the DnaAATP

pool along with lowered transcriptional activation of oriC (i.e.,
reduced gidA/mioC and/or gyrA/parC transcription) contribute
in arresting replication initiation during (p)ppGpp accumulation
in E. coli (Figure 1A; left). However, it is difficult to quantitate the
exact contribution from each of those mechanisms.

(p)ppGpp-Mediated Inhibition of
Elongation of Chromosome Replication
In contrast to E. coli, substantial replication occurs at the
B. subtilis origin following induction of the stringent response.
Also, regulation of chromosome replication initiation was
shown to be independent of (p)ppGpp accumulation in
B. subtilis (Levine et al., 1991; Murray and Koh, 2014). This
indicates that (p)ppGpp might not regulate the synthesis of
replication initiation proteins and/or transcriptional activation
of oriC in B. subtilis. The lack of RNAP-driven transcriptional
reprogramming due to B. subtilis RNAP not being a direct
target of (p)ppGpp partly supports the latter (Figure 1B;
left). Replication was instead shown to be arrested at distinct
termination sites located approximately 200 kb downstream on
either side of oriC (Levine et al., 1991), suggesting (p)ppGpp-
mediated inhibition of chromosome replication in B. subtilis to
be regulated at the post-initiation level.

By using genomic microarrays to monitor the progression of
replication forks in synchronized cell cultures of B. subtilis, it was
later revealed that starvation-induced replication arrest occurred
throughout the chromosome, irrespective of the location of
the replication forks. A direct (p)ppGpp-mediated inhibition of
DNA primase (DnaG) activity, known to affect replication fork
progression (Wu et al., 1992; Lee et al., 2006), was proposed
to underlie the observed replication elongation arrest (Wang
et al., 2007). This inhibition was found to be dose-dependent,
suggesting that the severity of stress (i.e., concentration of
(p)ppGpp) is tightly coupled to an equivalent reduction in
replication progression rate, thus providing a tunable stress
response (Wang et al., 2007; Denapoli et al., 2013). Interestingly,
replication forks arrested in the presence of high levels of
(p)ppGpp did not recruit the SOS response protein RecA,
indicating that stalled forks were not disrupted, but reversibly
halted with the ability to restart replication upon nutrient
availability (Wang et al., 2007). These observations support
that (p)ppGpp-mediated primase inhibition serves to maintain
genome integrity during periods of stress.

Another factor that might contribute to the strong (p)ppGpp
inhibition of progressing replication forks in B. subtilis
is the equivalent decrease in the cellular pool of GTP
available for continued DNA strand extension. This decrease
is caused by increased consumption of GTP during (p)ppGpp
biosynthesis, and by a direct inhibition of the activity of inosine
monophosphate (IMP) dehydrogenase that catalyzes an early step
in GTP biosynthesis (Lopez et al., 1981; Figure 1B; right).

