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Individuals with cystic fibrosis (CF) are given antimicrobials as prophylaxis against
bacterial lung infection, which contributes to the growing emergence of multidrug
resistant (MDR) pathogens isolated. Pathogens such as Pseudomonas aeruginosa that
are commonly isolated from individuals with CF are armed with an arsenal of protective
and virulence mechanisms, complicating eradication and treatment strategies. While
translation of phage therapy into standard care for CF has been explored, challenges
such as the lack of an appropriate animal model demonstrating safety in vivo exist. In
this review, we have discussed and provided some insights in the use of primary airway
epithelial cells to represent the mucoenvironment of the CF lungs to demonstrate safety
and efficacy of phage therapy. The combination of phage therapy and antimicrobials
is gaining attention and has the potential to delay the onset of MDR infections. It is
evident that efforts to translate phage therapy into standard clinical practice have gained
traction in the past 5 years. Ultimately, collaboration, transparency in data publications
and standardized policies are needed for clinical translation.

Keywords: bacteriophage, cystic fibrosis, lung disease, alternative therapy, animal models, antimicrobials,
biofilms, regulation

INTRODUCTION

Cystic Fibrosis (CF) is a life-limiting genetic disease caused by mutations to the Cystic Fibrosis
Transmembrane Regulator (CFTR) gene. There are 2,000 variant mutations in the CFTR gene,
however, more than 70% of people with CF carry the p.Phe508del mutation. Currently there are
six classes of mutations, each with varying degrees of disruption to CFTR protein production and
function (Pettit and Fellner, 2014; Lopes-Pacheco, 2016; Veit et al., 2016), correlating to varying
severity of disease phenotype. The genetic defect leads to impaired water and electrolyte traffic
of airway epithelial cells (AECs), tenacious airway surface liquid, impaired mucociliary clearance
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mucus build-up in the lungs of those afflicted due to the
inability of AECs to allow chloride ions to pass into the airway
surface liquid (Crawford et al., 1991; Haq et al., 2016). This
leads to airway obstruction, accelerated lung function decline,
reduced quality of life, and ultimately premature lung failure
and death. With defective mucociliary clearance, accumulation
of mucus in the airway of CF lungs occurs, creating an
ideal microenvironment for the growth and persistence of
bacteria. The inability to clear these bacteria allows opportunistic
pathogens to establish a niche within the environment, ensuring
their survival (Moreau-Marquis et al., 2008; Bjarnsholt et al.,
2009; Ramsay et al., 2016).

With an increasing lifespan of CF patients due to currently
available therapies and surveillance programs, isolation of
multidrug resistant (MDR) bacteria from the respiratory tract has
also increased. Pseudomonas aeruginosa (P. aeruginosa) remains
by far the most common airway pathogen particularly amongst
adults with CF. The CF Foundation has recently reported ∼17.9%
of P. aeruginosa isolated from CF individuals in North America
were MDR (Cystic Fibrosis Foundation, 2019). An earlier study
conducted across CF centers in Australia found that 31 and
35% of P. aeruginosa isolated from a pediatric and an adult
cohort, respectively, were also MDR (Smith et al., 2016). It is
known that the lungs of CF individuals are prone to bacterial
colonization, particularly by P. aeruginosa. Once colonized, the
bacteria are impossible to eradicate and individuals undergo
long-term antimicrobial regimes to treat and prophylactically
control the rate of infection. The increasing rates of MDR
infections are attributed to the prolonged use of antimicrobial
drugs for both treatment and prophylaxis, and consequent
gain of resistance genes and selection of hypermutator isolates
(Kidd et al., 2013, 2018). Cross infection of MDR P. aeruginosa
strains due to less stringent infection control measures had
also contributed to the rapid rise in MDR rates over the
past two decades (Salunkhe et al., 2005; Johansen et al., 2008;
Fothergill et al., 2012; Parkins et al., 2014). Treatments for
MDR pathogens are accompanied with a caveat; cumulative
antibiotic burden leads to development of drug allergy and
toxicity (Levison and Levison, 2009; Kalghatgi et al., 2013; Gao
et al., 2017). Progressive limitation in antimicrobial treatment
in CF, particularly in the aging population given the emergence
of MDR organisms, antimicrobial allergy and toxicity are
associated with lengthier hospitalizations, increased rates of re-
admittance, and extensive treatment regimens (Baumann et al.,
2003; Sansgiry et al., 2012).

