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Limosilactobacillus reuteri is a model symbiont that colonizes the guts of vertebrates in
studies on host adaptation of the gut symbiont. Previous studies have investigated host-
specific phylogenetic and functional properties by isolating the genomic sequence. This
dependency on genome isolation is a significant bottleneck. Here, we propose a method
to study the association between L. reuteri and its hosts directly from metagenomic
reads without strain isolation using pan-genomes. We characterized the host-specificity
of L. reuteri in metagenomic samples, not only in previously studied organisms (mice
and pigs) but also in dogs. For each sample, two types of profiles were generated:
(1) genome-based strain type abundance profiles and (2) gene composition profiles.
Our profiles showed host-association of L. reuteri in both phylogenetic and functional
aspects without depending on host-specific genome isolation. We observed not only
the presence of host-specific lineages, but also the dominant lineages associated with
the different hosts. Furthermore, we showed that metagenome-assembled genomes
provide detailed insights into the host-specificity of L. reuteri. We inferred evolutionary
trajectories of host-associative L. reuteri strains in the metagenomic samples by placing
the metagenome-assembled genomes into a phylogenetic tree and identified novel
host-specific genes that were unannotated in existing pan-genome databases. Our pan-
genomic approach reduces the need for time-consuming and expensive host-specific
genome isolation, while producing consistent results with previous host-association
findings in mice and pigs. Additionally, we predicted associations that have not yet been
studied in dogs.

Keywords: Limosilactobacillus reuteri, metagenome, pan-genome, host-specificity, host-symbiont interaction

INTRODUCTION

Limosilactobacillus reuteri is a Gram-positive bacterial symbiont that has been recently reclassified
from Lactobacillus reuteri (Zheng et al., 2020). This species colonizes the gut in a variety of
vertebrate species and is used as a model organism to study the evolutionary process of vertebrate
gut symbionts (Oh et al., 2010; Walter et al., 2011). The evolutionary trajectories of L. reuteri have
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previously been studied through amplified-fragment length
polymorphism, multi-locus sequence analysis, and core-genome
phylogeny (Oh et al., 2010; Wegmann et al., 2015; Yu et al., 2018).
These studies identified genetically distinct subpopulations that
highly correlate with their host, indicating a stable host-symbiont
relationship. However, some outliers were also found wherein
the strains from unrelated hosts were included in these host-
specific clusters, which suggested occasional horizontal transfer
between hosts (Oh et al., 2010; Walter et al., 2011). The transfer
from one individual host to another could simultaneously occur
in different host populations, resulting in distinct phylogenetic
lineages, even in the same host species (Wegmann et al., 2015).

The adaptation of L. reuteri to the respective host resulted
in host-specific functional features. For example, comparative
genomics analysis of isolates identified host-specific genes with
functions related to transposable elements and biofilm formation
(Frese et al., 2011; Duar et al., 2017; Yu et al., 2018), which has
been experimentally verified in mice (Frese et al., 2011, 2013;
Duar et al., 2017).

However, analysis based on the isolated strains might not
be representative of the complete repertoire of host-associated
features of L. reuteri because isolating and sequencing a single
bacterial strain under appropriate culture conditions remains
challenging (Teeling and Glockner, 2012). Currently, there are
151 isolated genomes (April 2020) available in the EzBioCloud
database (Yoon et al., 2017a), but the majority originate from
well-studied model species, such as rodents, humans, pigs
and poultry, limiting our ability to study a wider range of
host adaptations.

In this study, we devised a method (Figure 1) to analyze
the association of L. reuteri with hosts in metagenomes
that overcome the need for host-specific genome isolation
and successfully applied to gut microbiome samples of three
mammals: pig, mouse, and dog.

