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Microbes with abnormal levels have important impacts on the formation and

development of various complex diseases. Identifying possible Microbe-Disease

Associations (MDAs) helps to understand the mechanisms of complex diseases.

However, experimental methods for MDA identification are costly and time-consuming.

In this study, a new computational model, RNMFMDA, was developed to find possible

MDAs. RNMFMDA contains two main processes. First, Reliable Negative MDA samples

were selected based on Positive-Unlabeled (PU) learning and random walk with restart

on the heterogeneous microbe-disease network. Second, Logistic Matrix Factorization

with Neighborhood Regularization (LMFNR) was developed to compute the association

probabilities for all microbe-disease pairs. To evaluate the performance of the proposed

RNMFMDA method, we compared RNMFMDA with five state-of-the-art MDA prediction

methods based on five-fold cross-validations on microbes, diseases, and MDAs. As a

result, RNMFMDA obtained the best AUCs of 0.6332, 0.8669, and 0.9081, respectively

for the three five-fold cross validations, significantly outperforming other models. The

promising prediction performance may be attributed to the following three features:

highly quality negative MDA sample selection, LMFNR-basedMDA prediction model, and

various biological information integration. In addition, a few predicted microbe-disease

pairs with high association scores are worthy of further experimental validation.

Keywords: microbe-disease associations, reliable negative samples, positive-unlabeled learning, random walk

with restart, logistic matrix factorization with neighborhood regularization

1. INTRODUCTION

Microbes are the most abundant microscopic organisms on Earth and control many major
biological and chemical processes (Ley et al., 2006; Qu J. et al., 2019; Sachdeva et al., 2019). Normal
microbial flora are beneficial for the host health (McFarland, 2000; Langella and Martín, 2019; Qu
J. et al., 2019). Beneficial microbes including biotherapeutic agent, probiotics and synbiotics have
been reported as effective therapeutic clues when normal microflora are disrupted (McFarland,
2000; Langella and Martín, 2019).
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More importantly, microorganisms have an important affect
on infectious diseases and non-infectious diseases (Findley et al.,
2013; Ding and Schloss, 2014; Abu-Ali et al., 2018; Byrd et al.,
2018; Liu et al., 2019). The human body is possible to get sick
when foreign microorganisms invade or a microbial community
is imbalanced (Zhu et al., 2018; Qu K. et al., 2019). For
example, there are more abundant Fusobacterium in asthmatic
patients than healthy people (Davis-Richardson et al., 2014).
Lecithinase-negative Clostridium and Lactobacillus are much
more in colorectal carcinoma patients (Heavey and Rowland,
2004). Increased Lactobacillus can result in tertiary lymphoid
(Sze et al., 2012). All the above reports suggested that there
are close associations between microbes and human diseases.
Therefore, finding new Microbe-Disease Associations (MDAs)
helps to provide diagnostic and therapeutic clues for clinical
researches Chen et al. (2017).

Experimental methods to predict possible MDAs are costly
and time-consuming. Computational methods are thus gradually
developed to find potential MDAs. Ma et al. (2016) collected
published MDA data from literatures and constructed Human
Microbe-Disease Association Database (HMDAD). Various
computational models are then exploited based on known
MDA data, Gaussian Interaction Profile Kernel (GIP) similarity
for diseases and microbes. Chen et al. (2017) assumed that
functionally similar microbes are likely to associate with
similar non-infectious diseases and presented the first tool
(KATZHMDA) to predict potential MDAs based on the
KATZ measure. Huang et al. (2017) proposed a neighbor
and graph-based recommendation model (NGRHMDA). Bao
et al. (2017) designed a Network Consistency Projection-
based MDA prediction method (NCPHMDA). Luo and Long
(2018) constructed a heterogeneous network and presented a
Network Topological Similarity-based human MDA prediction
model (NTSHMDA). Wang et al. (2017) developed a semi-
supervised learning framework (LRLSHMDA) to prioritize
microbe candidates for all interested diseases based on Laplacian
Regularized Least Squares. Peng et al. (2018b) exploited a
adaptive boosting-based method to compute association scores
for human microbe-disease pairs based on a strong classification
model. Zhang et al. (2018) proposed a bi-direction similarity
integration label propagation method (BDSILP) for identifying
MDAs. Shi et al. (2018) assumed that observed incomplete
microbe-non-infectious disease association matrix is composed
of a parameterizedmatrix and a noise matrix, and then developed
a Binary Matrix Completion-based model (BMCMDA) to infer
possible microbe-non-infectious disease associations. Qu J. et al.
(2019) presented a humanMDAmodel (MDLPHMDA) based on
matrix decomposition and label propagation.

