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The nucleotide alarmone (p)ppGpp, signaling the stringent response, is known for more 
than 5 decades. The cellular turnover of the alarmone is regulated by RelA/SpoT homolog 
(RSH) superfamily of enzymes. There are long RSHs (RelA, SpoT, and Rel) and short RSHs 
[small alarmone synthetases (SAS) and small alarmone hydrolases (SAH)]. Long RSHs 
are multidomain proteins with (p)ppGpp synthesis, hydrolysis, and regulatory functions. 
Short RSHs are single-domain proteins with a single (p)ppGpp synthesis/hydrolysis 
function with few exceptions having two domains. Mycobacterial RelZ is a dual-domain 
SAS with RNase HII and the (p)ppGpp synthetase activity. SAS is known to impact multiple 
cellular functions independently and in accordance with the long RSH. Few SAS in bacteria 
including RelZ synthesize pGpp, the third small alarmone, along with the conventional 
(p)ppGpp. SAS can act as an RNA-binding protein for the negative allosteric inhibition of 
(p)ppGpp synthesis. Here, we initially recap the important features and molecular functions 
of different SAS that are previously characterized to understand the obligation for the 
“alarmone pool” produced by the long and short RSHs. Then, we focus on the RelZ, 
especially the combined functions of RNase HII and (p)ppGpp synthesis from a single 
polypeptide to connect with the recent findings of SAS as an RNA-binding protein. Finally, 
we conclude with the possibilities of using single-stranded RNA (ssRNA) as an additional 
therapeutic strategy to combat the persistent infections by inhibiting the redundant  
(p)ppGpp synthetases.

Keywords: short alarmone, (p)ppGpp, pGpp, stress response, R-loop, replication stress, ssRNA, RNase HII

INTRODUCTION

In 1969, Cashel and Gallant first identified the nucleotide alarmone molecules, guanosine-5', 
3'-pentaphosphate (pppGpp) and guanosine-5', 3' -tetraphosphate (ppGpp), from amino acid-
starved Escherichia coli (Cashel and Gallant, 1969). Intracellular levels of (p)ppGpp are controlled 
by RelA/SpoT homolog (RSH) proteins as a response to various external and internal stresses 
encountered by the organisms (Chatterji and Ojha, 2001; Potrykus and Cashel, 2008; Srivatsan 
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and Wang, 2008; Wu and Xie, 2009; Roghanian et  al., 2019). 
This is a direct pathway of stringent response in which the 
(p)ppGpp signals the massive switch from energy-consuming 
to energy-conserving process (Potrykus and Cashel, 2008; 
Abranches et  al., 2009; Kriel et  al., 2012; Gaca et  al., 2013; 
Hauryliuk et  al., 2015; Liu et  al., 2015; Steinchen and Bange, 
2016). In Gram-negative organisms, beta and gamma subgroups 
of proteobacteria carry two such enzymes where the main 
role of RelA is (p)ppGpp synthesis and SpoT in hydrolysis. 
SpoT can also synthesize (p)ppGpp and is therefore bifunctional 
(Xiao et  al., 1991; Gentry and Cashel, 1996). In Gram-positive 
organisms, there is a single bifunctional Rel enzyme which 
synthesizes and degrades (p)ppGpp (Mittenhuber, 2001; Jain 
et  al., 2006; Srivatsan and Wang 2008; Takada et  al., 2020).

Apart from these classical, long, multidomain RSHs, few 
small RSH homologs were identified in organisms ranging 
from bacteria to plants. They are mostly monodomain, 
monofunctional proteins either with short alarmone synthetase 
(SAS) or short alarmone hydrolase (SAH) activity (Sun et  al., 
2010; Atkinson et al., 2011; Jimmy et al., 2020). The discovery 
of SAS and SAH opened a new line of research, to understand 
the indirect pathways of stress response induced by cues such 
as cell wall antibiotics, acid, alkali, hydrogen peroxide, ethanol, 
etc. (Horsburgh and Moir, 1999; Cao et  al., 2002; Mascher 
et  al., 2003; Thackray and Moir, 2003; Weinrick et  al., 2004; 
D’Elia et  al., 2009; Kim et  al., 2012; Geiger et  al., 2014; 
Pando et  al., 2017). We  have identified a dual-domain SAS 
in Mycobacterium smegmatis with RNase HII and (p)ppGpp 
synthesis activity (Murdeshwar and Chatterji, 2012).