The issue of MDR is now so widespread that World Health
Organization (WHO) has declared the issue of antimicrobial
resistance a global crisis (Shrivastava et al., 2017). The
discovery pipeline into new classes of antimicrobials is also
slow since it is relatively unprofitable, and innovations are
unable to keep up with emerging resistance. To address this,
alternative treatment methods must be explored. Treatment
strategies targeting bacterial virulence and resistance have
been studied extensively. Anti-virulence compounds such as
quorum sensing inhibitors (Müh et al., 2006; Brackman et al.,
2011; O’Loughlin et al., 2013; Soukarieh et al., 2020) and
iron chelation (Moreau-Marquis et al., 2009; Parquet et al.,

2018) have been found to be successful in inhibiting biofilm
formation, reducing pathogenicity and increasing susceptibility
to traditional antimicrobials. Strategies targeting resistance have
included investigating efflux pump inhibitors (Sabatini et al.,
2013; Shriram et al., 2018), anti-sense oligomers (Geller et al.,
2013; Sawyer et al., 2013), immunotherapy (Feigman et al.,
2018), host defense peptides (Overhage et al., 2008; de la
Fuente-Núñez et al., 2015) and bacteriophages. Many of these
strategies are still in exploration and validation phases and are
still some way off from translating to standard clinical care
practice. The vital need for a swift translation of alternative
therapy into clinical use has identified bacteriophage (phage)
therapy as one of the top candidates due to its successful use
in humans when approved on compassionate grounds. Phage
treatments are also cheaper due to shorter treatment periods,
exhibit little or no toxicity, and are more effective than current
antimicrobial strategies (Alemayehu et al., 2012; Agarwal et al.,
2018; Oliveira et al., 2020).

BACTERIOPHAGES AND THEIR
THERAPEUTIC APPLICATIONS TO DATE

Bacteriophages are viruses found ubiquitously on Earth. They
are able to undergo two life cycles: lytic (lyse the bacterial
host in the process of replication) or lysogenic (integrate
into the genome of bacterial host). Thus, when considering
these for therapeutic application, selection should primarily
be limited to the use of lytic phages in order to minimize
the possibility of virulence or resistance genes transfer. They
were first described and observed to display lytic activity
in the early 1910s by microbiologists Frederick W. Twort
and Felix d’Herelle (Twort, 1914; d’Herelle, 1917) but despite
their initial success, they were soon overshadowed by the
introduction of antibiotics (Clokie et al., 2011). Antibiotics
were considered a cheap and safe way to treat bacterial
infections and their assessment was typically accompanied with
well documented research that demonstrated their beneficial
effects. Although resistance against penicillin emerged almost
immediately after its introduction, discovery of new antibiotics
maintained their primary use in the Western world. With
restricted access, eastern bloc countries progressed phage therapy
through to its clinical inauguration. Entities including the
Eliava Institute of Bacteriophages, Microbiology and Virology
(EIBMV) in Georgia and the Phage Therapy Unit at the Hirszfeld
Institute of Immunology and Experimental Therapy in Poland
are still operational and patients are provided personalized
phage therapy for chronic infections (d’Herelle, 1931; Häusler,
2006; Kutateladze and Adamia, 2008; Chanishvili, 2012, 2016;
Kutateladze, 2015; Górski et al., 2018).

In the West, hesitancy in translating to a human treatment
pipeline has been primarily due to the lack of published
scientific reports and rigorous safety data. However, human
phage therapy has gained significant traction in the last 5 years
and has been tested clinically (Figure 1). One study used phage
therapy to treat a patient who had been infected with MDR
Acinetobacter baumanii (A. baumanii) (Schooley et al., 2017)

Frontiers in Microbiology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 593988

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-593988 December 28, 2020 Time: 17:18 # 3

Ng et al. Translational Potential of Bacteriophage

FIGURE 1 | Schematic diagram indicating areas where phage therapy had been applied clinically for compassionate use. Compassionate use in CF denoted by red
box. This figure was created using Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported License;
https://smart.servier.com.

