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Autophagy is an important homeostatic mechanism, in which lysosomes degrade and 
recycle cytosolic components. As a key defense mechanism against infections, autophagy 
is involved in the capture and elimination of intracellular parasites. However, intracellular 
parasites, such as Toxoplasma gondii, have developed several evasion mechanisms to 
manipulate the host cell autophagy for their growth and establish a chronic infection. This 
review provides an insight into the autophagy mechanism used by the host cells in the 
control of T. gondii and the host exploitation by the parasite. First, we summarize the 
mechanism of autophagy, xenophagy, and LC3-associated phagocytosis. Then, 
we illustrate the process of autophagy proteins-mediated T. gondii clearance. Furthermore, 
we discuss how the parasite blocks and exploits this process for its survival.

Keywords: Toxoplasma gondii, autophagy, xenophagy, LC3-associated phagocytosis, IFN-γ mediated pathogen 
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INTRODUCTION

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite, which can infect 
warm-blooded animals and cause morbidity and mortality in humans and animals worldwide 
(Halonen and Weiss, 2013). T. gondii is unified as a single species in the genus Toxoplasma, 
although recent estimates based on genomic barcoding show a much greater diversity across 
continents. Most strains of Toxoplasma isolated in Europe and North America belong to 
three main clonal lineages known as Types I, II, and III strains, which have different 
virulence in mice and may cause different human sequelae (Darde et  al., 1992; Howe and 
Sibley, 1995; Howe et  al., 1997; Machacova et  al., 2016). T. gondii strains in South America 
are genetically more diverse than those in North America and Europe. However, Chinese 
1 strain was reported to be  the dominant strain, differing from the three main clones 
previously reported in East Asia, particularly in China (Zhou et  al., 2010; Chen et  al., 2011; 
Wang et  al., 2013; Li et  al., 2014).

Toxoplasma gondii is transmitted through food-borne, animal-to-human, congenital, blood 
transfusion, and organ transplantation (Montoya and Liesenfeld, 2004; Chu et  al., 2017; Yu 
et  al., 2017). T. gondii can cause human congenital and acquired infection. The congenital 
form may be  subclinical or manifest as destructive damage to the internal organs, eyes, and 
brain (Halonen and Weiss, 2013; Hampton, 2015). Available data suggest about a third of 
the world’s population have developed long lasting serum antibodies in response to previous 
subclinical infection. Most of the toxoplasmosis is asymptomatic (Halonen and Weiss, 2013; 
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Parlog et  al., 2014). In rare cases, acquired toxoplasmosis 
could cause serious, disseminated diseases such as 
meningoencephalitis, pneumonia, or myocarditis. In addition, 
acquired ocular disease generally occurs either alone as a 
result of reactivation from chronic infection, or as a 
complication of acute systemic disease, including newly 
acquired disease (Montoya and Remington, 1996; Montoya 
and Liesenfeld, 2004; Hampton, 2015). In the acute phase 
of infection, tachyzoites rapidly replicate and spread to 
various organs through the blood or lymphatic system. In 
the chronic phase, T. gondii forms tissue cysts (bradyzoites) 
in which the parasite can survive for a long time or even 
lifetime lurking in the brain, tissue, muscle, retina, etc. 
(Lyons et al., 2002; Halonen and Weiss, 2013; Li et al., 2016).

Autophagy, a well-conserved and tightly regulated process 
in eukaryotes, which is key for cellular homeostasis, cell 
survival, and degradation of damaged cytoplasmic components 
or harmful exogenous substrates (Levine and Kroemer, 2008; 
Wang et  al., 2009). As a key defense mechanism against 
infections, it also involves catching parasites inside cells and 
then clearing them out (Besteiro, 2017). Moreover, autophagy 
is thought to be an integral component of the innate immune 
response, targeting intracellular parasites, and parasites in 
damaged vacuoles and phagosomes, limiting their growth 
(Huang and Brumell, 2014). Recent study has shown that 
4-Hydroxybenzaldehyde restricts the intracellular growth of 
Toxoplasma by activating SIRT1-mediated autophagy in 
macrophages (Lee et al., 2020). However, intracellular pathogens 
have also evolved diverse mechanisms to avoid autophagy 
(Steele et al., 2015). In this review, we focus on recent progress 
on understanding interactions between T. gondii and host 
autophagy pathways.