Small alarmone synthetases play an important role to maintain 
the basal level of (p)ppGpp, which in turn induces the virulence 
of the pathogenic bacteria. The “(p)ppGpp pool” produced by 
the long and short RSH enzymes (Ronneau and Hallez, 2019) 
and the consecutive guanosine triphosphate (GTP) depletion 
are the key factors determining the formation of bacterial 
persister cells (Fung et  al., 2020). Therefore, understanding 
the SAS-mediated synthesis and regulation of (p)ppGpp is the 
need of the hour to modify the current antibacterial therapy.

SALIENT FEATURES OF SMALL 
ALARMONE SYNTHETASES

Small alarmone synthetases were identified in bacteria, such 
as Streptococcus mutans, Bacillus subtilis, Enterococcus faecalis, 
Streptococcus pneumoniae, Mycobacterium smegmatis, 
Staphylococcus aureus, Corynebacterium glutamicum, 
Clostridium difficile, Vibrio cholerae, and Pseudomonas 
aeruginosa. There are two highly homologous SAS proteins 
in bacteria and are named as RelP (SAS2, YwaC) and RelQ 
(SAS1, YjbM). Jimmy et  al. (2020) reported the recent 
classification of SAS and identified 30 subfamilies. The 
functions of five of these subgroup enzymes were 
experimentally validated (Table  1) and found to be  present 
in toxin–antitoxin (TA) system (Jimmy et  al., 2020). The 
list of previously characterized bacterial SAS is given in 
Table  1. Their domain structures are given in Figure  1.

MOLECULAR FUNCTIONS OF SMALL 
ALARMONE SYNTHETASES

Different SAS have different roles because they are induced by 
different signals (Figure  2). RSH is activated mostly under 
starvation and to the intracellular imbalances involving LPS 
biosynthesis and ADP metabolism (Roghanian et  al., 2019), 
whereas SAS may respond to various types of environmental 
stimuli (Figure  2). Maintaining the basal level of (p)ppGpp is 
important for protection against different kinds of stresses, especially 
antibiotics stress. Most of the SAS proteins prefer guanosine 
diphosphate (GDP) to GTP as a substrate (Murdeshwar and 
Chatterji, 2012; Geiger et al., 2014; Gaca et al., 2015b). Rel and SAS 
are involved in the allosteric regulation of guanosine and GTP 
biosynthesis (Gaca et al., 2013; Bittner et al., 2014; Kriel et al., 2014).

RelP AND RelQ

RelP and RelQ share nearly 50% sequence similarity at the 
amino acid level. relP/relQ genes are upregulated due to various 
stress cues, such as cell envelope (Cao et  al., 2002; D’Elia et  al., 
2009; Geiger et al., 2014), alkali (Nanamiya et al., 2008), ethanol 
(Pando et al., 2017), high salt, acidic, heat, and hydrogen peroxide 
(Thackray and Moir, 2003; Weinrick et  al., 2004; Kim et  al., 
2012; Zweers et  al., 2012). The first SAS proteins (RelP and 
RelQ) were identified in S. mutans (Lemos et  al., 2004, 2007). 
During oxidative and acidic stress, RelP helped to slow the 
growth of the bacteria (Kim et  al., 2012). Rel inactivation did 
not yield a lethal phenotype of S. mutans, and the basal level 
of (p)ppGpp was not increased through RelP and RelQ-dependent 
(p)ppGpp synthesis (Lemos et  al., 2007). This could be  due to 
the existence of an alternative mechanism for (p)ppGpp 
degradation in Streptococci (Lemos et  al., 2007). In B. subtilis, 
RelP and RelQ have growth phase-dependent regulation. relQ 
is mainly transcribed in mid-exponential phase and it slows 
down its expression in the late-exponential phase; in addition, 
the relP is highly induced at this phase (Nanamiya et al., 2008). 
The (p)ppGpp synthesis of B. subtilis RelP is induced by alkaline 
stress (Nanamiya et al., 2008). In E. faecalis, only RelQ synthesizes 
(p)ppGpp apart from Rel (Abranches et  al., 2009). The ∆relAQ 
strain showed significant sensitivity to vancomycin, ampicillin, 
and norfloxacin (Abranches et  al., 2009; Gaca et  al., 2013). In 
E. faecalis, (p)ppGpp-mediated antibiotic resistance happens at 
a concentration below the required value to mount stringent 
response. Staphylococcus aureus contains RelP and RelQ homologs. 
The expression of these two SAS is induced upon cell wall 
stress with vancomycin and ampicillin. The presence of three 
(p)ppGpp synthetases plays a significant role in the development 
of methicillin-resistant S. aureus (MRSA). Like the RelP of S. 
mutans, the RelP of S. aureus is also a more potent (p)ppGpp 
synthetase (Geiger et  al., 2014). Clostridium difficile has a RelQ 
that is induced by antibiotic stress. There is a 2-fold upregulation 
of relQ after exposure to ampicillin and clindamycin, which 
explains the role of RelQ in antibiotic survival (Pokhrel et al., 2020).