(Figure 1). Multiple rounds of antibiotic treatments had
initially failed to control the infection which had spread
beyond the abdominal cavity. In vitro experiments were initially
conducted to determine phage specificity and efficacy against
the infective strain and approval for clinical use was then
sought from the Food and Drug Administration (FDA). This
was granted on compassionate grounds and treatment resulted
in the patient’s full recovery (Schooley et al., 2017). Since
this pioneering study, compassionate ground use of phage
therapy has been successfully used to treat patients with distinct
MDR infections (Chan et al., 2018; Dedrick et al., 2019).
A recent Australian study has highlighted the translatable
potential of phage therapy into clinical applications to treat
multiple patients suffering from severe Staphylococcus aureus

(S. aureus) bacteremia (Petrovic Fabijan et al., 2020b). While this
specific study supported phage therapy for disseminated bacterial
infection, what is less clear is whether it is applicable for patients
suffering from chronic soft tissue infection caused by biofilm-
producing bacteria.

THE POTENTIAL OF PHAGE THERAPY
IN CF

In order to more accurately assess how phage therapy is currently
advancing, we conducted an initial review of articles in NCBI
using the article title search term “Bacteriophage.” We selectively
excluded all published abstracts and still identified >12,000
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published articles in this area. When “Therapy” was included
in the article title search term, 141 published articles were
found, including 46 review papers. The remaining 95 original
research papers were then screened and found to report on
research performed in the medical (83) or veterinary sphere
(12). Collectively, these findings imply that despite an enormous
amount of research being carried out in the discovery and
characterization of phages, the field has struggled to translate
results into standard clinical care. Although successful use of
phage therapy in CF has been reported, this has been approved on
compassionate grounds and its translation into standard clinical
care still requires additional rigorous, systematic and detailed
exploration (Supplementary Table 1).

While P. aeruginosa, S. aureus, and Burkholderia cepacia
complex (B. cepacia complex) are commonly isolated pathogens
from individuals with CF, Mycobacterium and other infections
are emerging. One ideal therapeutic target is Mycobacterium
abscessus (Mab), an emerging pathogen isolated from the lungs
of individuals with CF (Bernut et al., 2019). Mab is able
to form biofilms (Qvist et al., 2015; Fennelly et al., 2016)
and is intrinsically resistant to many antitubercular drugs,
requiring prolong usage of at least three antimicrobial drugs
for up to 2 years (Floto et al., 2016). While there has been
clinical evidence correlating Mab infections with declining
lung function, whether the bacterium is the causative agent
is unknown (Sanguinetti et al., 2001; Esther et al., 2010;
Qvist et al., 2016). The first reported compassionate use of
phage therapy in CF was for a 15-year old patient with
disseminated Mab infection at sites other than the lung following
bilateral lung transplant (Dedrick et al., 2019; Figure 1).
Despite additional antimicrobials used, Mab had infected other
areas of the body apart from the surgical site. A cocktail of
three phages was used and were bioengineered from mutant
derivatives that displayed optimum lysis of Mab isolated directly
from the patient. A single topical application was followed
by intravenous therapy for ∼32 weeks. Upon completion,
lung function had improved from 50% FEV1, immediately
following transplant up to 80–90% FEV1. The significance of
this study lies in the outlined pipeline needed to ensure phage
therapy translation including appropriate in vitro safety and
efficacy studies.

The second reported compassionate use of phage therapy in
CF was for a 26-year old patient who presented with severe
acute-on-chronic respiratory failure resulting in mechanical
ventilation (Law et al., 2019). The patient was infected with
two strains of MDR P. aeruginosa and received multiple
courses of high dose antibiotics which then triggered kidney
failure. Approval for AP-PA01, a cocktail of four bacteriophages
produced by AmpliPhi Biosciences Corporation (now Armata
Pharmaceuticals) was granted and phages were administered
intravenously. After 8-weeks of treatment, the patient was
successfully cleared of P. aeruginosa colonization without side
effect, was ambulatory and stable enough to be once again placed
on a lung transplantation waitlist. Other pathogens targeted by
phage therapy in CF have included Achromobacter xylosoxidans
and Burkholderia dolosa (Figure 1), due to increasing incidences
of multidrug resistance (Kalish et al., 2006; Jeukens et al.,

2017). Phage therapy has also been applied for compassionate
use at various sites other than the lung (non-CF associated)
suggesting that a number of other CF-associated pathogens
including S. aureus, A. baumanii, and Klebsiella pneumoniae
may also be clinically targeted using phage therapy (Figure 1).
Emerging CF pathogens such as Stenotrophomonas maltophilia,
are also of concern due to their increasing incidence of
isolation (Millar et al., 2009; Razvi et al., 2009; Emerson et al.,
2010) and multidrug resistance (Gajdács and Urbán, 2019;
Gröschel et al., 2020). Since their infectivity and transmission
mechanisms are still to be elucidated (Stanojevic et al., 2013;
Gröschel et al., 2020) which would typically direct targeted
treatment regimens, phage therapy has been postulated as
a potential therapeutic option currently (Chang et al., 2005;
Peters et al., 2015, 2017).

