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A wines’ terroir, represented as wine traits with regional distinctiveness, is a reflection of
both the biophysical and human-driven conditions in which the grapes were grown and
wine made. Soil is an important factor contributing to the uniqueness of a wine produced
by vines grown in specific conditions. Here, we evaluated the impact of environmental
variables on the soil bacteria of 22 Barossa Valley vineyard sites based on the 16S rRNA
gene hypervariable region 4. In this study, we report that both dispersal isolation by
geographic distance and environmental heterogeneity (soil plant-available P content,
elevation, rainfall, temperature, spacing between row and spacing between vine)
contribute to microbial community dissimilarity between vineyards. Vineyards located
in cooler and wetter regions showed lower beta diversity and a higher ratio of dominant
taxa. Differences in soil bacterial community composition were significantly associated
with differences in fruit and wine composition. Our results suggest that environmental
factors affecting wine terroir, may be mediated by changes in microbial structure, thus
providing a basic understanding of how growing conditions affect interactions between
plants and their soil bacteria.

Keywords: terroir, vineyard soil bacteria, Barossa Valley, Illumina, 16SrRNA, soil microbiome

INTRODUCTION

Wine price differs considerably depending on its quality (e.g., flavor, color, and typicity), which is
largely determined by the interactions between the grape and the growing conditions including
climate, soil, topography, agricultural management, and the wine making process (Bokulich
et al., 2016). These interactions influence the expression of wine’s terroir (Bokulich et al., 2016;
Fabres et al., 2017). Research on the drivers of terroir have predominantly focused on abiotic
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environmental factors, such as climate, soil, viticultural
management and wine making process, studied individually
(Mira de Orduña, 2010; Vega-Avila et al., 2015; Romero et al.,
2016) and simultaneously (Van Leeuwen et al., 2004). Research
has been conducted on the association between soil microbiome
(fungi and bacteria) and wine’s terroir (Burns et al., 2015;
Bokulich et al., 2016. For a recent review see Liu et al., 2019). In
Australia, such studies have focused in the characterization of
the microbial communities within a single vineyard (Gupta et al.,
2019) to those present in vineyards planted in different growing
regions (Liu et al., 2020). However, there is still a lack of large
studies designed to understand whether vineyard microbiomes
exhibit distinct patterns of distribution at small geographic
scales (e.g., neighboring vineyards), and how such patterns are
associated with a wine’s terroir.

Soil microbiomes, especially bacterial species, have been found
to be qualitatively and quantitatively different between vineyard
systems (Vega-Avila et al., 2015). Environmental factors, such
as topography, climate, soil properties, cultivars and agricultural
management, combine to affect soil microbial communities
(Castro et al., 2010; Reeve et al., 2010; Lamb et al., 2011). It
has been shown that climate and topography, including rainfall
pattern and temperature, affect these communities through their
impacts on soil (Burns et al., 2015). Soil properties such as
soil texture, nitrogen (N) content, phosphorus (P) content,
carbon to nitrogen (C:N) ratio, water content, and pH show
significant effects on the diversity and composition of microbial
communities (Girvan et al., 2003; Frey et al., 2004; Rousk et al.,
2010; Fierer and Jackson, 2006). Management practices, land
use and varying degrees of stress and disturbance influence
the soil microbiome markedly due to specific management
objectives (Crowder et al., 2010; Reeve et al., 2010; Sugiyama
et al., 2010; Lumini et al., 2011). Although environmental cues
are the main drivers of the plant microbiota composition, it
is now well established that host factors also contribute to
the shaping of these communities. Plant genotypes exert an
influence on the structural and functional diversity of soil
microbiomes by varying root exudates and rhizodeposition
(Broeckling et al., 2008; Dias et al., 2013; Philippot et al., 2013).
Additionally, soil-plant compartments (bulk soil, rhizosphere
and endorhizosphere) have been found more dominant in
shaping fungal communities diversity and composition than
spatial variability (Martínez-Diz et al., 2019).

Soil microbiomes interact with the vines, and thus affect
wine quality (Burns et al., 2015; Bokulich et al., 2016). The
interaction between soil microorganisms and plants includes
the facilitation of nutrient uptake/utilization, stabilization of soil
structure, reduction of disease prevalence by out-competing soil-
borne pathogens or increase of disease prevalence by microbial
pathogen invasion (Edwards et al., 2014; Zarraonaindia et al.,
2015). Soil microbiomes also contribute to the wine fermentation
flora, ultimately affecting wine quality (Compant et al., 2011;
Barata et al., 2012; Martins et al., 2013). However, microbial
assemblage function is intrinsically difficult to measure and
define because of its highly changeable nature (Nannipieri et al.,
2003). Additionally, due to the complex interactions between soil
microbes, the influence of certain microbial communities can be

substituted by other microorganisms with the same ecological
function (Nannipieri et al., 2003; Wittebolle et al., 2009; Crowder
et al., 2010; Lamb et al., 2011).

The primary aim of this project was to assess if there is a
relationship between soil bacteria and terroir. To achieve this, we
asked the following questions:

(i) Do wine sub-regions have distinct soil bacterial
communities?;

(ii) What environmental conditions and agricultural practices
shape soil bacterial community of vineyards?; and

(iii) Do differences in the soil bacterial community correlate
with berry and wine characteristics?

In order to answer these questions, we undertook a soil
bacteria survey in an iconic wine region, the Barossa in South
Australia. The Barossa has a winemaking history of over 160 years
and because of its importance as a growing region, has been
chosen as a model to investigate terroir previously (Wolf et al.,
2003; Edwards et al., 2014; Xie et al., 2017). Besides, the
environmental characteristics of the Barossa, including climate,
soil and topography have been previously characterized in detail
(Robinson and Sandercock, 2014). However, to date, no study
has analyzed the soil bacteria of the Barossa wine region or
the possible influence on wine properties. Thus, determining
how soil bacteria diversity and composition are influenced by
environmental factors, and how bacteria differences correlate
with differences in fruit/wine composition, will provide a starting
point from which to better understand the (potential) functional
role of soil microbial communities in terroir.