Crystal structures of RelP and RelQ from B. subtilis and 
S. aureus revealed the homotetramer structures with highly 
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similar monomers and homologs of (p)ppGpp synthetase 
domains. RelQ activity is inhibited by ssRNA (Beljantseva et al., 
2017) and positively regulated by pppGpp (not ppGpp), whereas 
RelP is not allosterically regulated by (p)ppGpp. This is because 
of the difference in the conformation of the substrate binding 
site of these proteins. The RelQ, homotetramer of B. subtilis, 
has a distinct cleft in its center for the binding of two allosteric 
(p)ppGpp molecules (Steinchen et  al., 2015, 2018; Steinchen 

and Bange, 2016). RelP has been shown to influence the 
formation of ribosome dimers to inactivate the translation of 
metabolic pathway (Tagami et  al., 2012).

RelS

Corynebacterium glutamicum has two SAS proteins (Figure  2), 
represented as RelPCg and RelSCg (actRel subgroup). The SAS 

TABLE 1 | Short alarmone synthetases in bacteria.

Name of the bacteria SAS type Function References

Gram-positive bacteria
Streptococcus mutans RelP - Stronger (p)ppGpp synthetic activity than RelQ

- Induced by H2O2 stress
Lemos et al., 2004, 2007, 2008; 
Seaton et al., 2011; Kim et al., 2012

RelQ - Involved in acid and oxidative stresses

Bacillus subtilis RelP - Induced by alkaline stress

- Dimerization of 70S ribosome

Nanamiya et al., 2008; Natori et al., 2009; 
Tagami et al., 2012; Schafer et al., 2020

RelQ - Synthesize pGpp

- Contribute to thermoresistant phenotype

Enterococcus faecalis RelQ - Vancomycin tolerance

- Virulence

- Synthesize pGpp

- Negative allosteric regulation by ssRNA

Abranches et al., 2009; Gaca et al., 2013, 
2015a,b; Beljantseva et al., 2017; 
Colomer-Winter et al., 2018

Streptococcus pneumoniae RelP - Both are low active (p)ppGpp synthetase Battesti and Bouveret, 2009; Kazmierczak 
et al., 2009RelQ

Mycobacterium smegmatis RelZ - Bifunctional protein with (p)ppGpp synthetase and RNase HII activity

- Induced under replication stress

- Synthesize pGpp

- Regulation by ssRNA

Murdeshwar and Chatterji, 2012; Krishnan 
et al., 2016; Petchiappan et al., 2020

Staphylococcus aureus RelP - Cell envelope stress

- Synthesize pGpp

Geiger et al., 2014; Gratani et al., 2018; 
Manav et al., 2018; Bhawini et al., 2019; 
Yang et al., 2019; Li et al., 2020

RelQ - Mediates β-lactum resistance in methicillin-resistant strains

- Synthesize pGpp

Corynebacterium glutamicum RelPCg - Role in primary nucleotide metabolism

- Respond to low temperatures

Ruwe et al., 2017

RelSCg - Synthesize pGpp

Clostridium difficile RelQ - Antibiotic resistance Pokhrel et al., 2020

Bacillus subtilis PhRel2 -  All of these are grouped as toxSASs since they are toxic component 
of TA system