RESULTS

Construction of Genome-Based Strain
Types (GSTs) and Gene Composition
Profiles to Characterize Metagenomic
Samples
To predict the phylogenetic features of L. reuteri in metagenome
samples, we profiled the composition of GSTs. For this,
a species-specific reference genome, phylogenetic tree and
Kraken (Wood and Salzberg, 2014) database were built using
complete genomes from the EzBioCloud database (Yoon
et al., 2017a; see Supplementary Table 1), as described in
Figure 1A. We created the L. reuteri reference genome
by concatenating 1,158 core genes from eight complete
genomes identified by Roary (Page et al., 2015), resulting
in a 1,097,896 bp sequence. All 151 available L. reuteri (as
of April 2020) strains isolated from humans, rodents, pigs,
poultry, herbivores (goats, sheep, cows, and horses), and
food sources (Supplementary Table 1) were aligned against
the reference genome using MUMmer (Kurtz et al., 2004).

The resulting multiple sequence alignments were used to
infer a maximum likelihood phylogenetic tree using RAxML
(Stamatakis, 2014). We then clustered the tree into 20 types
by merging adjacent clades until a maximum all-against-all
pairwise distance of 20,000 single nucleotide variations (SNVs)
was reached. A reference Kraken database was built using
core gene sequences from representative genomes of each type
(Supplementary Figure 1).

The GSTs from our phylogenetic tree were in correspondence
with previously reported host-associated lineages (Duar et al.,
2017; Yu et al., 2018), and we could assign the GSTs to those
lineages based on the tree in Supplementary Figure 2. GST
1, 12, 13, 15, and 16 were matched to “Human II/Herbivore,”
“Porcine IV,” “Human VI/Poultry VI,” “Herbivore” and “Porcine
V” lineages, respectively. GST 5 to 9 and GST 17 to 20 were
assigned to “Rodent I” and “Rodent III” lineages, respectively,
which were also found to be highly heterogeneous in the past
work (Oh et al., 2010). The remaining GSTs were unassigned
since they could not form a monophyletic group with others that
corresponded with the host-associated lineages.

Moreover, we inferred functional features of L. reuteri based
on gene composition profiles, which indicated the absence and
presence of genes in each sample. As described in Figure 1B,
a reference pan-genome database was constructed for L. reuteri
using the coding sequences (CDSs) from 151 genomes. The
database was comprised of a collection of 20,014 L. reuteri-
specific gene clusters, which were obtained using 90% DNA
similarity and 90% alignment coverage threshold. These clusters
included 1,149 core ones found in over 95% of the genomes and
8,926 singletons.

These reference databases based on isolated genomes were
used to characterize the metagenome samples by GST abundance
and gene composition (Figure 1C). We profiled each sample by
searching its reads against our GST database using Kraken (Wood
and Salzberg, 2014) and estimated the abundance using Bracken
(Lu et al., 2017). The gene composition was profiled through
assembly using MEGAHIT (Li et al., 2015), genes were predicted
using Prodigal (Hyatt et al., 2010) and annotated using MMseqs2
(Steinegger and Soding, 2017).

Evaluation of Profile Estimation Using
Synthetic Samples
We evaluated the accuracy of GST classification at the read-level
and the composition level using synthetic samples. The synthetic
samples were created using InSilicoSeq (Gourle et al., 2019)
with three different complexity levels: four low complexity, four
middle complexity and two high complexity, containing either
five or 10 randomly selected GSTs or all 20 types, respectively. The
precision at the read-level, defined as the proportion of correct
assignments in GST and its ancestors to the total number of
assignments, achieved an average precision of 95.68%, 95.16%,
and 92.39% in the low, middle and high-complexity samples,
respectively (Supplementary Table 2). We also measured the
accuracy of the composition-level classification by computing
Pearson’s correlation coefficient between the estimated and true
abundance, obtaining 0.9937, 0.9879, and 0.9729 on average
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FIGURE 1 | Overview of analysis. (A) Construction of the Kraken database of genome-based strain types (GSTs) based on the phylogenetic tree. (B) Construction of
the pan-genome database. (C) Profiling the metagenome samples based on the reference databases built above.

in the low, middle and high-complexity samples, respectively
(Supplementary Figure 3).

Moreover, the accuracy of gene composition profiling was
measured using the true positive rate (TPR) and F1 score. We
simulated metagenomic samples from 12 reference genomes
using InSilicoSeq (Gourle et al., 2019; see Supplementary

Figure 4A legend) at four different coverage levels (1×, 5×,
10×, and 20×) and constructed gene profiles from these samples.
We obtained TPRs ≥ 75% at 5× coverage and ≥90% at 10×
and 20× coverage (Supplementary Figure 4A), and F1 scores
of ≥80% at 5× coverage, and ≥90% at 10× and 20× coverage
(Supplementary Figure 4B). In the case of the real metagenomic
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samples, coverage was 23.38× on average, with a standard
deviation of 22.41 (Supplementary Figure 4C).