The above methods were effectively applied to MDA
identification and captured a few MDAs, however, the prediction
performance remains to be improved. More importantly,
in MDA identification problem, negative training examples
are missing. Therefore, most of models randomly extracted
negativeMDAs from unknownmicrobe-disease pairs, whichmay
contain positive MDAs, thereby severely affecting the prediction
accuracy. Learning from Positive and Unlabeled examples (PU
learning) (Li et al., 2014) is one type of methods used to learn

the models from numerous positive and unlabeled examples. PU
learning has been widely applied to text mining and obtained
better performance.

In this study, we developed a computational model,
RNMFMDA, to predict human MDA candidates. RNMFMDA
integrated Reliable Negative MDA selection based on PU
learning and random walk with restart, Logistic Matrix
Factorization with Neighborhood Regularization (LMFNR), and
multiple heterogeneous data. RNMFMDA first computed disease
similarity and microbe similarity. Credible negative MDAs
were then selected based on PU learning and random walk
with restart. LMFNR was finally developed to identify MDA
candidates. RNMFMDA was compared to five state-of-the-art
MDA prediction methods, MDLPHMDA (Qu J. et al., 2019),
NGRHMDA (Huang et al., 2017), NTSHMDA (Luo and Long,
2018), LRLSHMDA (Wang et al., 2017), and KATZHMDA
(Chen et al., 2017). To evaluate our proposed RNMFMDA,
we conducted five-fold Cross Validations (CVs) on microbes,
diseases, and MDAs. The results showed that RNMFMDA
obtained the best AUCs under the above three CVs. In
addition, we further performed the experiments to find possible
microbes/diseases associate with a known disease/microbe. The
experimental result analysis suggested that RNMFMDA is a
powerful MDA identification method.

2. MATERIALS AND EQUIPMENT

Assume that the ith microbe is represented as mi(i =

1, 2, . . . , n), and the jth disease is denoted as dj(j = 1, 2, . . . , m).
The associations between nmicrobes andm diseases are denoted
as a binary matrix Y(n×m) where

yij =

{

1 if mi associates with dj
0 otherwise

(1)

The non-zero elements in Y are called “MDA pairs” and
considered as positive observations. The zero elements in Y

are called “unknown microbe-disease pairs” and considered as
unlabeled observations. The microbe similarity matrix and the
disease similarity matrix are represented as SM ∈ ℜn×n and
SD ∈ ℜm×m, respectively.

Our objective is to select reliable negative MDAs based on
PU learning and random walk with restart on the heterogeneous
network, and then compute the association probability score for
each microbe-disease pair by LMFNR, finally rank candidate
microbe-disease pairs according to the scores in descending
order, so that the top microbe-disease pairs are the most likely
to be MDAs.

We collected confirmed MDAs from HMDAD (Ma et al.,
2016) (http://www.cuilab.cn/hmdad). The database provides 483
MDAs between 292 microbes and 39 diseases from 61 previous
works. We deleted the same MDAs based on different evidences
and finally obtained 450MDAs from thesemicrobes and diseases.
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3. METHODS

3.1. Microbe GAP Similarity
Motivated by the similarity computation method provided by
van Laarhoven et al. (2011), we computed microbe Gaussian
Association Profile (GAP) similarity based on known MDA
matrix. Given a microbe m(i), its GAP AP(m(i)) can be
represented as the ith row of Y . The GAP similarity between two
microbesm(i) andm(j) can be computed by Equation (2):

SM(m(i),m(j)) = exp(−γm||AP(m(i))− AP(m(j))||2) (2)

where γm = γm
′/( 1n

n
∑

k=1

||AP(m(k))||2) denotes the normalized

kernel bandwidth with bandwidth parameter γm
′. The microbe

similarity matrix SM(n×n) can be obtained based on the
GAP similarity.