(p)ppGpp binds and inhibits the E. coli DnaG primase
in vitro (Maciag et al., 2010; Rymer et al., 2012). To date, no
other replication proteins in E. coli, including DnaA, have been
reported as direct targets for (p)ppGpp (Zhang et al., 2018;
Wang et al., 2019). Obviously, this finding contradicts decades of
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FIGURE 1 | Overview of (p)ppGpp-meditated inhibition of chromosome replication in E. coli (A) and B. subtilis (B). In E. coli (A) replication inhibition occurs at the
initiation level during (p)ppGpp accumulation. Here, (p)ppGpp binds the RNA Polymerase (RNAP), which indirectly affects the global gene expression profile through
RNAP-driven transcriptional reprogramming. Downregulated gene transcripts include dnaA, gidA, mioC, gyrA, and parC, leading to lack of de novo DnaA synthesis
and possibly lowered transcriptional activation of oriC, which all together contribute in arresting replication initiation during (p)ppGpp accumulation. Also, (p)ppGpp
binds DnaG primase in vitro, but replication elongation remains unaffected in vivo. As GTP levels are not significantly reduced in E. coli during (p)ppGpp
accumulation, and since GTP also binds DnaG, we hypothesize that GTP might outcompete (p)ppGpp in binding DnaG in vivo (this hypothesis is marked as *). In
B. subtilis (B) replication inhibition occurs at the elongation level during (p)ppGpp accumulation. Here, (p)ppGpp binds IMP dehydrogenase, lowering the pool of
available GTP, as well as DnaG. The significantly reduced level of GTP leads to DnaG being susceptible to strongly binding (p)ppGpp in vivo. Substantial replication
occurs at the B. subtilis origin during (p)ppGpp accumulation, possibly because (p)ppGpp does not directly bind RNAP, excluding any RNAP-driven transcriptional
reprogramming, or any replication initiation proteins.
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research stating that ongoing rounds of replication are continued
until completion following induction of the stringent response
in E. coli, proposing that DNA replication elongation is not
arrested during (p)ppGpp accumulation in vivo (Schreiber et al.,
1995; Ferullo and Lovett, 2008; Kraemer et al., 2019; Riber and
Lobner-Olesen, 2020). DeNapoli et al. did quantify genome-
wide replication fork progression in E. coli and revealed that the
replication elongation rate was modestly reduced by (p)ppGpp
induction, but possibly the response was restricted to acute stress
conditions (Denapoli et al., 2013).

Factors preventing binding of (p)ppGpp to DnaG, or
the competing action between RNAP and DnaG in binding
(p)ppGpp, were suggested to explain the lack of effect on DnaG
activity in vivo (Maciag et al., 2010). Indeed, (p)ppGpp was found
to bind DnaG at partially overlapping sites with nucleotides
and inhibit primase activity in a GTP-concentration dependent
manner (Rymer et al., 2012). As GTP levels are not reduced by
more than 50% in E. coli during the stringent response (Varik
et al., 2017), whereas B. subtilis experiences a significant drop
in GTP concomitant with (p)ppGpp accumulation (Ochi et al.,
1982), this supports a stronger (p)ppGpp-mediated binding to-
and inhibition of DnaG in B. subtilis, hence leading to a more
potent inhibition of replication elongation as compared to E. coli
(Figures 1A,B; right).

ROLE OF THE STRINGENT RESPONSE
IN DNA DAMAGE AND REPAIR

Bacterial genomic integrity is often threatened by DNA damage
induced either by natural fork breakage, fork stalling, replication-
transcription collision, or by external threats such as radiation
and DNA modifying drugs (Kuzminov, 1999). Faithful damage
repair orchestrated by DNA repair proteins is essential to
maintain genomic integrity, chromosomal replication and cell
viability. Accordingly, mutants lacking repair proteins are
sensitive to DNA damaging agents and are less viable (Van
Houten, 1990; Kuzminov, 1999; Sinha et al., 2020). Since
(p)ppGpp binding to RNAP in E. coli destabilizes the open
promoter complexes, it is expected to modulate replication-
transcription collision and to play a role in maintaining
genomic integrity.

The observation that loss of both RelA and SpoT (ppGpp0

strain), i.e., inability to synthesize (p)ppGpp, enhanced UV
sensitivity of an E. coli ruvAB mutant, suggested a possible role of
(p)ppGpp in facilitating DNA repair (McGlynn and Lloyd, 2000).
RuvAB along with RuvC play a role in branch migration and
resolution of Holliday junctions, formed during RecBCD-RecA-
mediated DNA double-strand break (DSB) repair and RecFOR-
RecA-mediated gap repair (Kuzminov, 1999; Sinha et al., 2020).
Interestingly, a slight increase in the basal level of (p)ppGpp
by using the spoT1 allele, having reduced (p)ppGpp hydrolytic
activity, improved UV survival of the ruvAB mutant (McGlynn
and Lloyd, 2000). Thus, high (p)ppGpp increases/promotes
viability, whereas no (p)ppGpp increases UV sensitivity of the
ruvAB mutant. The ppGpp0 strain alone was also found to be UV
sensitive (McGlynn and Lloyd, 2000).

