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Whole genome sequencing (WGS) enables high resolution typing of bacteria up to
the single nucleotide polymorphism (SNP) level. WGS is used in clinical microbiology
laboratories for infection control, molecular surveillance and outbreak analyses. Given
the large palette of WGS reagents and bioinformatics tools, the Swiss clinical
bacteriology community decided to conduct a ring trial (RT) to foster harmonization
of NGS-based bacterial typing. The RT aimed at assessing methicillin-susceptible
Staphylococcus aureus strain relatedness from WGS and epidemiological data. The
RT was designed to disentangle the variability arising from differences in sample
preparation, SNP calling and phylogenetic methods. Nine laboratories participated. The
resulting phylogenetic tree and cluster identification were highly reproducible across
the laboratories. Cluster interpretation was, however, more laboratory dependent,
suggesting that an increased sharing of expertise across laboratories would contribute
to further harmonization of practices. More detailed bioinformatic analyses unveiled that
while similar clusters were found across laboratories, these were actually based on
different sets of SNPs, differentially retained after sample preparation and SNP calling
procedures. Despite this, the observed number of SNP differences between pairs of
strains, an important criterion to determine strain relatedness given epidemiological
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information, was similar across pipelines for closely related strains when restricting SNP
calls to a common core genome defined by S. aureus cgMLST schema. The lessons
learned from this pilot study will serve the implementation of larger-scale RT, as a mean
to have regular external quality assessments for laboratories performing WGS analyses
in a clinical setting.

Keywords: next generation sequencing, NGS, bacterial typing, SNP, ring trial, external quality assessment, EQA,
quality control

INTRODUCTION

Hospitals and clinical laboratories are increasingly using next
generation sequencing (NGS) technology to address a multitude
of questions. Especially in clinical microbiology, whole genome
sequencing (WGS) has been used for typing (cgMLST, SNP
calling) [e.g., (Mellmann et al., 2017; Abdelbary et al., 2019;
Zakham et al., 2019; Magalhães et al., 2020)], and enables
addressing strain relatedness using high resolution data, e.g.,
for outbreaks within hospitals or in the community [e.g.,
(Deurenberg et al., 2017)], or at a larger geographic scale, e.g.,
for food-borne pathogens (Hendriksen et al., 2018), or other
environmental pathogens [e.g., (Wüthrich et al., 2019)]. In
addition, WGS data can provide very interesting information
on the presence of specific resistance mutations, the acquisition
of resistance genes (Ellington et al., 2017) or virulence factors
(Tagini and Greub, 2017; Tagini et al., 2018).

NGS technology relies on complex laboratory workflows
and generates high-throughput data that requires bioinformatic
processing, analysis and interpretation. Proficiency tests (PT)
have been implemented by ISO17043 organizations to address
typing of Staphylococcus aureus in outbreak studies (e.g.,
qcmd.org). Current ISO-certified PT, however, do not focus on
NGS-based analyses and cannot therefore be used as technical
quality controls that would enable participants to benchmark
their NGS workflows. In the meantime, several non-ISO-
certified PT have been implemented. A multi-center ring trial
comprising five laboratories to determine WGS-based typing of
S. aureus showed very high reproducibility across laboratories
for spa typing, MLST, rMLST, and cgMLST (Mellmann et al.,
2017). The latter study did not address SNP calling and
phylogenetic tree analysis. The Global Microbial Identifier (GMI)
has been running several PT of which two editions, in 2015
and 2017, included S. aureus strains (Pedersen, 2017). The
PT of 2015, for which a report is available (Pedersen, 2017),
included analysis of SNP calling and cluster identification. More
recently, in the Netherlands, a multicenter PT of bacterial
outbreak analyses was implemented with 10 isolates each of
methicillin-susceptible S. aureus strains, Enterococcus faecium,
and Klebsiella pneumoniae, for which participants were asked
to identify outbreak clusters from FASTQ datasets (personal
communication from Jordy Coolen).

The Swiss Institute of Bioinformatics (SIB) leads and
coordinates the field of bioinformatics in Switzerland, where
it launched a nation-wide working group (WG) on NGS
Microbes Typing and Characterization in 2016. The main
aim of this WG was to harmonize NGS practices within

Swiss clinical microbiology laboratories, especially with
regards to bioinformatics. The WG includes microbiology and
bioinformatics experts from all Swiss university hospitals and
their associated clinical microbiology labs, cantonal hospitals, the
Swiss Federal Institute for NBC-Protection (Spiez Laboratory), as
well as research groups from Swiss academic institutions. It has
met eight times face-to-face since its kick-off in September 2016,
also running a RT on viral metagenomics (Junier et al., 2019).