Genome-Based Strain Typing to
Characterize Host-Associative L. reuteri
Populations in Real Metagenomic Gut
Samples
Using the GST abundance profiles created from the real
metagenomic gut samples, the samples were found not to contain
a mixture of similarly distributed GSTs but a few abundant types,
which showed an association with the host origin (Figure 2).

Since distinct host-specific lineages could be found from the
same host origin, the host species were divided into “host groups”
based on the most abundant type (“dominant GST”) in the
metagenomic samples. We identified six host groups: one “Pig”
group, four “Mouse” groups, and one “Dog” group (Figure 2A).
The dominant GSTs of each host group were GST 16 in “Pig”
samples (n = 82), GST 9 in “Mouse 1” samples (n = 22), GST
19 in “Mouse 2” samples (n = 20), GST 6 in “Mouse 3” samples
(n = 9), GST 20 in “Mouse 4” samples (n = 6), and GST 1 in “Dog”
samples (n = 9) (Figures 2B,D). Except for the dog samples,
for which isolated genome sequences were unavailable in the

reference database, the host group of the metagenome samples
was associated with the isolation sources of the dominant GSTs
of the samples (Supplementary Figure 1).

These dominant GSTs were consistently found in the
placement of 85 medium-to-high quality metagenome-assembled
genomes (MAGs) in the phylogenetic tree (Figures 3A–D).
Unlike the GST profiles, the MAG placements represented the
phylogenetic relationship between L. reuteri in the samples and
reference strains. For example, the MAGs from the pig samples
were placed into the GST 16 clade (Figure 3A), whereas those
from the dog samples formed their own clade outside the
reference GST 1 clade (Figure 3D). These MAGs also showed a
clear separation by the host groups in the phylogenetic tree, even
without the reference tree of isolated genomes (Figure 3E).

The relative abundance of the dominant GSTs was different
in each host group: the median abundance in “Pig” samples,
“Mouse 1” to “Mouse 4” samples, and “Dog” samples was 87%,
90%, 68%, 68%, 66%, and 50%, respectively (Figure 2D). This
abundance indicated that a single dominant GST occupied more
than half of the L. reuteri population, despite the variation in
abundance. However, we also found non-dominant GSTs with
relative abundance above 10%. “Mouse 2” and “Mouse 4” samples
contained 18% of GST 20 and 17% of GST 19, respectively.

FIGURE 2 | GST abundance profiles. (A) Population structures of L. reuteri in metagenome samples are visualized as Principal Coordinate Analysis (PCoA) plots with
weighted UniFrac distance metric. (B) GST abundance profiles are represented as a heatmap, visualizing the relative abundance of the GSTs. Phylogenetic
relationships between the GSTs are illustrated as a tree on the left (branch lengths are ignored). (C) A heatmap visualizing the relative abundance of host-specific
lineages assigned from the GSTs. The host groups are shown in different colors on the bottom. Scatter and box plots representing the relative abundance of
(D) GSTs and (E) host-specific lineages of each host group and sample.
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FIGURE 3 | Phylogenetic trees of MAGs. Phylogenetic trees display the placement of L. reuteri MAGs assembled from the reads of the metagenome samples in the
(A) “Pig” group, (B) “Mouse 1” and “Mouse 3” groups, (C) “Mouse 2” and “Mouse 4” groups and (D) “Dog” group, respectively. (E) A phylogenetic tree inferred from
the MAGs without reference genomes.

Not only the isolation sources of the dominant GSTs, but the
non-dominant GSTs coincided with the host groups of the
samples (Supplementary Figure 1).

Furthermore, we assessed how distinct each L. reuteri
population between host groups was by performing a
permutational multivariate analysis of variance (PERMANOVA)
(Anderson, 2001) test. This revealed that the GST abundance
of the samples was significantly different from those
of other samples included in the different host groups
(Supplementary Figure 5).