MECHANISMS OF AUTOPHAGY

Autophagy is a conservative catabolism system in cells, in which 
double-membraned autophagosome engulfs cytoplasmic 
components and degrades them after fusion with lysosomes 
(Choi et  al., 2013; Paulus and Xavier, 2015; Galluzzi et  al., 
2017). Autophagy is mainly dependent on autophagy (ATG) 
proteins leading to the formation of autophagosome and lysosomal 
degradation of autophagy substrates. This pathway involves 
several different steps, such as the formation of a cup-shaped 
double membrane capable of engulfing specific substances or 
chunks of cytoplasm; membrane elongation and closure to form 
autophagosomes; transport and fusion of autophagosomes and 
lysosomes; and finally, degradation of the enclosed cytoplasmic 
contents within the autophagosome and nutrient recycling 
(Nakatogawa et al., 2009; Parzych and Klionsky, 2014; Figure 1). 
Starvation and the mammalian target of rapamycin (mTOR) 
kinase inhibition induce autophagy to provide nutrients for 
the basic physiological processes of the cells and to maintain 
homeostasis. Nutrient deprived conditions induce autophagosome 
formation via the mTORcomplex 1 (mTORC1) inhibition in 
mammalian cells. The initiation complex of ULK1 activates 
the phosphatidylinositol 3-kinase (PI3K) complex of 

Beclin1-Vps34-Vps15-Atg14L (Deretic, 2011; Choi et al., 2014; 
Paulus and Xavier, 2015). The expansion or elongation of the 
phagophore need the involvement of two ubiquitin-like (UBL) 
conjugation systems. The first UBL conjugation system involves 
the formation of Atg12-Atg5-Atg16 complex. In yeast cells, 
Atg12 binds covalently to Atg5. This Atg12-Atg5 conjugation 
is highly dependent on Atg7 (E1 activating enzyme) and Atg10 
(E2 activating enzyme). Then, Atg16 non-covalently binds to 
Atg5 forming the Atg12-Atg5-Atg16 complex, following the 
Atg12-Atg5 conjugation. The second UBL conjugation system 
involves the Atg8 or LC3 (in mammals) system. Atg8/LC3 is 
activated by the EI-like enzyme Atg7 and transferred to the 
E2-like enzyme Atg3. In the final step, phosphatidylethanolamine 
(PE) binds to the C-terminal glycine Atg8 to form 
LC3-phosphatidylethanolamine conjugate (LC3-II) and 
incorporated into the autophagosomal membrane (Hwang et al., 
2012; Huang and Brumell, 2014; Biering et  al., 2017; Choi 
et  al., 2017; Wacker et al., 2017). The lysosome subsequently 
fuses with the outer membrane of the autophagosome to deliver 
their cytoplasmic cargo for degradation and recycling (Melzer 
et  al., 2008; Paulus and Xavier, 2015; Selleck et  al., 2015). 
Cytoplasmic cargoes are captured in double-membrane structure, 
called “autophagosomes,” which then mature into autolysosomes 
that degrade or otherwise eliminate captured cargoes. Another 
strategy employed by host cells to capture and degrade invading 
intracellular pathogens is xenophagy. It is a key defense mechanism 
against various infections involving the elimination intracellular 
pathogens such as protozoans, bacteria, and viruses (Mizushima 
et  al., 2011; Paulus and Xavier, 2015; Galluzzi et  al., 2017). 
Xenophagy is also considered as an innate component of cellular 
immune response.

Autophagy proteins may be  involved in certain cellular 
pathways leading to the elimination of intracellular pathogens 
but do not constitute autophagy. These cellular pathways are 
established under certain cellular conditions; some bypass 
proteins involved in elongation and closure (Atg7, Atg5, and 
LC3), while others bypass proteins necessary for initiation 
(ULK1) and nucleation (Beclin1; Steele et  al., 2015; Galluzzi 
et al., 2017). LC3-associated phagocytosis (LAP) is an example 
of such a process, involves the recruitment of LC3 to single-
membrane phagosomes, which surround intracellular pathogens 
or dead cells (Paulus and Xavier, 2015). This process is 
independent of the ULK1 initiation complex, while the 
PtdIns3K complex is important for LAP initiation (Martinez 
et al., 2015; Besteiro, 2019). During PAMP receptor activation, 
PI3PK complex is recruited to the phagosomal membrane 
(Ma et al., 2012). This complex lacks ATG14 but is composed 
of Rubicon and UV resistance-associated gene (UVRAG; 
Martinez et  al., 2015). With Rubicon’s help, NADPH oxidase 
2 (NOX2) then enters the phagosomes. Activation of NOX2 
and PI3PK leads to the production reactive oxygen species 
(ROS) and initiate lipidation of the phagosomal membrane, 
respectively, and ultimately leading to the formation of 
LAPosome (LC3-decorated phagosome; Ueyama et al., 2011). 
Fusing with lysosomes to form a lytic compartment, the 
LAPosomes then degrades the cargo. Although the effect of 
LC3 on LAPosome is still unknown, some studies suggested 
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that LC3 could accelerate its maturation by fusion with 
lysosomes (Martinez et  al., 2015; Besteiro, 2019).