A detailed survey on NGS practices at Swiss clinical
microbiology laboratories conducted in 2017 highlighted a large
variety of methodologies and software used to predict strain
relatedness (not published). The WG therefore suggested that SIB
(A. Lebrand) organizes in close collaboration with the Institute
of Microbiology of the University of Lausanne (G. Greub) a
Swiss-wide NGS-based bacterial typing ring trial, as a technical
quality control test for assessing strain relatedness from WGS
data. Such interest in participating to PT was also demonstrated
worldwide by a Global Microbial Identifier (GMI) survey
(Moran-Gilad et al., 2015). Building upon these other existing
PT, the main objectives of the Swiss ring trial were to benchmark
current workflows for S. aureus outbreak studies, by analyzing
intermediary outputs (assemblies, typing, resistance, SNP calls,
topology of trees, cluster identification, and cluster interpretation
based on associated epidemiological data). With this design,
we aimed to assess the impact of laboratory vs. bioinformatics
variability on the intermediate outputs, to identify where
knowledge/expertise sharing and training might be needed, and
to define common best practices, with the ultimate goal to pave
the way toward quality-controlled routine implementation of
NGS-based bacterial typing in clinical microbiology laboratories
through participation in external quality assessment (EQA)
programs. We present here the results from the NGS bacterial
typing ring trial that was run in Switzerland from November
2017 to July 2018.

MATERIALS AND METHODS

Ring Trial Design
The ring trial was designed to be a quality control test for
assessing S. aureus strain relatedness from NGS data. It consisted
of three parts, called increments (inc), selected to cover various
parts of the NGS pipeline from sample preparation to reporting
(Figure 1). The design aimed at disentangling the variability in
the final outcome that might arise from differences in sample
preparation, raw data processing for SNP calling and choice of
phylogenetic methods.
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FIGURE 1 | Ring-trial design.

Increment 1
Participants received:

• A questionnaire about the methodologies used in each
pipeline (cf. section “Questionnaire” below).
• Ten bacterial strains and associated minimal

epidemiological data (cf. section “Samples and Data
for Increment 1”).
• A common S. aureus reference genome (cf. section

“Common Reference Genome”).

Participants returned:

• Raw reads (FASTQ files), without any pre-processing,
for every strain.
• Assembled genomes (FASTA files) for every strain.
• Unfiltered and filtered lists of identified SNPs for every

strain (CSV or VCF files).
• Predicted resistance genes for every strain (optional).
• Phylogenetic tree including all the strains.
• Report interpreting the results (related strains, outbreak

suspected or not).

Increment 2
Participants received:

• 20 FASTQ datasets consisting of ten samples from
increment 1 (sequenced by the participants of increment
1, and re-labeled with a random number), and ten
additional samples sequenced within the same sequencing
facility (cf. section “Datasets for Increment 2”). Associated
epidemiological data were also provided.

Participants returned the same data as for increment 1, except
for the FASTQ files.

Increment 3
Participants received:

• Contigs (FASTA) and SNP calls (VCF) for the 20 strains
from increment 2, labeled with the same numbers as in
increment 2 (cf. section “Datasets for Increment 3”).

Participants only returned the predicted resistance genes
(optional), a phylogenetic tree and a report.

Ring Trial Implementation
The ring trial started in November 2017, and participants had
3 months to perform increment 1 (November 2017 to February
2018), 2.5 months for increment 2 (March to May 2018), and
2 months for increment 3 (June to July 2018).

Participants had the possibility to submit results obtained
from several pipelines, where a pipeline is a specific combination
of laboratory protocols and bioinformatic tools.

Six laboratories (represented by five sequencing centers)
participated in increment 1, resulting in nine pipelines in total;
in increment 2, three additional participants joined, for a total of
nine laboratories and 12 pipelines; in increment 3, all laboratories
from increment 1 participated (except one, which was not able
to import VCF files into its tool). The methodologies used in all
pipelines are briefly described in Table 1.

Each pipeline was assigned a capital letter, whereas samples
were numbered. Participants were asked to prefix output file
names with the convention [pipeline_letter] + [sample_number],
e.g., B5.fasta for the FASTA assembly of sample 5 resulting
from pipeline B.

Participants also answered a short questionnaire on the
methodologies used for each of the submitted pipelines (see
section “Questionnaire” below). The questionnaire was protected
by a pipeline-specific password, and let participants directly
upload their small files to sync.com (password-protected) at the
end of the questionnaire. For the larger FASTQ files, participants
received a SWITCHfilesender voucher (50 Gb), SWITCH being
the protected cloud of the Swiss academic community.

Frontiers in Microbiology | www.frontiersin.org 3 November 2020 | Volume 11 | Article 591093

https://www.sync.com/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fm
icb-11-591093

N
ovem

ber18,2020
Tim

e:19:40
#

4

D
ylus

etal.
S

w
iss

N
G

S
-B

ased
S

.aureus
P

roficiency
Test

TABLE 1 | Summary of pipeline methodologies. Each pipeline is represented by a capital letter. Note that several pipelines are based on the same NGS data, as only 5 sequencing facilities were used.
NA, not applicable.

Sequencing
facility

NA I II II II NA III III NA IV I V

Pipeline A B C D E F G H M R S T

Bacterial
growth

NA NA Columbia
agar

Columbia
agar

Columbia
agar

NA Columbia agar Columbia agar NA Columbia
agar

NA MH agar

DNA extraction NA Wizard
Genomic
DNA
Purification
Kit
Promega

EZ1/ DNA
tissue
extraction
kit

EZ1/ DNA
tissue
extraction
kit

EZ1/ DNA
tissue
extraction
kit

NA UltraCleanÂ
Microbial DNA
Isolation Kit,
MO BIO

UltraCleanÂ
Microbial DNA
Isolation Kit,
MO BIO

NA PureLink
Microbiome
DNA
Purification
Kit

Wizard
Genomic
DNA
Purification
Kit
Promega

QIAGEN
DNeasy Kit

Library
preparation

NA Nextera XT Nextera XT Nextera XT Nextera XT NA QIASeq FX kit QIASeq FX kit NA Nextera XT Nextera XT Nextera XT