There have also been attempts to assess phage therapy as part
of potential standard clinical care, however, rarely have results of
performed clinical trials been published. It is critical to report
this information in order to inform the trial process and guide
future study designs. An example identified through a screen
of registered trials on ClinicalTrials.gov is “MUCOPHAGES”
(NCT01818206). Although identified as completed, there is no
available information on formulation used, length of phage
exposure, and importantly what bacteria were being targeted.
Closed findings only act to hinder progress and there needs to
be greater transparency if we are to pipeline this therapy into
standard clinical care.

Another challenge is that most published studies on the
efficacy of phage therapy on CF-derived pathogens have been
performed using pathogens in planktonic state. However,
bacterial pathogens often exist in biofilm state within the
CF airways. Such significant differences between the in vitro
experiment model and in vivo CF airway conditions render
the translation of benchside result to bedside questionable.
Biofilms are made up by a pure population or a consortium
of microorganisms, creating a unique bacterial lifestyle and
niche habitat, enhancing protection against antimicrobials, and
able to establish in conditions with a flow of liquid and
withstand shear force, forming classic tower-like structures
(Flemming and Wingender, 2010; Flemming et al., 2016). Thus,
phages with effective biofilm dispersal capabilities are highly
desirable. Current evaluation of phage activity on biofilm is
usually performed on abiotic surfaces which typically do not
account for biological flow strength, nor the properties of
the tissues where typically biofilms reside, namely (in the
case of CF) the airway epithelium. Flow-cell systems and
fluorescence microscopy are considered the “gold standard” to
observe spatiotemporal changes of biofilm heterogeneity in real-
time (Crusz et al., 2012; Tolker-Nielsen and Sternberg, 2014;
Haagensen et al., 2015). The use of flow-cell also maintains
biofilm’s viability while the hydrodyanamic movement removes
planktonic bacteria and eliminates a confounding factor in
the measurement of phage therapy efficacy on the biofilms.
Thus, having a biological relevant model of CF would assist
in our understanding not only of biofilm formation but
also of bacterial evasion of the host innate and adaptive
immune responses.
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Phage Therapy: CF Experimental Models
and What Is Missing
While lung disease is the major cause of morbidity and mortality
in CF, there are currently no effective models that mimic the
CF lung infection pathology (Table 1). Despite different animal
models developed to study CF, the data generated often are
still limited by the models. The CF porcine model successfully
mimics several CF manifestations including meconium ileus
(MI), pancreatic deficiency and subsequent gastrointestinal tract
obstruction with similar airway epithelia and submucosal gland
(SMG) activities at birth to humans (Rogers et al., 2008).
However, the model is not commonly used due to severe disease
pathology and difficulties in maintaining longevity of the pigs
due to MI. High animal husbandry costs also make the model
unfeasible for most laboratories to utilize. CF murine and rodent
models have also been explored to mimic the pathophysiological
states of CF in vivo. The CF mouse model was developed
shortly after the discovery of the CFTR gene (Snouwaert et al.,
1992) where it successfully mimicked chronic lung infection with
mucoid strains of P. aeruginosa (Coleman et al., 2003). However,
differences between the abundance and distribution of airway
epithelial cell (AEC) types make the model less translatable to
the human CF airway (Plopper et al., 1983; Grubb and Boucher,
1999). In comparison, rats have more developed SMGs and
their implication in CF lung pathology is well studied and
linked with disease progression in humans (Smolich et al., 1978;
Jayaraman et al., 2001; Wine, 2004; Tuggle et al., 2014). Mucus
plugging, one of the characteristics of CF lung disease has been
observed in the lungs of a Cftr−/− rat model developed by Birket
et al. (2018). This is an essential requirement when studying
mucociliary transport and bacterial colonization (Birket et al.,
2018). Chronic infections are also difficult to establish in these
models and typically use bacterial cells embedded into agar beads
before lung installation (Bragonzi et al., 2009; Facchini et al.,
2014; Kukavica-Ibrulj et al., 2014; Kukavica-Ibrulj and Levesque,
2015; Bayes et al., 2016; Cigana et al., 2016, 2020). Results are
also hard to interpret since it is difficult to distinguish induced
immune response initiated by bacteria such as P. aeruginosa
and the presence of a foreign body (agar beads). Finally, the
Cftr−/− ferret model resulted due to the high similarity in
the anatomy and biology of its lungs with those of humans
(Sun et al., 2008). The CF ferret model mimics the human
condition in its susceptibility to lung infection, and lung function
decline as the main cause of mortality (Sun et al., 2010, 2014).
Despite this model being the best to test therapeutics against lung
infection and inflammation, progress in this field remains slow
as inconsistencies in severity of lung disease confound the ability
to understand the impact of disease progression and efficacy
of therapeutics.