Functional Features of L. reuteri
Associated With Host Origin
Phylogenetically, we measured the host association of L. reuteri
using the GST profiles. Furthermore, we aimed to determine
whether host specificity was reflected in the functional profiles.
To investigate this, we selected host-specific genes from the
gene composition profiles, which were created by searching
metagenomic sequences against the pan-genome of the
isolated strains.

We detected significant differences in L. reuteri gene
composition between the host groups using the PERMANOVA

test (Supplementary Figure 6). A set of 4,128 host-specific
genes, including 2,172 “Pig,” 540 “Mouse 1,” 644 “Mouse
2,” 354 “Mouse 3,” 207 “Mouse 4” and 211 “Dog”-specific
genes, were identified using Fisher’s exact test, and assigned
to clusters of orthologous group (COG) (Tatusov et al., 2000)
annotation (Figure 4A and Supplementary Table 3). These genes
mainly belonged to four functional categories: (1) replication,
recombination and repair, (2) transcription, (3) transport and
metabolism of various macromolecules and ions, and (4) cell
wall/membrane/envelope biogenesis.

Host-specific genes were obtained not only from the
pan-genome database but also from MAGs. We predicted
132,255 CDSs from 85 MAGs and identified a set of
1,913 host-specific genes from them by performing Fisher’s
exact test. Compared to the host-specific gene set identified
from the pan-genome database, this MAG-based gene set
contained 418 of newly found host-specific genes. These novel
genes were annotated based on the eggNOG (Huerta-Cepas
et al., 2019) database (Supplementary Table 4), and the
proportion of COG functional categories of all host-specific
genes was computed, as shown in Figure 4B. We compared
the functional structures of these genes based on the pan-
genome to those based on both pan-genomes and MAGs and
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FIGURE 4 | Host-specific functional structures of each host group. The stacked bar plots visualize the proportion of the functional categories of host-specific genes.
(A) represents the host-specific genes identified from the pan-genome database, while (B) represents those identified from the pan-genome database and the
MAGs.

found that the 10 most abundant categories were conserved
despite some differences in ratios (Figure 4). However, if the
host-specific reference genome was absent, a relatively high
percentage of the host-specific genes were newly identified
from the MAGs. Approximately 37% of dog-specific genes
were exclusively found in the MAGs, while 2% of pig and
20% of mouse-specific genes were found only in the MAGs
(Supplementary Table 5).

From the detailed functional description in Supplementary
Tables 3, 4, transposases, integrases and ATP-binding cassette
transporters were found to be host-specific in all host groups.
However, some gene functions were not identified in all host
groups; for example, host-specific urea amidohydrolases were
observed only in the “Mouse 1” and “Mouse 2” groups.
These host-specific functions, especially those related to mobile
elements and biofilm formation, reflect differences in the host gut
environment and the adaptation mechanism of L. reuteri to their
host, which consistently supports the observations of previous
studies with isolated strains (Frese et al., 2011, 2013).

DISCUSSION

We confirmed that our computational findings are consistent
with previously published results based on genome isolation
by comparing it in two ways: phylogenetic trees and host-
specific genes. (1) As shown in Supplementary Figure 2, our

phylogenetic tree is similar to a previously published tree (Duar
et al., 2017; Yu et al., 2018), which makes it possible to assign
our GSTs to host-specific lineages reported before and to profile
metagenome samples with those lineages (Figures 2C,E). The
GSTs could explain the phylogeny of L. reuteri population in
the samples further by clustering highly heterogeneous lineages
into several types based on fixed amounts of variation. For
example, “Mouse 1” and “Mouse 3” samples mainly contained
L. reuteri strains in “Rodent I” lineages but different GSTs, GST
9 and 6, respectively. (2) Host-specific genes identified from
the gene profiles using Fisher’s exact test could be assigned to
functions such as biofilm formation and mobile element, which
were previously highlighted as host-specific functions of various
hosts, such as mice (Frese et al., 2011, 2013), herbivores (Yu et al.,
2018), and chickens (Duar et al., 2017).