Jimmy et al., 2020; Dedrick et al., 2017

Coprobacillus sp., FaRel2

Mycobacterium phage Phrann PhRel - PhRel helps in preventing the superinfection by other bacteriophages

Cellulomonas marina FaRel

Mycobacterium tuberculosis CapRel
Gram-negative bacteria

Vibrio cholerae RelV - Regulate basal level of (p)ppGpp

- Induced upon glucose or fatty acid starvation

Das and Bhadra, 2008; Das et al., 2009; 
Dasgupta et al., 2014

Pseudomonas aeruginosa Tas1 (RelV) - Important role in interbacterial antagonism Ahmad et al., 2019
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protein encoded by cg2324 is named as RelS and shares sequence 
similarity with the (p)ppGpp synthetase domain of RelQ. 
(p)ppGpp synthesis activity is not found for RelPCg. The maximum 
activity of the RelSCg is obtained at a temperature below 
optimum; therefore, it is assumed that (p)ppGpp is synthesized 
in response to low temperatures (Ruwe et  al., 2017).

ToxSASs

Many SAS subfamilies were identified in conserved bicistronic 
operon of TA system from actinobacteria, firmicutes, and 
proteobacteria. Five of these SAS were demonstrated to be  the 
toxic component of the TA system and hence named as toxSASs 
(Jimmy et al., 2020). They are B. subtilis PhRel2, Coprobacillus sp., 
FaRel2, Mycobacterium phage Phrann PhRel, Cellulomonas 
marina FaRel, and Mycobacterium tuberculosis CapRel 
(Figures  1, 2). The toxicity of the toxSASs was neutralized 
by the six adjacent antitoxin proteins, among which five are 
specific to corresponding toxSASs and C. marina FaRel2 can 
neutralize all the five toxSASs. The specific function of the 
toxSASs is not identified, except of PhRel (also known as 
Gp29), which plays a role in preventing the superinfection by 
other bacteriophages (Dedrick et  al., 2017).

RelV

RelV (relA-like (p)ppGpp synthetase domain coding gene in 
vibrios) shared poor homology with RelP and RelQ, because 

the bacteria itself are phylogenetically different from firmicutes, 
but there is a high conservation of amino acid residues in 
the synthetase domains of RelV, RelP, and RelQ. In V. cholerae, 
RelV can produce (p)ppGpp upon glucose or fatty acid starvation 
(Das and Bhadra, 2008; Das et al., 2009; Dasgupta et al., 2014). 
Another RelV subfamily homolog Tas1 was identified in 
P. aeruginosa. Tas1 RSH domain is encoded within a large 
conserved T6SS cluster (type 6 secretion system) and fused 
to a toxin delivery domain (Figure  2), which exhibits its toxic 
effect on another competitor cell, thus playing an important 
function in interbacterial antagonism (Ahmad et  al., 2019).

RelZ (MS_RHII-RSD)

In M. smegmatis, MSMEG_5849 codes for a bifunctional protein 
MS_RHII-RSD (renamed as RelZ), which has a C-terminal 
RSD domain similar to the other SAS but is different from 
them due to the presence of N-terminal RNase HII domain 
in the same polypeptide chain (Figure  3). RelZ efficiently 
hydrolyze RNA–DNA hybrids (Murdeshwar and Chatterji, 2012) 
and R-loops (Krishnan et  al., 2016). R-loops have a major role 
in replication–transcription conflicts and lead to stalled arrays 
of RNA polymerase to block the replication fork movement, 
thereby promoting replication stress (Drolet, 2006; Poveda et al., 
2010; Stirling et al., 2012). This stress can be efficiently managed 
by two mechanisms: R-loop removal by RNase HII (Aguilera 
and García-Muse, 2012) and destabilization of stalled RNA 
polymerase by (p)ppGpp synthesis (Cashel et  al., 1996; Ross 
et  al., 2013). RelZ possesses both these important activities 
(RNase HII and (p)ppGpp synthetase) in a single polypeptide. 
Our previous study (Krishnan et  al., 2016) showed that under 
UV stress, RelZ removes the accumulated R-loops in RNase 
H-deficient E. coli, and relZ expression is upregulated in 
M. smegmatis to remove the R-loops generated due to UV 