The ppGpp0 strain displays an amino acid auxotrophy
phenotype and accumulates suppressor mutations (known as
“stringent mutants”) that allow cells to grow in minimal medium
lacking amino acids. These suppressor mutations occur in RNAP
subunits encoded by rpoB and rpoC (Zhou and Jin, 1998;
McGlynn and Lloyd, 2000), and were shown to destabilize the
transcriptional complex in a manner similar to (p)ppGpp binding
to RNAP (Trautinger et al., 2005). Remarkably, some of these
suppressor mutations (denoted rpo∗) significantly improved
survival of the 1relA 1spoT 1ruvAB strain after UV treatment
(McGlynn and Lloyd, 2000).

Thus, it was proposed that (p)ppGpp/rpo∗-mediated
destabilization of transcriptional complexes reduces the
occurrence of stalled RNAP on DNA, hence allowing free space
for efficient excision repair of UV-induced DNA lesions and
for simultaneous facilitation of replication fork progression
by avoiding replication-transcription conflicts (McGlynn and
Lloyd, 2000; Trautinger and Lloyd, 2002; Trautinger et al., 2005).
Additionally, it was shown that (p)ppGpp-mediated suppression
of ruvAB mutant UV sensitivity is complex and requires RecA,
RecG, and PriA, but not RecBCD, and was proposed to involve
replication fork stalling, regression and restart (McGlynn and
Lloyd, 2000). Since replication fork stalling, regression and
restart are the major reactions following UV irradiation in
E. coli cells (Khan and Kuzminov, 2012), the most plausible
explanation for the UV resistance phenotype of spoT1 ruvAB (or
rpo∗ ruvAB) cells would be destabilization of the RNAP array
allowing replication forks to directly encounter DNA lesions
followed by an active fork regression and lesion bypass, instead
of fork breakage, to facilitate replication restart (Trautinger et al.,
2005; Figure 2).

In contrast to UV, high (p)ppGpp (or rpo∗) cannot suppress
sensitivity of the 1ruvAB strain against exposure to mitomycin
C (MMC) or γ rays (McGlynn and Lloyd, 2000). It should
be noted that DNA lesions generated by both UV and MMC
are removed/repaired by nucleotide excision repair (NER)
(Van Houten, 1990). However, MMC treatment generates
inter-strand crosslinks that most often get converted into
DSBs, whereas UV treatment induces intra-strand pyrimidine
dimers with generation of DSBs being primarily dependent
on replication fork stalling at the lesion site (Khan and
Kuzminov, 2012). These observations exclude a direct role of
(p)ppGpp in DSBs repair.

Transcription-Coupled DNA Repair (TCR)
Another study, corroborating the above finding, confirmed that
E. coli ppGpp0 cells were highly sensitive to UV radiation,
4-nitroquinoline-1-oxide (4NQO), and nitrofurazone (NFZ)
(Kamarthapu et al., 2016). These agents induce formation of
DNA adducts, which are mainly removed and repaired by NER
pathways (Ikenaga et al., 1975; Ona et al., 2009). Remarkably,
wild-type cells rapidly accumulated a 20-fold increase in
(p)ppGpp when treated with 4NQO or NFZ, suggesting
that DNA lesions induce (p)ppGpp synthesis. However, the
mechanism of (p)ppGpp synthesis during these treatments
remains to be determined (Kamarthapu et al., 2016).
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FIGURE 2 | Overview of (p)ppGpp-meditated repair of UV induced DNA damage in E. coli. The UV induced DNA lesions arrest RNAP and halt transcription
progression (A). This can lead to frequent replication-transcription collision. In (A), only co-directional collision has been shown but there is an equal possibility for
head-on collision and both threaten genomic integrity. This scenario will probably be escalated in absence of (p)ppGpp since the RNAP array will be stably arrested
for a long time in absence of (p)ppGpp (A–E). Whereas, (p)ppGpp binding to RNAP will destabilize it and remove it from the DNA template. Removal of RNAP will
help in two ways: 1. It will create space to load NER proteins and remove/repair DNA lesions. 2. It will help the replication fork to progress toward DNA lesions (B).
Arrested replication forks can get reversed with the help of RecFOR mediated RecA loading and fork regression (C). DNA synthesis and resetting of the replication
fork will help in lesion bypass (D). DNA lesions can be removed and repaired by NER pathways either at the (C,D) step. This model is adapted from
Trautinger et al. (2005).