Moreover, our method can detect novel host-specific patterns
of L. reuteri even without the respective isolates in the reference
database. We showed this by assigning dog samples to GSTs,
the majority of L. reuteri strains within them were classified as
GST 1 and their populations were significantly different from
those in other host groups as determined using PERMANOVA
test. GST 1 is distinctive to others since it consists of not just
one dominant isolation source but two: human and herbivore.
Placing MAGs from the dog sample in our phylogenetic tree
demonstrated the presence of an independent clade of dog
strains, which suggested that the divergence between human-
and herbivore-specific lineages in reference GST 1 strains was
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preceded by the divergence of a dog-specific lineage. Mechanisms
of these host transfer and divergence would possibly be caused by
similar gastrointestinal conditions between the hosts, horizontal
acquisition of new traits or dietary glycans, helping L. reuteri
adapt in other hosts (Duar et al., 2017).

Unlike the MAG placement, the GST profiles based on read-
mapping did not explain evolutionary trajectories; they only
represented the relative abundance of GSTs in the samples.
Nonetheless, analysis based on read-mapping has advantages
over MAG placement-based analysis. First, obtaining high-
quality MAGs requires a large number of samples (Alneberg
et al., 2018). In this study, we obtained 85 medium-to-high
quality MAGs from 148 metagenomic samples. Since the quality
of MAGs depends on the quality of assembly (Sangwan et al.,
2016; Alneberg et al., 2018), the phylogenetic placement would
be inaccurate if the assembled contigs contained too much
noise or had low coverage. Additionally, the MAG often
represents multiple strains rather than an individual, which can
cause a bias in the strain-level analysis (Sangwan et al., 2016;
Alneberg et al., 2018).

Metagenome-assembled genomes also provided many novel
functional features. Approximately 10% of the host-specific
genes were novel in the MAGs, in that 4,128 and 418 of
these genes were identified using Fisher’s exact test from the
isolates and MAGs, respectively. In particular, if the host-
specific reference genome is unavailable, such as for dogs
in this study, a relatively high proportion of novel host-
specific genes is found only based on MAGs. However, some
limitations of using MAGs mentioned above can lead to
incorrect genes and functional features. Therefore, additional
genome isolation of the strains should be done continuously,
and decontamination techniques for the MAGs need further
improvement. Furthermore, statistical tests to select genes that
are significantly specific to the host and to filter those that
are exceptionally found in few samples are necessary for the
functional analysis.

In summary, our approach utilized metagenomic reads
instead of isolated bacterial genomes to analyze the host-
symbiont association, allowing the application of this approach
to the gut metagenome of any host, such as dogs in this
study. We investigated the host-specific population structures
and functional features of L. reuteri in metagenomic samples
through the reference pan-genome and MAGs. In addition to
demonstrating a consistent association with previously studied
hosts, this approach could also be applied to a host with no
existing isolated strains.

MATERIALS AND METHODS

Prioritization of Reference Genomes
In total, 151 high-quality reference L. reuteri genomes from the
EzBioCloud database (Yoon et al., 2017a) were prepared and
sorted based on the level of genome assembly completeness, with
complete genomes being prioritized followed by chromosome-
level assembled genomes, then others. Those in the same
assembly completeness level were re-sorted by their N50 values.

Phylogenetic Analysis and Strain Typing
of L. reuteri
The ML phylogenetic tree of L. reuteri was created through
the workflow described by Ha et al. (2019). First, 14 complete
reference genomes were selected, and UBCG core genes (Na et al.,
2018) were extracted from each genome. The UBCGs for each
complete genome pair were aligned to compute the similarity.
The genomes with a median similarity of 100% in all pairs were
grouped, and those with the highest priority in each group were
selected as representative genomes. These eight representatives
were used for L. reuteri core-genome identification. A set of
core genes was generated by adding only those shared among
the complete genomes of L. reuteri using the Roary v3.12.0
pipeline (Page et al., 2015). A species-specific reference genome
for L. reuteri was then created by concatenating the core gene
set of the type strain. Multiple sequence alignment was created
from the SNVs of all 151 genomes aligned against the reference
genome in this study using MUMmer v.3.23 (Kurtz et al., 2004).
An ML tree was inferred by RAxML v.8.2.8 using the GTRCAT
nucleotide model (Stamatakis, 2014).