Read length NA 2 × 150 bp 2 × 300 bp 2 × 300 bp 2 × 300 bp NA 2 × 150 bp 2 × 150 bp NA 2 × 150 bp 2 × 150 bp 2 × 300 bp

Sequencing NA Illumina
MiSeq

Illumina
MiSeq

Illumina
MiSeq

Illumina
MiSeq

NA Illumina MiSeq Illumina MiSeq NA Illumina
MiSeq +
MinION

Illumina
MiSeq

Illumina
MiSeq

Assembly SPAdes NA Velvet Velvet SPAdes SPAdes SPAdes SPAdes NA Canu SPAdes SPAdes

SNP
method/tool

BWA +
bcftools

Bowtie NA CLC
Genomics

NA BWA + bcftools BWA +
VARSCAN

NA BWA + snippy Freebayes Freebayes BWA +
Samtools

MLST tool NA Bionumeric Ridom
SeqSphere

CLC
Genomics

NA NA ARIBA NA mlst 2.10 mlst 1.8 mlst 2.9 Ridom
SeqSphere

Tree source wgSNP wgSNP cgMLST wgSNP Core genes cgSNP cgSNP cgMLST cgSNP wgSNP cgSNP wgSNP +
cgSNP

Tree tool FastTree Bionumeric Ridom
SeqSphere

CLC
Genomics

FastTree SNPhylo SeaView Ridom
SeqSphere

RaxML MEGA7 RaxML MEGA7

Tree Method Neighbor-
joining

UPGMA Neighbor-
joining

NA Maximum-
likelihood

Maximum-
likelihood

Neighbor-
joining

Neighbor-
joining

Maximum-
likelihood

NA Maximum-
likelihood

Neighbor-
joining

Distance metric GTR Nb SNP
differences

Allelic
differences

Nb SNP
differences

GTR MUSCLE
alignment

GTR Allelic
differences

Nb SNP
differences

ANIm GTR Kimura 2-
parameter

Resistance Prokka
(ResFam)

NA Alere
Microarray
Resistance

NA ABRicate NA ARG-ANNOT,
RGI CARD,
ResFinder

NA Mykrobe RGI CARD RGI CARD,
Mykrobe

Alere
Microarray
Resistance
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Common Reference Genome
Participants received a common S. aureus reference genome in
FASTA format (NCBI accession number NC_007795.1) to be
used for read mapping and facilitate the comparison of SNP calls
across pipelines.

Samples and Data for Increment 1
Ten S. aureus strains were selected for increment 1 of the ring trial
(Figure 1). These consisted of eight strains of Panton-Valentine
leukocidin-producing S. aureus strains in asylum seekers (Jaton
et al., 2016); and two strains from another, unpublished study.
Bacteria were suspended in transport medium (E-swabs, COPAN
Diagnostics, Ca), labeled with a number from 1 to 10, and
shipped by mail with the instruction to grow the strains on solid
medium to obtain colonies prior to analysis, according to each
laboratory’s standard operating procedures. Participants were
also encouraged to freeze and store the ring trial bacterial strains,
for re-use as internal quality control, and also to enable further
investigations during the ring trial if needed (e.g., suspicion of
mislabeling or contamination). Samples for increment 1 were
prepared by the Institute of Microbiology of the Lausanne
University Hospital (CHUV-IMUL). Associated pseudonymized
epidemiological data were also sent to participants, notably
including date and site of isolation.

Datasets for Increment 2
Twenty raw FASTQ datasets were provided to participants in
increment 2 (Figure 1). Among those, ten corresponding to
the strains provided in increment 1 were selected from among
the sequencing data produced by the five sequencing centers
of increment 1. Note that, while we intended to select FASTQ
files representing the ten samples from increment 1, we realized
afterward that one of the providing laboratories had swapped
samples 2 and 3 in increment 1. Therefore, sample 3 was actually
not present in increment 2, and sample 2 was provided twice,
but sequenced by two different laboratories. There were therefore
nine strains in common across all increments. Participants were
not told from which laboratory the FASTQ files originated from,
as the FASTQ headers were anonymized and cases were relabeled
with a different number than in increment 1. Table 2 shows the
correspondence of labels across all three increments.

The remaining ten raw FASTQ datasets were provided by
CHUV-IMUL. They were obtained from sequencing bacterial
S. aureus strains on an Illumina MiSeq platform with paired-
end 2 × 150 bp read length. Of these extra 10 cases, nine
were methicillin-susceptible, and one was methicillin-resistant
(sample 17 in increments 2–3).

Like for increment 1, associated pseudonymized
epidemiological data were also sent to participants as a
basis for cluster interpretation.

Datasets provided in increment 2, including pseudonymized
epidemiological data, are available as Supplementary Material 1.

Datasets for Increment 3
In increment 3 (Figure 1), we provided participants with
assembled genomes (FASTA) and SNP calls (VCF) for the 20

TABLE 2 | Sample labels in increments 1, 2, and 3; and origin of FASTQ datasets
(generated in increment 1) used for increment 2.