3.2. Disease Similarity
3.2.1. Disease GAP Similarity
For a disease d(i), its GAP AP(d(i)) can be represented as the ith
column of Y . The GAP similarity between two diseases d(i) and
d(j) can be calculated by Equation (3):

SG(d(i), d(j)) = exp(−γd||AP(d(i))− AP(d(j))||2) (3)

where γd = γd
′/( 1m

m
∑

k=1

||AP(d(k))||2) denotes the normalized

kernel bandwidth with bandwidth parameter γd
′.

3.2.2. Disease Symptom Similarity
Inspired by the similarity measure method provided by Zhou
et al. (2014), we computed disease symptom similarity matrix SS.

Finally, the disease similarity matrix SD(m×m) can be
computed by Equation (4):

SD(d(i), d(j)) = SG(d(i), d(j))+ γ SS(d(i), d(j)) (4)

where γ is a parameter used to weigh the importance between the
GAP similarity and the symptom similarity.

3.3. Reliable Negative MDA Selection
There exists a few known MDAs and numerous unobserved
microbe-disease pairs in the HMDAD database (Ma et al., 2016).
There are no negative MDA samples because of the limitations
of experimental methods. High-quality negative MDAs can
boost the performance of MDA prediction models. Therefore,
most of machine learning-based methods have to randomly
select negative examples from unknown microbe-disease pairs.
However, this part of randomly selected negative examples
probably contains positive MDAs, thereby severely affecting the
performance of MDA identification algorithms. Therefore, we
developed a negative sample selection method to extract reliable
negative MDA data based on PU learning and random walk
with restart. The pipeline mainly contains two basic processes:
computing the association probability for each microbe-disease
pair based on random walk with restart and extracting high-
quality negative MDA samples based on PU learning and the
computed association scores.

3.3.1. Random Walk With Restart on the

Heterogeneous Microbe-Disease Network
Inspired by the method proposed by Chen et al. (2012), we
consider microbe similarity network, disease similarity network,
andMDA network to construct a heterogeneous microbe-disease
network. We used microbe similarity matrix SM(n×n), disease
similarity matrix SD(m×m), and MDA matrix Y(n×m) as the
adjacency matrices of the above three networks, respectively.
And the adjacency matrix on the heterogeneous network can be
denoted as:

H =

[

SM Y

Y
T
SD

]

(5)

where YT denotes the transpose of Y .
We then calculate different transition probabilities of

random walk with restart on the heterogeneous graph.

Assume that H =

[

HMM HMD

HDM HDD

]

represent the transition

probability matrix, where HMM and HDD represent the walks
within microbe-microbe similarity network and disease-disease
similarity network, respectively, HMD and HDM represent the
skips between networks. Given a microbe/disease, if there
exist a bipartite association between the microbe/disease and
diseases/microbes, the particle will either skip between the four
networks or stay in the current network with a transition
probability λ ∈ [0, 1].

We predict MDA candidates from a perspective of microbes.
Assume that a particle be situated on the i-th microbe node
mi ∈ M, it will walk to amicrobe nodemj ∈ M with the transition
probabilityHMM(i, j):

HMM(i, j) =















SM(i, j)/
n
∑

k=1

SM(i, k), if
m
∑

k=1

Y(i, k) = 0

(1− λ)SM(i, j)/
n
∑

k=1

SM(i, k), otherwise

(6)
or skip to a disease dj ∈ D based on a bipartite association with
dj with the transition probabilityHMD(i, j):

HMD(i, j) =







λY(i, j)/
m
∑

k=1

Y(i, k), if
m
∑

k=1

Y(i, k) 6= 0

0, otherwise

(7)

Similarly, we can find possible MDAs from a perspective of
diseases. Assume that a particle be situated on the ith disease node
di ∈ D. It will walk to a disease node dj ∈ D with the transition
probabilityHDD(i, j):

HDD(i, j) =















SD(i, j)/
m
∑

k=1

SD(i, k), if
n
∑

k=1

Y(k, i) = 0

(1− λ)SD(i, j)/
m
∑

k=1

SD(i, k), otherwise

(8)
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or skip to a microbemj ∈ M based on a bipartite association with
mj with a transition probabilityHDM(i, j):