The GSTs were defined as the largest clades, where the number
of SNVs was less than 20,000 in all pairs of the clade members,
clustered from L. reuteri genomes. Starting from the type strain
genome, the sister clades were merged on the ML tree into the
GST as long as the maximum number of SNVs between the
clade members was below 20,000. The merging step was repeated
until everything was clustered, starting from the genome with the
highest priority. The genome with the highest priority of each
type was selected as the representative.

Using the Kraken-build script in the Kraken software package
(Wood and Salzberg, 2014), a database with a k-mer length of
31 was constructed from the core genes of the representative
genomes. Since Kraken by default uses the NCBI taxonomy
to assign k-mers to a taxonomic level, custom taxonomy was
provided following the topology of the ML tree to map k-mers
to the lowest common ancestor.

Construction of the L. reuteri Reference
Pan-Genome
To produce an L. reuteri-specific gene database, all CDSs from
Lactobacillus were collected from the EzBioCloud database and
clustered into orthologous groups using Linclust (Steinegger and
Soding, 2018) at 90% sequence identity and 90% bi-directional
coverage thresholds. Only representative sequences of the clusters
that contained L. reuteri were added to the pan-genome database
and assigned a COG based on the annotation in the EzBioCloud
database (Yoon et al., 2017a).

Metagenomic Sample Collection and
Sequencing
Metagenomic sequence data were collected by not only
downloading previously deposited data of pig, mouse, and
dog gut microbiomes from the NCBI SRA database (Xiao
et al., 2015; Rosshart et al., 2017; Coelho et al., 2018; Munk
et al., 2018), but also by directly sequencing 20 pig samples
(Supplementary Table 6).
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All rectal grab fecal samples were collected aseptically from
individual pigs on the same day at 75 days (30 kg) and 150 days
(90 kg) of age. Total DNA from fecal samples was isolated
using the FastDNA Spin Kit for Soil (MP Biomedicals), and
its quality was checked using the Qubit dsDNA HS Assay Kit
(Thermo Fisher Scientific). DNA libraries for whole-genome
shotgun sequencing were prepared according to the Illumina
TruSeq Nano protocol, and 2 × 100 paired-end sequencing was
performed using an Illumina NovaSeq 6000 system.

Metagenomic Sequence Data
Processing
Species-level taxonomy profiles were created using a curated core
gene-based bacterial database (Chalita et al., 2020). All samples
not containing L. reuteri in their profiles were discarded.

Quality filtering and trimming were performed using BBDuk
from the BBTools suite1. Adapter sequences and low-quality
bases from termini at a quality threshold of Q12 were trimmed
from the reads, followed by the removal of the reads with average
quality below 10. All reads that passed quality control filtering
were assembled into contigs using MEGAHIT v.1.1.3 (Li et al.,
2015) with default k-mer sizes and a minimum contig length
of 500 bp. Prodigal v.2.6.2 (Hyatt et al., 2010) was used in
metagenomic mode to extract all genes from the assembly that
were longer than 100 bp.

Profiling GST Abundance and Gene
Composition in the Metagenomic
Samples
The reads in each metagenomic sample were mapped to the
reference Kraken database, and the results were summarized
using kraken-report. We used Bracken (Lu et al., 2017) to
estimate GST abundance from the reports. The gene composition
was profiled by searching the predicted genes from the assembled
reads against the L. reuteri pan-genome using MMseqs2
(Steinegger and Soding, 2017) with 90% minimum sequence
identity and bi-directional alignment coverage thresholds.

For the real metagenomic samples, those containing less than
20,000 reads classified as L. reuteri or with less than 500 predicted
gene hits were removed. The remaining samples were clustered
by their host group, which included the same dominant GSTs.
The host group and its samples were filtered out if they did not
include more than five samples.