Sample label FASTQ origin

Inc. 1 Inc. 2 and 3 Inc. 2

1 8 S

2 14, 1 S, G

3 NA somp/e swop

4 10 G

5 3 C

6 16 C

7 13 T

8 6 T

9 20 R

10 12 R

NA 2 CHUV-IMUL

NA 4 CHUV-IMUL

NA 5 CHUV-IMUL

NA 7 CHUV-IMUL

NA 9 CHUV-IMUL

NA 11 CHUV-IMUL

NA 15 CHUV-IMUL

NA 17 CHUV-IMUL

NA 18 CHUV-IMUL

NA 19 CHUV-IMUL

Inc, increment; CHUV-IMUL, Institute of Microbiology of the Lausanne University
Hospital; NA, not applicable.

strains from increment 2. Genomes were assembled using SPAdes
3.11.1 with standard parameters (Bankevich et al., 2012). SNPs
were called using Snippy 3.2 (Seemann, 2015) mapped onto the
common ring trial reference genome, similar to the approach
taken in Jaton et al. (2016).

Datasets provided in increment 3, including pseudonymized
epidemiological data, are available as Supplementary Material 2.

Questionnaire
The questionnaire consisted of 24 questions covering:

• Storage
• Sample preparation
• DNA extraction, quantification, and quality assessment
• Library preparation
• Sequencing
• Bioinformatics (reads pre-processing, assembly, SNP

calling, phylogenetics, resistance, and virulence)

The list of questions is available as Supplementary Material 3.

Results Analysis
Sample Swapping
Pipeline G swapped samples 2 and 3 during increment 1. Thus,
in the results from increment 1 presented here, we re-labeled
samples correctly for pipeline G (i.e., swapped 2 and 3).
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Contamination Analysis
We used Kraken (v0.10.6) (Wood and Salzberg, 2014) for
the contamination analysis, using a database of 414 S. aureus
strains and plasmids. To assess bacterial DNA contamination (by
bacteria other than S. aureus), we assessed the percentage of reads
that would not classify against this S. aureus strain database. To
assess contamination by human DNA, we assessed the percentage
of reads classifying against the human genome.

Assembly Analysis
Basic statistics were extracted using the assembly-stats tool
(v1.0.1) (Sanger-pathogens, 2018) and the QUAST tool (v5.0.1)
(Gurevich et al., 2013). We notably computed N50, L50, and
depth of coverage as:

Number of reads× Average read length/genome length

where we used 2.8 Mbp as the reference genome size.
For gene prediction from assemblies we used prodigal v2.6.3

(Hyatt et al., 2010).

SNP Calling Analysis
Single nucleotide polymorphisms provided in VCF files were
merged using bcftools (v.1.9) (Li et al., 2019). Since all
submissions had slightly different formats, for each VCF file we
parsed all the merged files and computed comma-separated files.
In cases where for each strain a single file was given we used
bgzip, bctools tabix and bcftools merge to generate a single file
that contained all the positions. Participants could submit both
unfiltered and filtered SNPs.

For downstream analyses, we discarded all non-SNP variants.
Also, when both filtered and unfiltered SNPs had been provided
by a pipeline, SNP comparisons were based on filtered SNPs. In
addition, in order to facilitate comparisons between pipelines and
strains, only SNPs located in the S. aureus core genome [defined
here as the 1,861 locus part of S. aureus cgMLST (Leopold
et al., 2014)] were considered when counting numbers of SNP
differences between pairs of strains. For a given pipeline, when
a SNP was called in one strain but was not in the other strain,
we assumed a SNP difference between the two strains. Also,
missing positions were assigned as reference. Note that we may,
however, be overestimating SNP counts as some SNPs may be
absent due to low sequencing depth or poor mapping quality in
that particular region.

For a given strain, the similarity in SNP calls across pipelines
was calculated using the Jaccard index, defined as:

Jaccardindex =
|A∩ B|
|A∪ B|

where A represents the set of SNPs called by the first pipeline, and
B the set of SNPs called by the second pipeline in the same strain.

Tree Analysis
Robinson–Foulds distance was computed using the ete3 (v3.1.1)
library from python (v3.7). The normalized Euclidean distance
was calculated using the python library DendroPy v4.4.0,
by first normalizing each branch by the maximum distance

between root to leaf and then calculating the Euclidean distance
that is equivalent to the definition of branch length distance
(Felsenstein, 2004). Distances were computed for each increment
separately using all strains, and also for all increments combined
using the nine strains common to all increments. Submissions
that did not contain all provided strains were not considered for
further analysis. For comparison of all increments, we trimmed
the trees of increments 1, 2, and 3 of the strains that were not part
of the nine common strains. For cluster comparison, we trimmed
the trees for all strains not part of a cluster and collected branch
lengths and pairwise distances.

Resistance Analysis
For each submission, we obtained a matrix in which the
presence/absence of resistance genes for each strain was
indicated. We then calculated the pairwise Pearson correlation
between pipeline vectors as a measure of similarity between
two pipelines and used this to obtain a hierarchical clustering
and 2-dimensional spatial embedding using a principal
component analysis.

All the analysis scripts and data are available for download as
Supplementary Material 4.