Cell Cultures and the Role They Play in
Phage Therapy Research
An alternative to the use of animal models is the use of AEC
cultures. Universal cell lines such as H441 (lung epithelial cells)
(Hermanns et al., 2004) and HeLa (cervical carcinoma cells)
(Scherer et al., 1953; Lucey et al., 2009) have been utilized in a

wide variety of research ranging from cancer to infection models.
Immortalized CF cell lines such as CFBE45o – (CF bronchial
epithelial cells) (Gruenert et al., 2004) and CuFi (Zabner et al.,
2003) have also been instrumental in different studies including
the development and efficacy testing of therapies, both genetic
and pharmacological. AEC lines have also been valuable in high-
throughput screening of potential drugs. However, submerged
monolayer cultures of CF AEC lines are unable to mimic the
microenvironment of a CF lung, which is characterized by
mucus production and persistent inflammation status. Another
limitation of CF AEC lines is the inability to test for interactions
and efficacy of phage therapy when used in conjunction with
CFTR modulators that target specific mutations in the CFTR
gene. However, the use of primary AECs obtained from patients
would be able to overcome this limitation. Although CF AEC
lines can be grown at air-liquid interface (ALI), there have
been inconsistencies in barrier integrity, as well as their capacity
to form the multiple cell layers that comprise the airway
lining architecture. Furthermore, it is unknown whether they
also produce multiple cell types typically including goblet cells
(Hermanns et al., 2004; Ren et al., 2016).

Fully differentiated primary AECs have been described
extensively in the literature and serve as the most representative
in vitro model of the airway (Randell et al., 2011; Martinovich
et al., 2017). Although AEC ALI cultures may not mimic the
biological environment perfectly, they demonstrate features of
the airway, with polarization of progenitor cells into ciliated,
basal, undifferentiated columnar and secretory cells. Tight
junctions are also well developed in 3D ALI cultures (Crystal
et al., 2008; Choi et al., 2016; Looi et al., 2016, 2018). A concerted
effort by the Australian Respiratory Early Surveillance Team for
Cystic Fibrosis (AREST CF) to biobank AECs collected from
children with CF longitudinally has created a valuable repository
that is readily accessible (Sutanto et al., 2011; Garratt et al., 2017).
With prospective sampling, an in vitro AEC ALI model could
be built in the laboratory to screen for and test efficacies of
phages against clinical isolates from CF patients, accounting for
immunological responses arising from the application of phages.
Currently, there are no appropriate biofilm models grown on
AECs described in the literature at the time of writing this review
(2020). While most research on medical biofilms has been carried
out on abiotic surfaces (Alemayehu et al., 2012; Tinoco et al.,
2016) or submerged monolayers of AEC (Trend et al., 2018),
these are not reflective biological representations of the complex
airway epithelium where biofilms establish. Despite advances
in cell culture methodologies, recapitulating the entire human
lungs remains a challenge. The human lung is a complex organ
with more than 59 cell types located in different anatomical
locations (Travaglini et al., 2019) and compounding this further,
is the complex genotypic and molecular mechanisms within and
between these cells. However, a laboratory model is still essential
for airway phage therapy application and AEC ALI cultures still
remain the most relevant model that mimics key features of the
airway epithelium. Recent developments in 3D printing of organs
is rapidly evolving and may be able to add further complexity
whilst remaining accurate in its recapitulation of the human lung
(Grigoryan et al., 2019; Shrestha et al., 2019).
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TABLE 1 | Comparison of available CF animal models.