MECHANISMS OF HOST AUTOPHAGY 
PROTEINS-MEDIATED T. GONDII 
CLEARANCE

Toxoplasma gondii replicate in the host cell by forming a special 
endocytic vacuole, called parasitophorous vacuole (PV). The 
membrane of PV allows T. gondii to develop while protected 
from intracellular cytoplasmic defense mechanisms (Orlofsky, 
2009; Portillo et  al., 2017). Increasing literature indicates that 
T. gondii actively induces autophagic pathways in the infected 
host cells (Orlofsky, 2009; Wang et  al., 2009; Chu et  al., 2017; 
Saeij and Frickel, 2017; Subauste, 2019). Two types of immune 
response are required in the control of T. gondii: clearance of 
T. gondii by CD40-mediated autophagy and IFN-γ-induced the 
clearance of T. gondii through autophagy proteins. Both of 
them are essential for killing parasites within host cells.

Clearance of T. gondii by CD40-Mediated 
Autophagy
The parasitic vacuole is formed during the active invasion 
of T. gondii. Vacuolar membranes have been extensively 
modified by removing many proteins from host cells and 
inserting parasite-derived proteins into parasitic vacuoles. 
Once the PV is formed, its nonfusion properties will 
be  unchanged (Subauste, 2009). So, whether there is a way 
to change the nonfusion properties of PV is the key question 
in the interaction between T. gondii and the immune system. 
Previous studies have demonstrated that this can be achieved 

via stimulation of CD40 (Andrade et  al., 2006; Subauste 
et  al., 2007b). In macrophages infected with T. gondii, 
stimulation with CD40 can induce the fusion of the PV 
with lysosomes in an autophagy-dependent manner.

As a member of the TNF receptor superfamily, CD40 expresses 
on various nonhematopoietic cells and APCs (Subauste, 2009; 
Van Grol et  al., 2013). Several studies have demonstrated that 
CD40 triggers signaling pathways, which are upstream of ULK1 
and Beclin1-PI3KC3 complexes to activate autophagy. CD40 
stimulates autophagy via pathways involving CaMKKβ, 
AMP-activated protein kinase (AMPK), and ULK1, leading to 
kill T. gondii (Liu et  al., 2016). The phosphorylation of Ser-555 
ULK1 and autophagy mediated by ULK1 are caused by AMPK  
(Russell et  al., 2013). CD40 can induce phosphorylation of 
Thr-172 AMPK mediated by CaMKKβ. Besides direct effects 
on the ULK1/2 complex, AMPK also inhibit mTORC1 by 
phosphorylating Raptor (a mTORC1 binding partner). CD40 
also interacts with TRAF6 to stimulate TNF-α production in 
macrophages. Recruitment of TRAF6  in the cytoplasmic tail of 
CD40 enhances the expression of TNF-α. It causes phosphorylation 
of Bcl-2 at Ser-87  in JNK-dependent way, and binding Beclin 
1 to PI3KC3 to induce autophagy (Subauste et  al., 2007a; Liu 
et  al., 2016). CD40 can also induce the death of T. gondii by 
lowering the level of P21 and upregulating the autophagy molecule 
Beclin 1 (Portillo et al., 2010; Figure 2). CD40 signaling triggers 
pathogen-lysosome fusion via the autophagic mechanism. ULK1/2 
complexes and the Beclin1-PI3KC3 complex activation promote 
the formation and maturation of autophagosome by recruiting 
Atg proteins to the isolation membrane (Liu et  al., 2016). The 
phagophore is produced by polymerization of Atg8 (LC3) and 
Atg12-Atg5 UBL conjugation systems (Kihara et  al., 2001; 
Ohsumi, 2001). The isolation membrane envelops organelles 
and cytosol, which leads to forming the autophagosomes. 