HDM(i, j) =







λY(j, i)/
n
∑

k=1

Y(k, i), if
n
∑

k=1

Y(k, i) 6= 0

0, otherwise

(9)

Therefore, we describe random walk with restart on the
heterogeneous network as:

P(t + 1) = (1− θ)HT ∗ P(t)+ θP(0) (10)

where P(t) denotes a probability matrix used to represent the
association scores of all unobserved microbe-disease pairs at the
t-th step random walk, HT denotes the transpose of H, and
θ represents the restarting probability. The particle will return
to either a seed microbe or a seed disease. More importantly,
it is possible to differentiate the relative important of each

network based on the initial probability pi(0) =

[

(1− η)vi
ηsi

]

,

where vi and si denote the initial probability distributions
on disease-disease similarity network and microbe-microbe
similarity network starting from their seed nodes, respectively.
The parameter η ∈ [0, 1] is used to control the restarting
probability in these two similarity networks. If η < 0.5, the
particle will more tend to restart from one of the seed microbes
than from one of the seed diseases.

3.3.2. Reliable Negative MDA Extraction
We took known MDAs as initial positive sample set P, observed
microbe-disease pairs as initial unlabeled sample set U and
developed a reliable negative MDA selection based on PU
learning. The method contains the following five steps:

Step 1. Randomly selecting positive sample subset S from P
and adding S into U;
Step 2. Taking P − S as positive samples, U + S as negative
samples;
Step 3. Computing the association score matrix AM based
on random walk with restart on the heterogeneous microbe-
disease network;
Step 4. Ranking microbe-disease pairs in S based on AM and
finding the minimum score AMmin in S;
Step 5. For every sample x in U:

if AMx satisfying AMx < AMmin

then RN = RN ∪ x

We can obtain reliable negative MDA example set RN with the
above negative selection method.

3.4. MDA Prediction Based on LMFNR
The logistic matrix factorization method has widely applied to
the area of various association prediction and obtained better
performance (Liu et al., 2016, 2020). Inspired by the logistic
matrix factorization method provided by Liu et al. (2016) and
Liu et al. (2020), we developed an MDA prediction method
(RNMFMDA) by integrating the Reliable Negative MDA sample
selection method and the LMFNR method.

Suppose that both microbes and diseases are mapped into r-
dimensional shared latent spaces where r≪ n,m. The properties
of a microbe mi / disease dj is represented by a latent vector
ai ∈ ℜ1×t / bi ∈ ℜ1×t . Then, the association probability pij
betweenmi and dj can be computed by Equation (11):

pij =
exp(aib

T
j )

1+ exp(aib
T
j )

(11)

The latent vectors of all microbes / diseases can be denoted as
A ∈ ℜn×r / B ∈ ℜm×r , where ai / bj is the ith / jth row in A/B.

In MDA identification tasks, the observed MDAs have been
experimentally validated and are more reliable than unknown
microbe-disease pairs. To more accurately find MDA candidates,
we assigned higher confidence scores to known MDAs than
unknown pairs. Particularly, each MDA is considered as c(c ≥ 1)
positive training samples, and each reliable negative MDA is
considered as a single negative training sample. c is a constant
to measure the importance of observations. The importance
weighting technique has been effectively applied to the area of
informatics. And we built the following MDA prediction model:

p(Y|A,B) = (
∏

1≤i≤n,1≤j≤m,yij=1
[p

yij
ij (1− pij)

(1−yij)]
c
)

×(
∏

1≤i≤n,1≤j≤m,yij=0
[p

yij
ij (1− pij)

(1−yij)])

=
n
∏

i=1

m
∏

j=1
p
cyij
ij (1− pij)

(1−yij)

(12)

The above model can represented as the following optimization
function considering the probability distribution based on a
Bayesian inference:

min
A,B

m
∑

i=1

n
∑

j=1
(1+ cyij − yij) log[1+ exp(aib

T
j )]

−cyijaib
T
j +

λm
2 ||A||2F +

λd
2 ||B||

2
F

(13)

where λm and λd are parameters, ||A||F and ||B||F denote the
Frobenius norm of A and B, respectively.