RESULTS

The ring trial was designed to be a technical quality control test for
assessing S. aureus strain relatedness from NGS data. It consisted
of three increments (inc) selected to cover various parts of the
NGS pipeline from sample preparation to reporting (Figure 1).
The design aimed at disentangling the variability in the final
outcome that might arise from differences in sample preparation,
raw data processing for SNP calling and choice of phylogenetic
methods (see section “Materials and Methods”).

In increment 1, we obtained reads from five sequencing
centers, all based on Illumina sequencing technology, except one
that included a mix of MinION and Illumina reads (pipeline R).
All read submissions had excellent quality values [mean(phred33
score) >33, data not shown] and low contamination levels
that led to good assemblies (Figure 2; see section “Results”
in Supplementary Material for more details). As reported in
another ring trial (Mellmann et al., 2017), we also found perfect
agreement between clinical laboratories whenever a sequence
type was called (Table 3; see section “Results” in Supplementary
Material for more details).

The Observed Number of SNPs
Differences Is Robust to Experimental
Variability for Closely Related Strains
Due to their high resolution compared to MLST, SNP calls
obtained from NGS data can be used to assess strain relatedness
in a suspected outbreak, when combined with additional
epidemiological information. Indeed, the expected number of
SNP differences between any two related strains is expected to
increase with time, as the strains will evolve at some mutation
rate. In S. aureus, the mutation rate has been estimated to be
around one core SNP per 6 weeks (Harris et al., 2010).
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FIGURE 2 | Sequencing and assembly quality (increment 1). In panels (A,B), we show NGS quality analyses for the 5 pipelines representing the 5 sequencing
facilities used in this RT. (A) Percentage of reads classified as having human origin, as a means to detect human contamination. (B) Percentage of reads unclassified
against a database of >400 S. aureus strains. (C) N50 as a function of depth of coverage for all samples and pipelines. Note: pipelines (C,D) used the same
assembly, thus only (C) is plotted, explaining why there are only 8 pipelines represented in panels (C,D). (D) Assembly length distributions (across pipelines) for every
strain of increment 1.

TABLE 3 | Identified MLST for the 10 strains of increment 1.

Pipeline, tool 1 2 3 4 5 6 7 8 9 10

C Seqsphere+ 4.1.9 ST5 U ST45 ST15 ST152 ST152 ST15 ST15 U U

D CLC Genomics 10.1.1 ST5 ST121 ST45 ST15 ST152 ST152 ST15 ST15 U U

G ARIBA 2.10.2 ST5 ST121 ST45 ST15 ST152 ST152 ST15 ST15 U U

R mlst server 1.8 ST5 ST121 ST45 U U ST152 ST15 U U U

S mlst server 2.9 ST5 U ST45 ST15 ST152 ST152 ST15 ST15 U U

B Bionumerics 7.6.3894 ST5 U ST45 ST15 ST152 ST152 ST15 ST15 U U

T Seqsphere+ 4.1.9 ST5 U ST45 ST15 ST152 ST152 ST15 ST15 U U

Missing pipelines did not submit any MLST. U, unknown; note: samples 9, 10 correspond to ST5685, unknown at the time of the study.

Given the importance of SNP calling in the process of
assessing strain relatedness, we investigated the robustness of
SNP calls across pipelines, and of the observed number of SNP
differences between any pair of strains across pipelines. In order
to facilitate comparisons, we asked participants to call SNPs
against a common reference genome that we provided.

Figure 3A shows the similarity in SNP calls between all pairs
of pipelines, for each of the strains common to increments 1 and
2. The similarity was calculated using the Jaccard index, which
for a given strain takes the number of SNPs observed in common

between a pair of pipelines, and divides it by the total number
of SNPs called by this pair of pipelines (see section “Materials
and Methods” on how SNP calls were made comparable across
pipelines). It therefore reflects the ratio of SNPs in common
between these two pipelines. Even though participants had the
same strains and a common reference genome, we observed that
the Jaccard index was rather low in increment 1, with a median
just above 50%. In order to investigate the impact of sample
preparation and sequencing on SNP calling, we then compared
the Jaccard indices from increments 1 and 2. In general, for
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FIGURE 3 | SNP calling pipelines show significant variation in the identified SNP positions. (A) Pairwise pipeline comparison. For each strain and increment, we
plotted the percent overlap in SNP positions between any pair of pipelines (each dot represents a pair of pipelines; the percent overlap is defined as the Jaccard
index). (B) Pairwise pipeline comparison of the number of SNPs differences for each pair of strains (note that only 9 pipelines reported SNPs; please refer to Table 1
“SNP method/tool”). For every pair of strains, we calculated the pairwise number of SNP differences. Two closely related strains are expected to have a small
number of pairwise SNP differences. Plots in the diagonal of the matrix show the distribution of the number of SNP differences between all pairs of strains, for a
given pipeline. All pipelines generally highlighted a bimodal distribution, with a first peak with smaller number of SNP differences for more closely related strains, and
a second peak corresponding to more distantly related strains. Colors refer to the increment (orange for increment 1, blue for increment 2). Plots outside the diagonal
of the matrix represent the number of SNP differences between pairs of strains, for two given pipelines (each dot represents the number of SNP differences between
a pair of strains, in one pipeline versus the other pipeline). If two pipelines consistently identified very similar numbers of SNP differences between all strains pairs,
then the data points will be perfectly correlated, as exemplified e.g., in increment 1 for pipelines D and S. (C) We show here the comparison of pairwise SNP
differences across increments, for a given pipeline. Out of the 9 pipelines reporting SNPs (Table 1), only 6 submitted SNPs to both increments 1 and 2 and are
represented here. For every pair of strains common to increments 1 and 2, we plot on the y-axis the number of SNP differences in increment 1, minus the number of
SNP differences for that same pair of strains in increment 2. Deviations from zero denote that the SNP calling pipeline was sensitive to the experimental conditions
(sample and library preparation, sequencing). Data points are represented against the average number of SNP differences in increment 1 and increment 2 for the
corresponding pair of strains (x-axis).