FIGURE 1 | Schematic diagram of the autophagy pathway. The induction of autophagy causes the assembly and elongation of the phagophore and finally forms a 
structure that can surround the components in cytoplasm. The phagophore expands and develops into a double-membrane structure of autophagosomes. Targets 
in cytoplasm, like organelles, proteins, and microorganisms, are isolated. Autolysosome has formed by the fussing of autophagosome and lysosome, where 
hydrolytic enzymes in the autolysosome degrade cytoplasmic cargo. The left side shows the key proteins related to mammalian autophagy (ATG, autophagy-related: 
ATG3, ATG5, ATG7, ATG4, ATG12, ATG13, ATG14, ATG16L1, FIP200, ULK1, PI3KC3, Beclin1, LC3, and PE).
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Therefore, autophagosomes are recruited around the PV and 
fused with late endosomal lysosomes to kill T. gondii 
(Zhao et  al., 2007; Subauste, 2009; Chu et  al., 2017).

IFN-γ Restricts T. gondii Through 
Autophagy-Independent Effects of 
Autophagy Proteins
To restrict the infection, IFN-γ-stimulated murine cells are 
armed with effector molecules, such as the immunity-related 
p47GTPases (IRGs) and guanylate-binding proteins (GBPs; Feng 
et al., 2008). Studies have revealed that the LC3 conjugation 
system is necessary to recruit IRGs and GBPs to the 
parasitophorous vacuole membrane (PVM; Choi et  al., 2014; 
Haldar et  al., 2014; Ohshima et  al., 2014; Lee et  al., 2015). 
Atg5 is an important autophagic gene and is particularly useful 
for targeting IRGs and GBPs to PVM containing T. gondii. 
Without ATG5, IRGs and GBPs are usually induced by IFN-γ, 
and they form aggregates in the cytoplasm instead of targeting 
vacuoles containing pathogens (Zhao et  al., 2008; Choi et  al., 
2014, 2017; Biering et  al., 2017). Once these GTPases are 
recruited to the LC3-tagged PVM, the PVM surrounding 
parasites shows extensive vesiculation and blebbing with clusters 
of small vesicles in the purlieu of the vacuole. At these sites, 

IRGs localize to small vesicular forms with dense coats from 
the adjacent PVM, stripping the PV membrane of T. gondii. 
Denuded parasites are enveloped in autophagic vacuoles that 
eventually fuse with lysosomes and ultimately limit the growth 
of T. gondii growth (Ling et al., 2006; Zhao et al., 2008; Clough 
et  al., 2016; Coppens, 2017). PVMs of type I  virulent strains 
are much less intensely loaded with IRG proteins than those 
of type II or type III avirulent strains in single infection or 
co-infections (Khaminets et  al., 2010). Although IRGs and 
GBPs participate in the disruption of parasite PVM, the molecular 
mechanisms of how these IFN-γ induced GTPases interact 
with the autophagic machinery are poorly understood (Melzer 
et  al., 2008; Whitmarsh and Hunter, 2008; Choi et  al., 2014; 
Biering et  al., 2017; Figure  3).

Although some studies have identified p47 IRGs as the 
primary IFN-γ-induced mechanism of anti-Toxoplasma infection 
in mice during the acute phase, there is a lack of multitude 
of IRGs in humans (Subauste, 2009; Clough et  al., 2016; 
Krishnamurthy et  al., 2017). Immunity-related GTPase family 
M protein (IRGM) and immunity-related GTPase cinema 
(IRGC) are the only two human IRGs. But neither of them 
are induced by IFN-γ. IRGM plays a role in autophagy and 
host resistance against Mycobacterium tuberculosis; but its role 
in toxoplasmosis has not been determined (Portillo et al., 2010; 