The nearest neighborhood information of biological
entities in the association network can improve the prediction
performance (Zhang et al., 2019a,b,c). For example, Zhang et al.
(2019a), Zhang et al. (2019b), and Zhang et al. (2019c)
used neighborhood information and effectively found
microRNA-disease associations, drug-drug interactions and
long non-coding RNA-miRNA interactions. Therefore, we
integrated neighborhood information to the above optimization
model and built the final LMFNR model by Equation (14):

min
A,B

m
∑

i=1

n
∑

j=1
(1+ cyij − yij) ln[1+ exp(aib

T
j )]−cyijaib

T
j

+ 1
2 tr[A

T(λmI + αLm)A+ 1
2 tr[B

T(λdI + αLd)B
(14)

where tr(·) denotes the trace of a matrix, Lm and Ld were defined
as the same to Liu et al. (2016).
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We can obtain A and B by solving with the optimization
problem by Equation (14) with an alternating gradient
ascent procedure.

Finally, the association probability matrix Yp for all unknown
microbe-disease pairs can be represented as:

Yp = AB
T (15)

4. RESULTS

4.1. Experimental Settings and Evaluation
The experiment was performed under 100 trials of five-fold
Cross Validation. An average performance was finally computed
to reduce the prediction bias. For an MDA matrix Yn×m,
CVs were conducted under three different experimental settings
as follows.

• Five-fold Cross Validation 1 (CV1): CV on microbes, that is,
random rows in Y (i.e., microbes) were masked for testing.

• Five-fold Cross Validation 2 (CV2): CV on diseases, that is,
random columns in Y (i.e., diseases) were masked for testing.

• Five-fold Cross Validation 3 (CV3): CV on microbe-disease
pairs, that is, random entries in Y (i.e., microbe-disease pairs)
were masked for testing.

Under CV1, in each round, 80% of rows in Y was used as training
set and the remaining was used as test set. Under CV2, in each
round, 80% of columns in Y was used as training set and the
remaining was used as test set. Under CV3, in each round, 80% of
entries in Y was used as training set and the remaining was used
as test set. These three CVs refer to MDA prediction for (1) new
(unknown) microbes, (2) new diseases, and new microbe-disease
pairs, respectively.

Sensitivity, specificity, accuracy, and AUC were used to
evaluate the performances. AUC is the average area under the
receiver operating characteristics (ROC) curve. The curve can be
plotted by the ratio of True Positive Rate (TPR) to False Positive
Rate (FPR) according to different thresholds. TPR and FPR can
be computed by Equations (16, 17). High AUC value represents

TABLE 1 | Confusion matrix of a binary classifier.

True class = 1 True class = −1

Predicted class = 1 True positive (TP) False positive (FP)

Predicted class = −1 False negative (FN) True negative (TN)

better performance. In our experiments, AUC was computed in
each round of CV and final AUC was averaged over the five
rounds for 100 times.

TPR =
TP

TP + FN
=

TP

T
(16)

FPR =
FP

FP + TN
=

FP

F
(17)

where the definitions of TP, FP and FN are as shown in Table 1.
λ is used to determine the probability of jumping between

nodes. θ is the restart rate. η denotes the restarting probability
in microbe similarity network and disease similarity network. c
is the importance level of positive samples to negative samples.
K denotes the number of neighborhood. For the parameters λ,
θ , η, c, and K, we conducted grid search to find the optimal
values. RNMFMDA obtained the best performance when these
five parameters are set as λ = 0.9, θ = 0.5, η = 0.9,
c = 8, and K = 5. So we set the above five parameters
as the corresponding values. Parameters γm

′, γd
′, and γ are

set the same values in previous works, that is, γm
′ = 1,

γd
′ = 1, and γ = 0.9. For other parameters, we set the

corresponding values according to the method provided by Liu
et al. (2016). When ||P(t + 1) − P(t)||F ≤ 10e − 12, the
iteration for random walk will stop. The ratio of extracted
negative MDAs to positive MDAs is set as 1:1, this is to say,
the number of negative MDAs is 450. The parameters in other
five methods were set as the same values provided by the
corresponding papers.