Animal Advantages Disadvantages

Pig • High genetic and anatomic similarity of organs (Cooper et al., 2008;
Längin et al., 2018; Sykes and Sachs, 2019).

• Expensive husbandry (Ostedgaard et al., 2011).

• Highly similar disease pathology with humans (Meyerholz et al., 2010). • Requires large animal facility.

• Comparable immunological response to infections. • Deaths soon after birth due to meconium ileum (MI) (Rogers et al., 2008).

Mouse • Chronic lung infection with mucoid strains of P. aeruginosa (Coleman et al., 2003). • Submucosal gland (SMG) present only in proximal trachea (Colledge et al., 1995;
Hikke Van Doorninck et al., 1995; Zeiher et al., 1995).

• Similar lung physiological structure after infection. • Do not display early CF lung phenotype

• Less severe disease pathology in the lungs

• Inconsistencies in animal husbandry, strains of P. aeruginosa used
(Morissette et al., 1995; Coleman et al., 2003; Bragonzi et al., 2005;
Hoffmann et al., 2005).

• Host response mechanisms different from human CF airway epithelia.

Rat • Extensive SMGs in airways (Smolich et al., 1978; Jayaraman et al., 2001; Wine, 2004;
Tuggle et al., 2014).

• Longitudinal study of KO rats required.

• Cost-efficient husbandry. • Stability of Cftr gene deletion in rats not reported.

• Shorter gestation period. • Fairly new model which requires more investigation toward lung infection with bacteria.

• Mucus plugging observed, impaired mucociliary transport (Birket et al., 2018). • Airway disease phenotype yet to be elucidated.

Ferret • High similarity to human lungs both anatomically and biologically (Darnell et al., 2007). • Varying degrees of spontaneous lung disease.

• Extensive SMGs (Smolich et al., 1978; Engelhardt et al., 1992; Sehgal et al., 1996;
Wine, 2004).

• Difficult to track lung disease progression (Sun et al., 2010, 2014).

• Exhibits characteristic responses of human CF lungs to bacterial infections. • No consistent predominant bacteria isolated from lung microbiome (influenced by the
gut microbiome).

• Shorter gestation time (4–6 months) in comparison to the porcine model. • Lack of sodium epithelial channel (ENaC) dysregulation.

• Less costly animal husbandry and smaller animal facility required. • More expensive animal husbandry than rodent model, limiting wide availability.

Zebrafish • Low expense maintenance. • Lacks mammalian organs.

• Fluorescence tracking in vivo (Cafora et al., 2019).

• High reproduction rate.
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Delivery of prepared phages could also be tested on AEC
ALI cultures to capture a more comprehensive pre and post
application reaction of the host mammalian cells (Buckley
et al., 2018). While topical and/or intravenous applications of
delivery have been effective, they are not ideal for pulmonary
infections, particularly in pediatrics. Compliance toward the
therapy is an important factor that would ensure optimum
efficiency of released phages in the lungs against the pathogens.
Therefore, inhalation of phages would be the most suitable for
pulmonary infections (Sahota et al., 2015; Malik et al., 2017;
Wallin et al., 2019). Currently, studies measuring the stability
and efficacy of both liquid (Carrigy et al., 2017) and dry
powder formulations (Chang et al., 2017, 2020) of nebulized
phages have been conducted and show potential in ensuring
the dispersion into lower airway of the lungs. Further work
is needed to fully elucidate the best formulation and delivery
methodologies before phage therapy can be implemented as part
of standard clinical care.