FIGURE 1 | Domain structure of long RelA/SpoT homolog (RSH) and short 
alarmone synthetase (SAS). SAS proteins have only (p)ppGpp synthetic 
domain (~25–29 kDa), the hydrolysis and regulatory domains are absent. 
RelS is a 39.8-kDa protein with extended synthetase domain than other SAS. 
RelZ is a 64.5-kDa protein with RNase HII domain. The hydrolysis and 
regulatory domains are TGS, ThrRs, GTPase, and SpoT; H, helical domain; 
ZFD, zinc finger domain; CC, conserved cysteine; RRM, ribosome recognition 
motif; ACT, aspartokinase, chorismate mutase, and TyrA. Tas1 synthetase is a 
toxin effector domain, and proline-alanine-alanine-arginine (PAAR) is a toxin 
delivery domain; PhRel, FaRel, PhRel2, FaRel2, and CapRel are known as 
ToxSAS because of their presence in toxin–antitoxin (TA) module.

FIGURE 2 | Functions of long RSH and short alarmone synthetase. Long 
RSH, Rel/RelA-SpoT, synthesize pppGpp and ppGpp using GTP/GDP as 
substrates during nutritional stress. SAS protein expression is induced by 
various stress signals. SAS Rels synthesize pGpp in addition to pppGpp and 
ppGpp using GTP/GDP/GMP as substrates. pppGpp and ssRNA bind to 
RelQ and mediate the allosteric regulation. The pppGpp synthesis activity of 
RelZ is also inhibited by RNA and pppGpp. Tas1 synthesize (p)ppApp using 
ATP/ADP/AMP as substrates. ToxSASs (not Tas1) synthesize both (p)ppGpp 
and (p)ppApp. ToxSASs are represented within red outlined box.
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stress. Based on these results, we  proposed a model to explain 
the function of RelZ. Upon UV stress, the levels of RelZ increase 
within the cell. Any R-loops formed are removed by the RNase 
HII and (p)ppGpp helps to destabilize the stalled RNA polymerase 
via an unknown mechanism to rescue the cells from replication 
stress (Krishnan et al., 2016). In addition, RelZ mediates antibiotic 
tolerance in M. smegmatis but does not impact biofilm formation 
significantly (Petchiappan et  al., 2020).

Active site mutational studies of RelZ revealed that inactivation 
of one domain does not affect the activity of the other domain. 
However, the purified subdomains are nonfunctional when 
separated and expressed independently (Figure  3). This kind 
of domain interdependence was extensively characterized, and 
the results showed that the full-length RelZ is essential for its 
function and it is a hexamer (Krishnan et  al., 2016). The 
synthetic subdomain of RelZ is a tetramer in solution like the 

other solved structures of RelP and RelQ (Steinchen et  al., 
2015, 2018, 2020; Steinchen and Bange, 2016). Petchiappan 
et al. (2020) showed that RelZ prefers guanosine monophosphate 
(GMP) as a substrate and synthesizes pGpp. To understand 
the difference between pGpp and ppGp, the reaction mixture 
was treated with NaOH that hydrolyzes only pGpp. From thin 
layer chromatography, it was shown that Rel hydrolyzes pGpp 
to GMP and pyrophosphate as evidenced by the comigration 
of the radiolabeled product with the purified pyrophosphate 
whereas RelZ showed weak hydrolysis. We  found that ssRNA 
inhibits RelZ-mediated pGpp synthesis, but R-loop did not show 
any effect (Petchiappan et al., 2020). The pGpp synthesis activity 
of the RelZ is inhibited by pppGpp whereas ppGpp and pGpp 
did not have significant effect. Therefore, we  infer that the 
cellular pppGpp levels determine the RelZ-mediated synthesis, 
whereas ssRNA and pppGpp carefully regulate it. The altered 
cell surface properties of ΔrelZ strain indicated that RelZ plays 
a role in cell wall metabolism (Petchiappan et  al., 2020).

Mycobacterium tuberculosis has a SAS encoding (p)ppGpp 
synthetase, Rv1366. But it has no RNase H domain and it is 
incapable of synthesizing (p)ppGpp (Nanamiya et al., 2008; Weiss 
and Stallings, 2013; Bag et al., 2014). Few RHII-RSD dual-domain 
orthologs were identified from Mycobacteria; Mycobacterium 
vanbaalenii (YP_995923.1), Mycobacterium tusciae (ZP_09680741.1), 
and Mycobacterium gilvum (YP_001132882.1). However, RelZ is 
the only dual-domain mycobacterial SAS characterized so far. 
RelZ type of SAS with RNase H and (p)ppGpp synthetase domains 
are found only in the environmental species and they are absent 
in the pathogenic species of mycobacteria.