strains 1 to 8, we observed a shift in the distribution of the
Jaccard indices, with higher overlap of SNP calls between several
pairs of pipelines in increment 2 compared to increment 1 as
shown by the much higher median above 80%, suggesting that
differences in SNP calls across pipelines were in part due to
different experimental procedures. We note, however, that the
variability in Jaccard indices across pairs of pipelines was still very
high as denoted by the still large interquartile range, suggesting
that bioinformatics procedures also contribute to differences in
SNP calls between pipelines.

Since it is generally the number of SNP differences between
pairs of strains that is used along with epidemiological
information to infer strain relatedness and potential transmission
links, we wondered if pipelines, despite calling different sets of
SNPs, would nevertheless predict similar number of pairwise SNP
differences between any pair of strains, and in particular if they

identified the same closest strains with roughly the same number
of SNP differences between those strains (i.e., comparable order
of magnitude). In Figure 3B (plots in the diagonal of the matrix),
we observed that most pairs of strains exhibited several thousand
SNP differences, and that only a few pairs of strains had smaller
number of SNP differences (bimodal distribution), consistent
with the fact that only few strains were more closely related. We
then investigated if there was a correlation between the number
of SNP differences between pairs of strains, as observed by each
pipeline (Figure 3B, scatter plots). In brief, if two pipelines were
to predict the same number of SNP differences for all the possible
pairs of strains, then the data points (representing pairs of strains)
would follow the diagonal. Data points outside the diagonal
would highlight pairs of strains for which the two pipelines
differed in their prediction of number of SNP differences, e.g.,
one pipeline predicting two closely related strains, and the other
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predicting instead more SNP differences between those two
same strains.

In both increments, the Pearson correlation was always close
to 1. Data points, however, tended to shift away from the diagonal
(in particular when comparing pipeline B against the others),
meaning that the predicted absolute number of SNP differences
between pairs of strains differed between the pipelines, although
ranking was preserved. In order to better understand those
differences, we plotted the same information in the form of
Bland-Altman plots [Supplementary Figure 1 (increment 1)
and Supplementary Figure 2 (increment 2)]. Interestingly, we
observed that only the more distantly related pairs of strains
tended to deviate from zero, showing that pipelines generally
agree with one another on the absolute number of SNP
differences for very closely related strains harboring <100 SNPs
differences, and less so for strains that are more distantly related.

In order to investigate the potential impact of sample
preparation and sequencing on the number of SNP differences,
we then focused on the nine strains common to increments
1 and 2. Except for pipeline S, we did not observe significant
changes in the number of pairwise SNP differences for any given
pipeline from increment 1 to increment 2 (Figure 3C), showing
consistency and robustness in SNP calls for a given pipeline,
despite experimental variability. This suggests that variability
arising from experimental procedures did not alter the final
number of SNP differences called by each individual pipeline
between any two strains.

In summary, different pipelines called different sets of SNPs
both due to experimental and bioinformatics procedures, but
ultimately, the observed number of SNPs differences between any
two strains was robust to experimental variability for the closely
related strains.

Clinical Laboratories Consistently Group
the Right Strains in Clusters
Phylogenetic trees provide an easy way to distinguish and
visualize clusters of related strains that may be part of an
outbreak. An outbreak in a tree would be characterized
by the presence of a clearly distinguishable subtree with
extremely short branches. Trees may also be decorated with
additional information like patient proximity in the hospital
or presence/absence of resistance/virulence factors, to facilitate
data interpretation and outbreak surveillance. In this ring trial,
participants were asked to submit phylogenetic trees in all
three increments. Given the provided strains per increment, we
expected the participants to identify three clusters of related
strains, although not part of an outbreak, these being too distantly
related and belonging to clusters of circulating strains, or a
consequence of likely laboratory contamination (Figure 4A).

Our data indicates that cluster identification (as reported by
participants) was robust. When further investigating topological
variance across the trees submitted by the participants, we
observed that variance in topologies was mainly due to variations
within the subtrees (Figures 4B,C; see section “Results” in
Supplementary Material for more details).

Interpretation of Results Is More
Expertise-Dependent
Participants were asked to submit a report interpreting their
results at the end of each increment. We discuss here in more
detail the nine reports submitted at increment 1 (6 laboratories,
9 pipelines), which reflect the expertise from laboratories
associated with the five Swiss University Hospitals (clinical
microbiology and infection control).