Metagenome Binning and Picking
L. reuteri MAGs
MetaBAT2 v.2.14 (Kang et al., 2019) with the option “–minContig
1500” was used for contig binning. The coverage information
was provided through Bowtie2 (Langmead and Salzberg, 2012),
which mapped the reads into contigs and SAMtools (Li et al.,
2009), which converted the mapping results into the BAM
format. CheckM v.1.1.1 (Parks et al., 2015) was used to assess
the completeness and contamination of each genome bin with
UBCGs (Na et al., 2018) as the marker gene set, selecting

1BBMap – Bushnell B. – sourceforge.net/projects/bbmap/

medium-quality genomes as having completeness of ≥50%
and contamination of <10%, and high-quality genomes with
completeness of >90% and contamination of <5% (Bowers et al.,
2017). The average nucleotide identity (ANI) values between the
type strain genome of L. reuteri and MAGs were calculated using
the OrthoANI tool (Yoon et al., 2017b), assigning the MAGs with
an ANI value >95% to L. reuteri (Goris et al., 2007).

Validation With Simulated Metagenome
Data
Synthetic datasets were generated for three complexity levels
from the L. reuteri reference genome sequences using InSilicoSeq
v.1.3.5 (Gourle et al., 2019): (1) four low-complexity samples,
(2) four middle-complexity samples, and (3) two high-
complexity samples. The low, middle and high-complexity
samples contained 10 million reads with five randomly selected
GSTs, 50 million reads with 10 randomly selected GSTs, and
50 million reads with all 20 GSTs, respectively. The genome
abundance was log-normally distributed in half of the samples
and exponentially distributed in the remaining samples.

The read-level accuracy to identify L. reuteri GSTs in the
metagenomic samples was assessed using a precision metric.
The precision was computed by dividing the number of
assignments to the correct type and its ancestors by the total
number of assignments. The composition-level accuracy of
the GST profiles was evaluated based on Pearson’s correlation
coefficient. The coefficient between true and estimated GST
abundance was calculated.

Furthermore, the TPRs and F1 scores were used to evaluate
the accuracy of profiling L. reuteri gene composition. Overall,
12 complete isolated genomes were simulated into synthetic
metagenome reads at four coverage levels: 1×, 5×, 10×, and
20×. These synthetic reads were assembled using MEGAHIT
(Li et al., 2015), and CDSs were predicted from contigs
≥500 bp using Prodigal (Hyatt et al., 2010), as described above.
Gene composition profiles for each simulated sample were
constructed by searching CDSs≥ 100 bp against the pan-genome
database using MMseqs2 (Steinegger and Soding, 2017) with
90% minimum sequence identity and bi-directional alignment
coverage thresholds. To compare the gene profiles to the true
gene composition of isolated genomes, TPRs and F1 scores were
defined as follows:

TPR =
true positive

true positive+ false negative
F1 = 2×

precision× recall
precision+ recall

Phylogenetic Placement and Novel Gene
Identification of MAGs
Single nucleotide variations were detected from the medium
and high quality L. reuteri MAGs using MUMmer (Kurtz et al.,
2004), merged with the SNVs from 151 L. reuteri genomes into
multiple sequence alignment. The MAGs were inserted into the
phylogenetic tree of L. reuteri using RAxML with the “-f v”
option (Stamatakis, 2014). Genes of the MAGs, predicted by
Prodigal (Hyatt et al., 2010), were searched against the L. reuteri
pan-genome database using MMseqs2 (Steinegger and Soding,
2017) and compared to the gene composition profiles of the
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corresponding metagenome samples to identify novel genes of
MAGs. The unmatched genes were clustered using Linclust
(Steinegger and Soding, 2018) with 90% of minimum sequence
identity and bidirectional alignment coverage thresholds and
annotated with eggNOG (Huerta-Cepas et al., 2019) assignments
using eggNOG-mapper v.2.0.1 (Huerta-Cepas et al., 2017).

Statistical Analysis
PERMANOVA (Anderson, 2001), with 9,999 permutations,
was used to determine whether the GST abundance and
gene composition of the samples from one host group
were significantly different to those of another. Weighted
UniFrac distance (Lozupone et al., 2011) for GST profiles and
Jaccard distance for gene composition profiles were used as
distance metrics.

For each host and gene, a contingency table representing
the difference between the presence and absence of the genes
in the gene composition profiles of the samples from the host
was created and used for Fisher’s exact test to identify host-
specific genes. The gene was found to be host-specific if the
p-value was <0.01.
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