4.2. Performance Comparison of
RNMFMDA With Other Five Methods
In this section, we compared our proposed RNMFMDA method
with five state-of-the-art MDA prediction models, MDLPHMDA
(Qu J. et al., 2019), NGRHMDA (Huang et al., 2017), NTSHMDA
(Luo and Long, 2018), LRLSHMDA (Wang et al., 2017),
and KATZHMDA (Chen et al., 2017). Tables 2–4 showed the
performance of RNMFMDA with other five methods. The best
performance is described in boldface in Tables 2–4.

As shown in Tables 2–4, RNMFMDA performed more
efficiently than other five methods. Compared with
MDLPHMDA, NGRHMDA, and NTSHMDA, RNMFMDA
obtained a more remarkable improvement over four evaluation
metrics under three CVs. KATZHMDA and LRLSHMDA are

TABLE 2 | Performance comparison of RNMFMDA with other five methods under CV1.

Method Sensitivity Specificity Accuracy AUC

KATZHMDA 0.2772 0.6690 0.6653 0.3646

LRLSHMDA 0.3286 0.7538 0.7496 0.4364

NGRHMDA 0.0777 0.3423 0.4817 0.4156

MDLPHMDA 0.3273 0.6890 0.6855 0.4022

NTSHMDA 0.1899 0.6177 0.6138 0.3042

RNMFMDA 0.4938 0.6278 0.6274 0.6332

These bolded values represent the best values for the different methods under the same evaluation.
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TABLE 3 | Performance comparison of RNMFMDA with other five methods under CV2.

Method Sensitivity Specificity Accuracy AUC

KATZHMDA 0.8317 0.6487 0.6501 0.8662

LRLSHMDA 0.6944 0.7333 0.7330 0.8086

NGRHMDA 0.3800 0.3285 0.7403 0.8224

MDLPHMDA 0.7318 0.6653 0.6658 0.8178

NTSHMDA 0.7913 0.5905 0.5921 0.8292

RNMFMDA 0.5850 0.8304 0.8283 0.8669

These bolded values represent the best values for the different methods under the same evaluation.

TABLE 4 | Performance comparison of RNMFMDA with other five methods under CV3.

Method Sensitivity Specificity Accuracy AUC

KATZHMDA 0.8262 0.6503 0.6518 0.8571

LRLSHMDA 0.7971 0.7412 0.7416 0.8794

NGRHMDA 0.4207 0.3308 0.7796 0.9025

MDLPHMDA 0.8268 0.6729 0.6741 0.8938

NTSHMDA 0.8545 0.5904 0.5926 0.8896

RNMFMDA 0.5810 0.8818 0.8793 0.9081

These bolded values represent the best values for the different methods under the same evaluation.

FIGURE 1 | Performance comparison of RNMFMDA with other five methods under CV1.

two classic MDA prediction methods. Under CV1, KATZHMDA
and LRLSHMDA computed better specificity and accuracy than
RNMFMDA. Under CV2 and CV3, these two methods obtained
better sensitivity than RNMFMDA. Although KATZHMDA
and LRLSHMDA obtained relatively better specificity and
accuracy than RNMFMDA under individual CVs, RNMFMDA
computed the best AUCs under three CVs. For example, the
AUC values in RNMFMDA increased by 42.42, 31.08, 36.48,
34.37, and 51.96% compared with those in KATZHMDA,

LRLSHMDA, MDLPHMDA, NGRHMDA, and NTSHMDA
under CV1; the corresponding values increased by 0.08, 6.73,
5.66, 5.13, and 4.35%, respectively, under CV2; the values also
increased by 5.62, 3.16, 1.57, 0.62, and 2.04%, respectively,
under CV3. Figures 1–3 showed the AUCs of these six methods.
AUC is a more important measurement compared with
other three evaluation metrics. Based on the comprehensive
measure of the experimental results, RNMFMDA showed the
optimal performance.
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FIGURE 2 | Performance comparison of RNMFMDA with other five methods under CV2.

FIGURE 3 | Performance comparison of RNMFMDA with other five methods under CV3.

In addition, these six methods showed different
advantages under different CVs. These variation in
improvement can be attributed to differences in data

structures under different CVs. In particular, RNMFMDA
is more suitable to find possible microbes associated with a
given disease.
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TABLE 5 | Performance comparison considering the number of negative sample CV1.