SAS SYNTHESIZE pGpp

Recently, SAS proteins but not Rel are found to use GMP as 
a substrate and synthesize pGpp, a third alarmone which makes 
the alarmone group representation from (p)ppGpp to (pp)pGpp 
(Gaca et  al., 2015b). pGpp can function like  
(p)ppGpp as well and may have different functions which is 
not regulated by (p)ppGpp (Gaca et  al., 2015a). The pGpp can 
be  hydrolyzed by Rel, like the hydrolysis of (p)ppGpp (Gaca 
et  al., 2015b; Yang et  al., 2019). In B. subtilis, RelP and RelQ 
are shown to synthesize ppGp or pGpp. (Tagami et  al., 2012). 
RelQ from E. faecalis is an efficient producer of pGpp (Gaca 
et al., 2015a). RelQ and RelP of S. mutans showed much weaker 
pGpp synthesis activity upon comparison with RelQEf. RelP and 
RelQ of S. aureus and RelSCg of C. glutamicum synthesize pGpp 
along with (p)ppGpp. ppGpp/pGpp effectively reduce the 
intracellular levels of GTP and these guanine nucleotides are 
synthesized only when RelA is inactive in the cells (Ruwe et  al., 
2017). The synthesis of pGpp will become relevant only when 
the GMP levels in the cells are increased like GTP level. Such 
kind of GMP accumulation has been reported in B. subtilis 
(Liu et al., 2015). It was also speculated that pGpp may be involved 
in stretching the stress response after the depletion of GTP and 
GDP in the cell (Gaca et al., 2015b; Ruwe et al., 2017). However, 
pGpp regulates the purine synthesis but does not involve in 
ribosome biogenesis (Tagami et  al., 2012; Yang et  al., 2020).

A

B

FIGURE 3 | Mechanism of regulation and functions of RelZ. (A) RelZ 
contains an RNAse HII (RHII) domain in tandem with the (p)ppGpp synthetase 
domain (RSD, RelA SpoT nucleotidyl transferase domain). Full-length protein 
in cis has both RNAse HII activity and (p)ppGpp synthetase activity whereas 
neither the purified domain variants in isolation nor on trans complementation 
can function independently. RelZ can hydrolyze RNA:DNA hybrid as well as 
R-loop. It can synthesize pGpp, ppGpp, and pppGpp having the substrate 
preferences as GMP > GDP > GTP. pGpp synthesis is negatively regulated by 
ssRNA and high concentrations of pppGpp. From our earlier studies on active 
site mutational analysis, gel filtration chromatography followed by native PAGE 
revealed that the N-terminal RHII domain is monomeric and C-terminal RSD 
domain is tetrameric upon isolation. The full-length active protein is, however, 
hexamer in solution. We also found that RelZ and all the mutant variants of 
the full-length RelZ remain as hexameric form in solution. (B) In our previous 
study, we demonstrated that RelZ can hydrolyze R-loops in Escherichia coli 
exposed to UV stress. RelZ gene expression was upregulated under UV 
stress, and this gene-deleted strain showed increased R-loop accumulation 
as compared to the wild type. Based on these results, we proposed a model 
for the physiological function of RelZ. UV stress leads to increased R-loop 
formation and replication–transcription conflicts. Under UV stress, RelZ 
expression is upregulated than the conventional RNase HI and HII. Its RHII 
activity removes the R-loops and the stalled RNA polymerase is destabilized 
indirectly by (p)ppGpp. Thus, RelZ plays an important role during R-loop-
induced replication stress response in Mycobacterium smegmatis. (B) is 
adapted and redrawn from Krishnan et al. (2016).
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SAS SYNTHESIZE (p)ppApp

Recent studies by Ahmad et  al. (2019) and Jimmy et  al. 
(2020) revealed that SAS not only synthesize ppGpp but also 
synthesize ppApp. In P. aeruginosa, a secreted toxic effector 
of T6SS was identified as Tas1. Though the crystal structure 
of Tas1 is similar to the other (p)ppGpp synthetases, it does 
not synthesize (p)ppGpp but produces (p)ppApp (Ahmad 
et  al., 2019). Another SAS that produces (p)ppApp was 
identified in C. marina FaRel. The toxicity of this toxSAS is 
mediated by ppGpp and ppApp followed by the depletion 
of intracellular GTP and ATP pools (Jimmy et  al., 2020).