Participants reported their interpretation with free text in a
document. We observed that wordings were not standardized
and even sometimes confusing. For example, terms to qualify
a cluster as likely not an outbreak encompassed “no direct
transmission,” “unlikely common source,” “likely not an
outbreak,” “very unlikely recent transmission or acquisition from
same source,” “not compatible with a common source of strain
transmission,” “level of variation superior to that expected in
case of an outbreak.” One report also used the wording “have
a common source,” which could be interpreted as reporting an
outbreak, although the participant clarified later on that he/she
did not mean to report an outbreak. Wordings to report a likely
outbreak included “suspicion of direct transmission,” “may be
clonal,” “could be an outbreak considering epidemiological info.”

Since participants always reported identical interpretations
for all the pipelines for which they were submitting results, we
present in Table 4 the interpretations as a function of the number
of pipelines, but also as a function of the number of laboratories.
Cluster 1 (strains 5, 6) was correctly reported as not an outbreak
by 5 out of 6 laboratories, as was cluster 2 (strains 4, 7, 8) by 4 out
of 5 laboratories (note that different laboratories suggested that
clusters 1 and 2 may represent an outbreak). Lastly, as indicated
in the epidemiological information provided to participants in
increment 1, cluster 3 (strains 9, 10) likely resulted from a lab
contamination. Interestingly, this was correctly spotted by seven
pipelines (4 laboratories), but two pipelines (and laboratories)
missed that epidemiological information and reported a potential
direct transmission.

It is interesting to note that reports were not always
quantitative in their interpretation. Thus, while some clearly
mentioned expected number of SNP differences given the
dates of isolation (Harris et al., 2010), others justified
their conclusion with qualitative terms (e.g., “few genomic
differences”). In summary, while cluster identification was very
robust across pipelines, their interpretation remained more
expertise-dependent, highlighting the need for harmonization.

Prediction of Acquired Resistance Genes
This ring trial was mainly designed as a quality control
for assessing strain relatedness and outbreak detection. We
however, took the opportunity to also ask participants to
predict acquired resistance genes if they wished. We did
not validate experimentally the presence of the reported
genes, but two participating accredited clinical laboratories
performed phenotypic antibiotic susceptibility testing (AST)
on the ten strains from increment 1 and shared their results
(Supplementary Table 2). The range of antibiotics tested was not
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FIGURE 4 | Analysis of trees. (A) Example of trees submitted by participants for the various increments. We were able to identify four distinct groups of trees (see
Supplementary Figure 3). (B) Pairwise topological distance using all the data and the overlapping strains. We represent the density of pairwise topological
distances in the form of boxplots, and also show in the background the violin plot of the actual density from which the boxplot was drawn, highlighting in some
cases multi-modal distributions. Although when considering the 20 strains there is a high dispersion of pairwise topological distances, this dispersion actually occurs
due to the topological changes within the clusters of strains (as reported by participants in the ring trial) (Supplementary Figure 4). For trimmed trees containing
only the nine strains common to all increments, the dispersion of topological pairwise distances is reduced. (C) Variance of branch lengths for extracted branches
from clusters. See also Supplementary Figure 5.
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TABLE 4 | Cluster interpretation.

Number of pipelines Number of laboratories

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

No direct transmissions 8 6 0 5 4 0

Suspicion of direct transmission 1 2 2 1 1 2

Likely lab contamination 0 0 7 0 0 4

Note that pipeline R, based on MinION data, did not fully identify cluster 2, since strain 4 was missing from its tree. Hence, we only evaluated eight pipelines and five
laboratories for cluster 2.

FIGURE 5 | Correlations between subpipelines for antibiotic resistance gene detection. (A) Hierarchical clustering of pairwise correlations between subpipelines
(dark red: positive correlation 1 and dark blue negative correlation −1). (B) Principal component analysis of pairwise correlation matrix overlayed with method used
for resistance prediction.

identical in the two laboratories, but both of them found that all
strains were penicillin resistant, and that strain 4 was in addition
resistant to tetracycline. One of the two laboratories identified
strain 7 as tetracycline-resistant.

Antimicrobial resistance (AMR) was predicted using various
tools and databases (cf. Table 1) [Alere Microarray, CARD
(Jia et al., 2017), Mykrobe (Bradley et al., 2015), ARG-ANNOT
(Gupta et al., 2014), ResFinder (Zankari et al., 2012)]. Some
pipelines actually returned results from various tools, resulting in
various “resistance subpipelines”. Thus, we ended up with eight
resistance subpipelines in increment 1, and nine in increment 2.
There were 25 resistance genes detected by at least one of the
resistance subpipelines. Nearly every subpipeline detected blaZ
in all strains, as expected from phenotypic AST (Supplementary
Figure 6). In addition, tetK was identified by seven of the eight
subpipelines in both strains 4 and 7, suggesting that strain 7 might
indeed be tetracycline resistant as phenotypically measured by
one of the two laboratories performing AST. The trimethoprim
resistance gene dfrG was identified by almost all subpipelines
in strains 1, 4, 7, 8 but the resistance to this antibiotic was not
phenotypically tested. The remaining 22 genes were identified by
1 to 4 subpipelines only. Several of these genes are likely to confer

resistance to antibiotics that were not tested phenotypically in our
study, or participate in general multidrug resistance mechanisms
(e.g., efflux, inactivation, plasmid partition), precluding the direct
link from genotypically predicted AMR to phenotypic AST.
In summary, for those genes expected considering the results
from the phenotypic ASTs, almost all the subpipelines agreed
on their presence.