NMDAR Sensitivity Specificity Accuracy AUC

0.0 0.4941 0.5696 0.5696 0.5262

0.1 0.4945 0.5933 0.5931 0.5920

0.2 0.4943 0.6131 0.6128 0.6123

0.5 0.4941 0.6282 0.6278 0.6279

1.0 0.4938 0.6278 0.6274 0.6332

2.0 0.4938 0.6226 0.6223 0.6226

3.0 0.4931 0.6218 0.6216 0.6115

4.0 0.4926 0.6067 0.6066 0.6057

5.0 0.4923 0.5674 0.5676 0.5650

These bolded values represent the best values for the different methods under the same evaluation.

TABLE 6 | Performance comparison considering the number of negative sample CV2.

NMDAR Sensitivity Specificity Accuracy AUC

0 0.5439 0.7621 0.7603 0.7673

0.1 0.5707 0.7676 0.7660 0.8088

0.2 0.6040 0.7678 0.7664 0.8220

0.5 0.6178 0.7830 0.7816 0.8410

1.0 0.5850 0.8304 0.8283 0.8669

2.0 0.5581 0.8547 0.8521 0.8791

3.0 0.5560 0.8575 0.8547 0.8756

4.0 0.5492 0.8563 0.8533 0.8782

5.0 0.5461 0.8515 0.8483 0.8734

These bolded values represent the best values for the different methods under the same evaluation.

TABLE 7 | Performance comparison considering the number of negative sample CV3.

NMDAR Sensitivity Specificity Accuracy AUC

0.0 0.5437 0.8559 0.8533 0.8662

0.1 0.5668 0.8565 0.8541 0.8827

0.2 0.6012 0.8532 0.8511 0.8886

0.5 0.6206 0.8560 0.8541 0.8970

1.0 0.5810 0.8818 0.8793 0.9081

2.0 0.5612 0.8916 0.8887 0.9121

3.0 0.5559 0.8935 0.8904 0.9096

4.0 0.5527 0.8912 0.8879 0.9099

5.0 0.5459 0.8842 0.8807 0.9026

These bolded values represent the best values for the different methods under the same evaluation.

4.3. Performance Comparison Considering
PU Learning
In this section, we performed extensive experiments to
analyze the influence of different negative MDA selection
ratios on prediction performance. Tables 5–7 described
the comparison results. NMDAR represents the ratio
of selected negative MDA samples to known positive
MDA samples.

As shown in Tables 5–7, RNMFMDA did not extract negative
MDAs when NMDAR is 0, and selected negative MDAs
according to different NMDARs of 10, 20, 50%, 1, 2, 3, 4,
and 5. When NMDAR is 1, RNMFMDA obtained promising

performance under three CVs. Compared with the situation
without negative MDA samples, when NMDAR is 1, the AUC
values of RNMFMDA respectively increased 16.90, 11.49, and
4.61% under three CVs. Taken as a whole, RNMFMDA with
NMDAR of 1 obtained better performance. To reduce overfitting
of the experimental results, we selected NMDAR as 1, that is,
we extracted negative MDA examples with the same number of

positive MDA examples.
Figures 4–6 showed the AUC values obtained by RNMFMDA

under different NMDARs. The results suggested that our

proposed negative example extraction method helps to improve

MDA prediction.

Frontiers in Microbiology | www.frontiersin.org 8 October 2020 | Volume 11 | Article 592430

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Peng et al. RNMFMDA

FIGURE 4 | The performance comparison under different negative MDA selection ratios under CV1.

FIGURE 5 | The performance comparison under different negative MDA selection ratios under CV2.
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FIGURE 6 | The performance comparison under different negative MDA selection ratios under CV3.

TABLE 8 | The top 20 microbes associated with asthma.