TCR is defined by an active transcription-dependent increase
in excision repair of lesions on the transcribed DNA strand
in comparison to the non-transcribed strand (Mellon and
Hanawalt, 1989). Two factors, Mfd and UvrD, promote TCR
by two different pathways: by pushing RNAP forward of the
DNA lesion and by promoting RNAP backtracking, respectively,
followed by recruitment of NER proteins, such as UvrAB
at the lesion site (Mellon and Hanawalt, 1989; Kamarthapu
and Nudler, 2015). Interestingly, the preference for repairing
the transcribed strand rather than the non-transcribed strand
was abolished in ppGpp0 cells suggesting that (p)ppGpp is
crucial for TCR. Since the sensitivity of ppGpp0 cells to UV,
4NQO or NFZ was epistatic to uvrD mutant sensitivity, it
was proposed that (p)ppGpp potentiates the pro-backtracking

activity of UvrD (Kamarthapu et al., 2016). The role of
(p)ppGpp in facilitating TCR can also occur independent of
UvrD either by promoting RNAP backtracking by destabilizing
and removing RNAP complexes from tightly packed arrays
at the highly transcribed ribosomal genes, thus creating space
for backtracking, or by reducing the number of ribosomes
trailing RNAP to make space for backtracking (Rasouly et al.,
2017). However, extensive backtracked RNAP might increase
the risk of replication-transcription collision and has the
capacity to induce DSBs and genomic instability (Dutta et al.,
2011). The conundrum is perhaps resolved by (p)ppGpp-
mediated inhibition of replication initiation, thus minimizing
the frequency of replication-transcription collisions when RNAP
backtracking is needed to repair genotoxic lesions on DNA.
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In B. subtilis, the SMC-ScpAB complex is important for
chromosome condensation and segregation, and 1smc mutants
exhibit pleiotropic phenotypes including defects in chromosome
condensation, segregation, DNA repair and viability at high
temperature. Upregulation of the stringent response has
been shown to suppress chromosome segregation defects,
hypersensitivity to gyrase inhibitors and restore viability of 1smc
mutants (Benoist et al., 2015). Since the stringent response
slows down replication elongation in B. subtilis, it might be
possible that slow replication allows chromosome segregation
to occur even in the absence of the SMC-ScpAB complex. This
hypothesis finds support as 1smc mutant cells grow well in
minimal medium (i.e., slow growth conditions) as compared to
no growth in rich medium (i.e., fast growth conditions) at 37◦C
(Benoist et al., 2015). Similar studies for the role of the stringent
response in chromosome segregation mutant cells of E. coli have
not been reported.

CONCLUDING REMARKS

Based on the highlights presented throughout this review, the
stringent response has clearly proven to affect both bacterial
chromosome replication and DNA repair activities. However,
whereas (p)ppGpp accumulation negatively affects replication
initiation and replication elongation in E. coli and B. subtilis,
respectively, the effect of (p)ppGpp-mediated modulation of
DNA repair activities seems positive. Indeed, the absence of
(p)ppGpp makes E. coli cells sensitive to UV and other DNA
damaging agents, and studies suggest a role of (p)ppGpp in
enhancing the efficiency of NER-dependent repair of DNA

lesions, most likely by destabilizing RNAP complexes and
making space for recruitment of NER proteins. Interestingly,
these observations might be coupled to (p)ppGpp-mediated
replication inhibition, which prevents replication-transcription
collisions and/or reduces the frequency of replication forks
meeting the UV lesions, thus assisting efficient NER-mediated
repair. This intriguing hypothesis, connecting the negative effect
of (p)ppGpp on replication to (p)ppGpp-driven stimulation of
DNA repair activity, can easily be tested by using a system
where (p)ppGpp-dependent replication inhibition is abrogated as
recently described (Riber and Lobner-Olesen, 2020).
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