In order to further explore the variability between
subpipelines, we computed the correlation in predicted genes
between any pair of subpipelines using the nine overlapping
strains from increments 1 and 2. For this, every subpipeline was
represented by a matrix, where every row is a gene and every
column is a strain, and the value is 1 for presence and 0 for
absence of the corresponding gene. To compute similarity, we
then computed the correlation between any pair of subpipelines
matrices, resulting in the similarity matrix shown in Figure 5A.
We then grouped together rows and columns by hierarchical
clustering (Figure 5A), and performed principal component
analysis (PCA) (Figure 5B).

We observed that the various subpipelines consistently
detected the same set of genes in strains throughout increments
1 and 2, as shown by the fact that “_inc1” and “_inc2” for
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a given subpipeline were always found close to each other on
the PCA projection (Figure 5B). Moreover, we saw a clear
separation of subpipelines depending on the database/method
that was used (Figure 5B): Alere Microarray Resistance and
CARD were distinctly separated from Mykrobe, ARG-ANNOT
and ResFinder. Especially, CARD approach resulted in the
highest number of predicted genes, as compared to all the other
approaches (17/25).

DISCUSSION

The RT that we implemented within the Swiss NGS bacterial
typing community was aimed at harmonizing NGS practices for
bacterial typing and outbreak investigations in a clinical setting.
By harmonizing, we mean for different clinical laboratories
to achieve comparable results of high quality, independent of
the methodology and tools chosen at the experimental and
bioinformatics levels. Indeed, some experimental choices may,
for example, result from internal constraints, such as using the
existing laboratory nucleic acid extraction protocol. In order
for others to also benefit from our study and the data that
we generated, we provide the datasets and epidemiological
information that we generated (Supplementary Materials 1,2).
In Switzerland, this RT was very useful in that it enabled
Swiss clinical microbiology laboratories to rapidly agree on the
common bioinformatics analysis pipeline to be implemented for
Illumina NGS data on the Swiss Pathogen Surveillance Platform
(spsp.ch), a secure One-health online platform in testing phase
that enables near real-time sharing under controlled access of
pathogen whole genome sequences (WGS) and their associated
clinical/epidemiological metadata (Egli et al., 2018).

Our results indicate that most Swiss clinical microbiology
laboratories make use of Illumina sequencing technology,
and that the sequencing is of very high quality, with low
contamination levels (Figure 2). Laboratories using the same
assembly tool (SPAdes being the most common) also achieved
very similar assembly quality metrics with Illumina data. Since
only one laboratory used long reads, no comparisons can be made
for that technology.

Overall, we observed that MLST typing results, phylogenetic
tree construction and cluster identification were highly robust
across laboratories, despite the different experimental and
bioinformatics workflows. Output results were also robust for
pipelines with higher contamination levels (cf. Figures 2A,B).
However, for outbreak investigation, our results suggest
that differences in interpretation can yield to different
conclusions. Importantly, different laboratories used different
wordings and qualitative vs. quantitative criteria to state their
clinical interpretations. From this ring trial, it appears that
knowledge-sharing and definition of common, quantitative,
interpretation criteria would be essential ingredients for
harmonizing NGS practices, thereby enabling comparable, easily-
understandable, interoperable and intra- and inter-laboratory
reproducible conclusions.

To our surprise, the high level of agreement in tree
construction and cluster identification, however, hid a rather

poor overlap in the observed sets of SNPs used to build the
tree (Figure 3A). Thus, while pipelines’ final output trees and
clusters were highly intra-laboratory reproducible and robust to
experimental procedures (Figure 4), the sets of identified SNPs
used to determine strain relatedness actually differed from one
pipeline to another (Figure 3A). This is explained by the fact that
the number of SNP differences between strains correlated well
across pipelines (Figure 3B and Supplementary Figures 1, 2),
meaning that closer strains had fewer SNP differences in all
pipelines, whereas more distantly related strains had a higher
number of SNP differences in all pipelines. We note here
that we only investigated pairwise SNP differences, but that
pairs of strains may harbor other mutations such as insertions
and deletions.

Our analysis therefore indicates that bioinformatics tools can
have a great impact on SNP calls and, for more distantly related
strains, on the number of pairwise SNP differences between
strains. We would recommend restricting SNP calls to a common
core genome (e.g., as defined by the cgMLST schema or common
to the investigated strains) and filtering them as a means to
more robustly exchange data on SNP calls and number of
SNP differences between different laboratories using different
bioinformatics tools.

Regarding antimicrobial resistance prediction, we observed
that up to 25 genes were predicted using various in silico
resistance prediction tools, with blaZ and tetK genes showing
high concordance between tools and with phenotypic
AST, whereas most of the other predicted genes showed
little concordance across tools, largely due to differences
in databases and the number of genes contained within.
This notably calls for clinically curated databases of AMR,
and better assessment of the tools to be used and how
predictions should be combined to achieve highly accurate
gene detection.

Switzerland is a small country with few laboratories
performing NGS for outbreak analyses, explaining the small
sample size in our pilot RT. The lessons learned in this RT
will, however, be useful for the development of larger-scale
international technical RT to serve as benchmarking and
regular quality control tests for laboratories performing NGS
analyses in a clinical setting. Participation in such quality
controls are indeed mandatory for the use of NGS in accredited
diagnostics laboratories.
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