SAS BIND TO ssRNA

Hauryliuk and Atkinson (2017) reviewed the RNA-binding 
properties of SAS. Beljantseva et  al. (2017) discovered that 
RelQEf activity is inhibited when it binds to ssRNA. RNA binds 
to RelQ in a sequence-specific manner with GGNGG, a putative 
Shine–Dalgarno-like consensus sequence. pppGpp strongly 
counteracts the inhibition by RNA and destabilizes the RNA:RelQ 
complex. In this way, RelQ has both enzyme activity and 
RNA-binding property. In a RelQ:RNA complex, (p)ppGpp 
synthesis and pppGpp binding are mutually incompatible. Hence, 
there is a possibility that the RelQ:RNA complex acts a regulatory 
switch between inactive and active forms of the enzyme. ssRNA 
and pppGpp compete with each other to bind into the central 
cleft of the homotetramer, but this property is not conserved 
in RelP of S. aureus, because pppGpp is not an allosteric 
regulator of RelP. The central cleft in the RelP tetramer could 
be  an allosteric site bound by other small molecules (Manav 
et  al., 2018; Steinchen et  al., 2018).

The RNA-binding property of RelQ can be  compared with 
that of RelZ since the ssRNA inhibits the activity of RelZ 
(Petchiappan et  al., 2020). Since RelZ is involved in R-loop-
mediated replication stress (Krishnan et  al., 2016), (p)ppGpp 
synthesis can occur by sensing the R-loops. Once the RNase H 
cleaves the R-loop into dsDNA and ssRNA (Dutta et  al., 2011), 
the replication stress is relieved and hence the (p)ppGpp synthesis 
stops. This could be  the reason for ssRNA showing inhibitory 
effect on RelZ-mediated alarmone synthesis. Structural analysis 
of RelZ is in progress to understand the RelZ:ssRNA complex.

Arresting the (p)ppGpp synthetase activity using (p)ppGpp 
analogues is emerging as a clinically important method in 
eradicating persistent infections (de la Fuente-Núñez et  al., 
2014; Andresen et  al., 2016; Petchiappan and Chatterji, 2017; 
Syal et  al., 2017; Dutta et  al., 2019). Similarly, the 

ssRNA-binding property of the SAS can be explored to regulate 
the SAS-mediated (p)ppGpp synthesis. Mutant huntingtin protein 
that causes Huntington’s disease was selectively and effectively 
inhibited by ss siRNA approach (Yu et  al., 2012). According 
to Lima et al. (2012), the identification of potent ssRNA would 
provide an easy route to therapeutics than dsRNA. ssRNA do 
not require special formulations for tissue penetration (Bennett 
and Swayze, 2010), whereas the ds siRNAs need to undergo 
complex and expensive lipid formulations (Tao et  al., 2011). 
Nucleic acids not only recognize specific target sequences by 
complementary base pairing but they can interact with proteins 
and this property is currently being explored in therapeutics 
(Roberts et  al., 2020).

CONCLUSION

The co-evolution of SAS along with Rel, redundant (p)ppGpp 
synthetases, and multiple types of closely related alarmones 
in bacteria is intriguing. (p)ppGpp is a key factor for biofilm 
formation, antibiotic tolerance, virulence, and persistence in 
many pathogenic bacteria. Therefore, inhibition of (p)ppGpp 
synthesis will inhibit the long-term survival of the pathogen. 
Therefore, finding an inhibitor to prevent (p)ppGpp synthesis 
is of high therapeutic interest. In addition to that, ssRNA with 
specific binding sequence could be a supplementary therapeutic 
element to inhibit the SAS-dependent (p)ppGpp synthesis 
because SAS is an RNA-binding protein. The discovery of SAS 
has not only augmented the prospects of stringent response 
but also adds value to the upcoming field of RNA therapies.
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