FIGURE 2 | CD40 induces activation of autophagy signaling pathway. CaMKKβ-mediated Threonine-172 AMP-activated protein kinase (AMPK) phosphorylation 
can be induced by CD40, which leads to Serine-555 ULK1 phosphorylation and ULK1-mediated autophagy. CD40 may upregulate Beclin 1 protein levels by 
reducing p21. The accumulation of TRAF6 in the cytoplasmic tail of CD40 enhances TNF-α autocrine production, which leads to the phosphorylation of Bcl-2 at 
Serine 87 in JNK-dependent way and separation of Bcl-2 from Beclin1. ULK1, Beclin 1, PI3KC3, ATG5, ATG7, and lysosomal enzymes play an important role in 
killing of Toxoplasma gondii caused by CD40 (Subauste, 2009; Liu et al., 2016).
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Deretic, 2011; Niedelman et al., 2013; Krishnamurthy et al., 2017). 
Furthermore, seven IFN-γ-inducible Guanylate binding proteins 
(GBPs) expressed in humans are involved in IFN-γ dependent 
clearance of pathogens such as Chlamydia and viruses. There 
is currently no evidence of GBP-mediated inhibition of T. 
gondii in humans (Ohshima et  al., 2014). Selleck et  al. 
identified new roles for ubiquitination and recruitment of 
autophagic adapters p62 and NDP52, which could control 
T. gondii replication in IFN-γ activated human cells (Choi 
et  al., 2014; Lee et  al., 2015; Selleck et  al., 2015; Clough 
et al., 2016). The IFN-γ mediated ubiquitin-driven restriction 
pathways of Toxoplasma type II varies with cell type. Ubiquitin-
targeted PVs found in HeLa cells do not acidify but instead 
restrict Toxoplasma type II by stunting growth. However, 
IFN-γ stimulated human umbilical vein endothelial cells 
(HUVEC) have been shown to restrict Toxoplasma in a 
manner independent of autophagy, where HUVEC exhibits 
vacuolar lysosomal acidification and subsequent parasite 
destruction. Thus, we  conclude that the two different human 
cell types deploy the same initial defense molecules ubiquitin, 
p62 and NDP52 to similar numbers but diverge in the 
ultimate strategy (Clough et  al., 2016; Saeij and Frickel, 
2017). Neither of these mechanisms works in all cell types, 
suggesting the IFN-γ mediated control of T. gondii exists 
multiple overlapping pathways in human cells (Niedelman 
et  al., 2013; Selleck et  al., 2015; Bando et  al., 2018). In 
addition, ATG16L1 and ATG7 are required to encapsulate 

PV in multiple host membranes. They do not destroy vacuoles 
or transmit parasite to lysosomes, but they limit nutrient 
absorption and inhibit parasite growth (Choi et  al., 2014; 
Lee et al., 2015; Selleck et al., 2015). Therefore, IFN-γ mainly 
relies on ubiquitination and core autophagy to mediate 
membrane engulfment and cell growth restriction in human 
cells (Figure  4).

HOST CELL SIGNALING IS 
MANIPULATED BY TOXOPLASMA 
GONDII TO AVOID AUTOPHAGY 
TARGETING

Autophagy is mainly a process of sustaining life. It could 
not only coordinate the degradation and circulation of 
important macromolecules such as lipids and amino acids 
response to stress but also contribute to catching the 
intracellular parasites and transporting them for destruction 
(Bando et al., 2018). Avoiding lysosomal degradation is critical 
for the survival of T. gondii. Toxoplasma can interfere with 
the host autophagy machinery to escape targeting or even 
promote their intracellular growth by exploiting autophagy 
components (Wang et al., 2009; Deretic, 2011; Ohshima et al., 
2014). Currently, it is still unclear how Toxoplasma interferes 
with autophagy.

FIGURE 3 | IFN-γ restricts the growth of T. gondii in mouse cells. In mice, the Atg proteins Atg7, Atg3, and the Atg12-Atg5-Atg16L1 complex play a key role in the 
delivery and binding of LC3 to the autophagosome membrane. They are also involved in targeting immunity-related p47GTPases (IRG) and guanylate-binding 
protein (GBP) to Toxoplasma parasitophorous vacuole membrane (PVM).
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Toxoplasma gondii activates host cell signaling cascade of 
the epidermal growth factor receptor (EGFR) by PI3K to 
avoid targeting autophagy mechanisms to parasitic vacuoles 
(Muniz-Feliciano et  al., 2013; Coppens, 2017; Portillo et  al., 
2017). Parasites can induce the phosphorylation of EGFR in 
host cells by secreting several proteins containing multiple 
domains homologous to EGFR, such as MIC3 and MIC6. 
PI3K-mediated Akt phosphorylation can activate the 
autophagosome negative regulator mTORC1, which leads to 
reverse regulation of autophagy (Muniz-Feliciano et  al., 2013; 
Coppens, 2017; Lopez Corcino et  al., 2019). Thus, the Akt 
signaling pathway is critical for escaping host autophagy to 
promote parasite survival (Figure  5 I). The moving junction 
is characterized by the expression of RON4. The formation 
of the moving junction is accompanied by the activation of 
focal adhesion kinase (FAK) in the mammalian cell during 
the invasion. The activation of Src depends on FAK, and 
then causes the transactivation of EGFR. The activation of 
EGFR recruits STAT3 signaling to block the activation of key 
stimulators of autophagy, PKR, and eIF2α. They prevent T. 
gondii from becoming a target (Portillo et  al., 2017). At the 
later stage of the intracellular phase of T. gondii, EGFR 
autophosphorylation is maintained through prolonged PKCα/
PKCβ-Src signaling, which in turn promote the survival of 
Toxoplasma through Akt (Lopez Corcino et al., 2019; Figure 5 II).