Rank Disease Evidence

1 Clostridium difficile PMID:21872915

2 Firmicutes PMID:23265859

3 Bacteroides PMID:18822123

4 Veillonella PMID:25329665

5 Clostridia Unconfirmed

6 Clostridium coccoides PMID:21477358

7 Actinobacteria PMID:28947029

8 Collinsella aerofaciens Unconfirmed

9 Lachnospiraceae PMID:26220531

10 Lactobacillus PMID:20592920

11 Enterobacteriaceae Unconfirmed

12 Staphylococcus aureus Unconfirmed

13 Streptococcus PMID:17950502

14 Fusobacterium DOI:10.4167/jbv.2013.43.4.270

15 Burkholderia PMID:24451910

16 Enterococcus PMID:29788027

17 Bifidobacterium PMID:24735374

18 Klebsiella PMID:29788027

19 Faecalibacterium prausnitzii Unconfirmed

20 Pseudomonas PMID:13268970

4.4. Case Study
We further evaluated the prediction performance of our
proposed RNMFMDA on the confirmed 450 MDAs by two case

studies. Asthma is a disease with considerable global morbidity.
Over the past 10 years, little improvement in asthma has been
observed despite of escalating treatment costs (Pavord et al.,
2018). In the first class, we mask all associated information
for asthma to find possible microbes. The results are shown in
Table 8. Among the predicted top 10 and 20 microbe-asthma
association pairs, 8 and 15 microbes have been reported to
associate with asthma by related publications, respectively.

Inflammatory Bowel Disease (IBD) is a periodic
inflammation. It may be produced by a deregulated immune
response to gut microbiome dysbiosis (Halfvarson et al., 2017).
In the second class, we mask all association information for
IBD to find possible microbes. The results are shown in Table 9.
Among the predicted top 10 and 20 microbe-IBD association
pairs, there are 9 and 17 microbes that are validated to associate
with IBD by recent works, respectively.

5. DISCUSSION

There are numerous microbes in the human body. They play
an important role in various biological processes. Many human
diseases including gastrointestinal diseases are reported to be
closely associated with microorganisms. Therefore, identifying
the associations between microbes and diseases helps to
understand the pathogenic mechanisms of these diseases and
further develop new drugs.

Traditional experimental methods applied to validate possible
associations between microbes and diseases are expensive
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TABLE 9 | The top 20 microbes associated with asthma.

Rank Disease Evidence

1 Helicobacter pylori PMID:22221289

2 Clostridium difficile PMID:27698615

3 Bacteroidetes PMID:25307765

4 Firmicutes PMID:25307765

5 Prevotella PMID:25307765

6 Clostridium coccoides PMID:19235886

7 Bacteroides PMID:25307765

8 Veillonella PMID:28842640

9 Clostridia Unconfirmed

10 Collinsella aerofaciens PMID:26848182

11 Staphylococcus aureus PMID:24117882

12 Enterobacteriaceae Unconfirmed

13 Staphylococcus PMID:30246806

14 Haemophilus PMID:24013298

15 Lactobacillus PMID:26340825

16 Bifidobacterium Unconfirmed

17 Enterococcus PMID:24629344

18 Burkholderia PMID:24325678

19 Streptococcus PMID:23679203

20 Klebsiella PMID:29573336

and time-consuming, computational methods are developed
to solve with this problem. However, the performance of
existing computational models need to further improve. More
importantly, lacking of reliable negative MDA examples affects
prediction performance. Therefore, RNMFMDA is developed to
find possible MDAs.

RNMFMDA obtained the optimal performance under
three CVs. We analyzed the reason that RNMFMDA
obtained excellent performance and thought that it may
be contributed to the following three features. First,
we developed a high-quality negative MDA extraction
method based on PU learning and random walk with
restart. Second, LMFNR is a optimal model in predicting
associations between two entities. Finally, we integrated various
heterogeneous biological information. Multiple heterogeneous

data integration efficiently reflected the biological features
of MDAs.

In the future, we will construct a multi-partite network by
integrating MDAs, disease-gene associations (Tran et al., 2020),
miRNA-disease associations (Peng et al., 2018a; Huang et al.,
2019), long non-coding RNA-protein interactions (Zhao et al.,
2018; Peng et al., 2019), and long non-coding RNA-disease
associations (Chen et al., 2018; Li et al., 2019). More importantly,
we will still develop more robust models, for example, ensemble
strategy (Hu et al., 2018) and deep learning-based models (Min
et al., 2017; Peng L. et al., 2018) to improve MDA prediction.
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