PHAGES AND ANTIMICROBIALS:
SAFETY AND THE PARTNERSHIP
POTENTIAL

Safety and side effects of phage therapy remain the greatest
concerns in the translation to clinical care. To date, there have
been no known adverse effects or mild effects that failed to
resolve by the end of the treatment reported from the application
of phages (Vandenheuvel et al., 2015; Supplementary Table 1).
Although there have been clinical trials that had been terminated,
this was due to a lack of significant improvement (Sarker
et al., 2016) or insufficient efficacy (Jault et al., 2019). While
animal models do not fully mimic the human’s immunological
response, Trend et al. (2018) have demonstrated that the
application of P. aeruginosa-specific phages on primary AECs
did not elicit an immunological response (Trend et al., 2018).
Furthermore, although Żaczek and colleagues reported that anti-
staphylococcal phages applied orally or locally did induce a
humoral response in some patients, there was no increase in
inflammatory markers or reduction in effectiveness of phages
(Żaczek et al., 2016). Safety and tolerability have also been
demonstrated by two recent studies using phage therapy to
treat S. aureus chronic rhinosinusitis (Ooi et al., 2019) and
severe sepsis (Petrovic Fabijan et al., 2020b), respectively.
In cases of phage therapy directed against P. aeruginosa
respiratory infections, no adverse phage therapy-related effects
have yet been identified (Aslam et al., 2019; Law et al.,
2019). Nevertheless, interpretation of potential safety and side
effects of phage therapy has been limited by the lack of
published results.

Currently, approval for phage therapy in CF has been
granted on compassionate grounds. However, translation of
phage therapy to standard clinical care would most likely
target a larger population of patients infected with antibiotic
susceptible pathogens. Those on prophylaxis and prolonged
treatment regimes would benefit the most since P. aeruginosa
isolated from early CF lungs of children have been found

to be more similar to environmental strains and susceptible
to antimicrobial treatments (Burns et al., 2001; Jelsbak et al.,
2007; Marvig et al., 2015). A combination of phage therapy
may act synergistically with antimicrobials to potentiate the
reduction or delay of MDR infection occurrence (Knezevic and
Aleksic Sabo, 2019; Petrovic Fabijan et al., 2020a). Phage therapy
in combination with suboptimal concentrations of antibiotics
has shown potential in eradicating infection more efficiently,
lowering the risk of adverse effects from long-term usage of
antibiotics (Kirby, 2012; Knezevic et al., 2013; Kamal and
Dennis, 2015). A study by Chan et al. (2016) demonstrated
that the application of ϕOMKO1 was able to restore antibiotic
sensitivity in P. aeruginosa, which reinforces the potential of
phages against drug-resistance (Chan et al., 2016). A further
benefit of joint use of antibiotics and phage therapy may be a
reduction in the development of bacterial resistance to phages,
as even when phage mixtures (cocktails) are employed (Wright
et al., 2019), gain of phage resistance can occur throughout
the length of therapy (Schooley et al., 2017). Further examples
of this approach have recently been reviewed by Tagliaferri
and colleagues (Tagliaferri et al., 2019). The potential of phage
therapy when used in combination with antimicrobials is yet
to be fully exploited and future detailed exploration in this
area is warranted.

PHAGE THERAPY: FUTURE PROSPECTS

The future of phage therapy is not necessarily to replace current
therapies, rather there is potential for clinical applications to
supplement and provide an alternative treatment for infections.
With a predicted shift into personalized phage therapy in the
immediate future, research in this area is likely to grow at an
exponential rate (Pirnay, 2020). However, the full potential of
phage therapy can only be achieved when there is transparency
and a willingness to share knowledge as well as resources.
Ideally, phage libraries should be freely available through a
network of collaboration, and information on preparation and
delivery methods for phages meant for clinical usage should
be well documented. Phage formulation and delivery are also
critical considerations in order to direct activity to targeted
areas and maximize efficacy. In fact, use of phage therapy
already appears to be coordinated in various countries according
to national regulations, and by major public health institutes
such as Therapeutic Goods Administration (TGA) (Australia)
(Donovan, 2017; Lin et al., 2019), Food and Drug Authority
(FDA) (United States of America) (Jarow et al., 2017; Puthumana
et al., 2018) and the European Medicines Agency (EMA)
(Europe) (Balasubramanian et al., 2016; Debarbieux et al., 2016).
Importantly, a universal code of ethics should be established
and regulatory bodies reach a consensus on the exchange of
information, usage of phages as treatment and reporting of
treatment outcomes (Furfaro et al., 2018; Borysowski et al., 2019).
Due to the critical nature of the rise of MDR, increasing the
urgency for phage therapy to be implemented as standard care,
alternative therapies to be translated into clinical applications
need to be expedited. A concerted effort with both local and
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global partners could see phage therapy being translated into
standard care in the next 5 years.
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