IFN-γ is a main effector for activating mammalian cell 
responses to T. gondii. Recruitment and loading of effector 
IRGs on PVM are induced by IFN-γ (Martens et  al., 2005; 

Ling et  al., 2006; Khaminets et  al., 2010). The deposition of 
ubiquitin on the PVM is promoted by IRGs and subsequently 
the accumulation of p62-dependent GBP (Haldar et  al., 2015). 
In mouse macrophages and fibroblasts activated by IFN-γ, LC3 
is recruited to PVM and can target IRGs to PVM membrane 
(Park et  al., 2016). Associating with the small GTPase 
ADP-ribosylation factor 1 (Arf1), Gate-16 mediates IRG 
recruitment (Sasai et al., 2017). Recruitment of IFN-γ-activated 
IRGs and GBPs resulted in the vesicle formation and rupture 
of PVM, resulting in the release of T. gondii into the cytoplasm 
and the death of T. gondii in mouse cells (Martens et  al., 
2005; Zhao et  al., 2008, 2009; Choi et  al., 2014; Ohshima 
et  al., 2014). Rop18 is a rhoptry protein, also a polymorphic 
protein kinase. It mainly determines the virulence of parasite 
in mice (Taylor et  al., 2006; Lei et  al., 2014). Together with 
ROP17, ROP18 complexes mediate the protection from the 
IRG pathway. The phosphorylation ability of ROP18-ROP17 
depends on the presence of virulent alleles of pseudokinase 
ROP5 (Behnke et  al., 2011; Reese et  al., 2011). GRA7 is a 
dense granule protein. It is also a part of the complex of 
ROP18-ROP17-ROP5 (Hermanns et  al., 2016). Binding a 
conserved surface of IRG, ROP5 proteins promote IRG remain 
in an inactive GDP binding conformation. As a result, 
GTP-dependent activation of IRG is prevented. Simultaneously, 
threonines in the nucleotide-binding domain are exposed. Then 
ROP18 and ROP17 kinases phosphorylate threonines, resulting 
in permanent inactivation of IRG (Fleckenstein et  al., 2012; 
Reese et  al., 2014; Figure  5 III).

FIGURE 4 | IFN-γ restricts the growth and proliferation of T. gondii in human cells. In HeLa cells, the Atg proteins Atg7, Atg3, and the Atg12-Atg5-Atg16L1 
complex target ubiquitin to the Toxoplasma PVM, which causes the recruitment of p62 and NDP52 and subsequently LC3. The parasite is encapsulated in a 
double-membrane autophagy structure and cannot grow and replicate further. In human umbilical vein endothelial cells (HUVEC) cells, T. gondii encapsulated in 
parasitophorous vacuole (PV) is recognized by host cell immune effector factors (K63Ub, p62, and NDP52), which leads to lysosomal fusion and subsequent 
parasite destruction.
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CONCLUDING REMARKS

In summary, autophagy is critical in maintaining cellular homeostasis 
and plays a key role in mechanism against a large number of 
intracellular pathogens including T. gondii as this pathway can 
degrade intracellular pathogens via autophagolysosomes. The 
interaction between T. gondii and host autophagy is a mutual 
process. However, T. gondii has developed complex evolutionary 
adaptation and evasion mechanisms to avoid host cell phagocytic 
recognition. Some PVM associated proteins (rhoptries and dense 
granules) are known to phosphorylate IRGs, inactivating IRGs. 
In recent years, the mechanism of T. gondii recognition and 
invasion has been extensively investigated. However, the 
mechanisms by which parasites antagonize these responses in 
different cell lines are still elusive. For instance, in mouse cells, 
IRGs contribute to immune control of T. gondii, but how it 
contributes to parasite control in human cells remains enigmatic. 
Understanding the mechanisms by which these parasites prevent 
the host’s innate immune defenses and escape autophagy  
may provide the basis to design new therapeutic strategies to 
treat toxoplasmosis.
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