MATERIALS AND METHODS

Experimental Design and Plant Material
Twenty-two Barossa vineyards (Supplementary Figure 1),
planted with own-rooted Shiraz (Vitis vinifera L.) and
representative of the climate, soil and management practices of
six Barossa sub-regions (i.e., Eden Valley, Northern Grounds,
Central Grounds, Eastern Edge, Western Ridge, Southern
Grounds) were selected for this study. Three to four vineyards
per sub-region were included and nine vines from three rows
from each vineyard were selected for measurement and sampling.
Vines within the same row were adjacent to each other. Vines
adjacent to missing vines, end of row vines and border rows were
excluded from the selection.

Soil Sampling Protocol
Three soil cores (0–10 cm soil layer) were collected using a
(20 mm diameter) soil auger from around each individual plant
(approximately 10 cm from the trunk) and combined, giving a
total nine soil samples per row. A total of 594 soil samples were
collected (27 soil samples from each vineyard) on the 2nd of
November (Austral Spring) 2015. At this time, vines have broken
dormancy and are in a stage of rapid growth. Microbes present
in the vineyard soil at this stage will have a more prolonged
effect on the vines that those becoming more prominent later in
the growing season. Additionally, focusing on the taxa present
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early in the growing season should reduce the possibility of taxa
found to be associated to differences in fruit/wine traits to be
in reality driven by the environmental factors that induce those
differences. Soil samples were immediately stored at 4◦C and
returned to the laboratory on the same day of collection. Soil
samples from the same row were thoroughly mixed to obtain
three samples per vineyard, and a total of 66 samples across the
study. Coarse debris was removed from each soil sample using
a 2 mm sieve, and each sample was then divided into two sub-
samples (approximately 850 cm3 each). The first subsample was
air-dried until a constant mass was achieved and used for analysis
of soil texture, pH, electrical conductivity, and plant-available
(Colwell) P (phosphorus), as described previously (Cavagnaro,
2016). The second subsample was stored at -80◦C for DNA
extraction and downstream genomic analysis (see below).

Vineyard Physical Characterization
In this study, the climate was characterized on the basis
of rainfall and temperature. The influence of topography
was studied through elevation above sea level and vineyard
orientation. Soil texture was determined following (Giddings,
2015). Soil pH and electrical conductivity were determined on
a 1:5 soil/water mixture and then measured using pH/salinity
meter (WP-81 Conductivity-Salinity-pH-mV Meter, v6.0,
TPS Pty Ltd.). Plant-available phosphorus was extracted and
measured using Colwell P method (Rayment and Higginson,
1992) (Supplementary Table 1). The remaining soil, topographic
and climatic data was obtained from the Barossa Grounds
project (Robinson and Sandercock, 2014) (Supplementary
Table 2). Vineyard management information (including
irrigation, midrow management, under vine management,
planting year, vine density, pruning method, space between rows,
row orientation, and canopy management) was collected from
participating growers (Supplementary Table 2).

Fruit and Wine Chemical Analysis
Fruit juice pH and total acidity (TA) was measured using an
autotitrator (Crison instruments Barcelona, Spain) (Iland et al.,
2013). Total soluble solids (TSS) of juice samples were tested
with a digital refractometer (BRX-242 Erma inc. Tokyo, Japan).
A sample of 50 berries from random bunches on were collected
from the same vines selected for soil microbiome analysis and
frozen at −20◦C for anthocyanin, phenolic and tannin analyses.
Total grape tannins were measured by the methyl cellulose
precipitable (MCP) tannin assay (Sarneckis et al., 2006) using
the protocol of Mercurio et al. (2007). Total anthocyanin and
phenolics were determined according the method of Iland et al.
(2013) (Supplementary Table 3).

One bottle of commercial wine (2016 vintage) per vineyard
was used for the chemical analysis. Wine pH and TA was
determined as described by Iland et al. (2013). Final alcohol levels
were determined using an Alcolyzer Wine ME (Anton Paar, Graz,
Austria). Wine color was determined using the modified Somers
assay using a high throughput method in 96 well plates [98].
Wine tannin concentration was determined using the methyl
cellulose precipitable (MCP) tannin assay of Mercurio et al.
(2007) and is expressed as epicatechin equivalents (mg/L) using

an 8-point epicatechin standard curve Sarneckis et al. (2006).
The modified Somers assay was used to determine; wine color
density (WCD), SO2-corrected WCD, degree of anthocyanin
ionization, phenolic substances and anthocyanins (in mg/L)
(Supplementary Table 4).

Non-targeted metabolomic analysis of the wine samples was
performed using LC-MS/MS. The metabolites were isolated from
bottled wine samples using solid-phase extraction (SPE) with
Phenomenex Strata-X 33 um 85 Å polymeric reverse-phase
60 mg/3 mL cartridges. A 2 mL aliquot of each sample was
evaporated to dryness under nitrogen at 30◦C. SPE conditions are
presented in Supplementary Table 5. A pooled mix of all samples
was prepared and used to monitor instrument performance. The
analysis was performed on an Agilent 1200SL HPLC coupled to
a Bruker microTOF-Q II in ESI negative mode. The operating
conditions are described in Supplementary Tables 5–7.

Following data acquisition, mass calibration was performed
on each file using Bruker Daltonic’s DataAnalysisViewer4.1
“Enhanced Quadratic” calibration method (Bruker Singapore,
The Helios, Singapore). Each file was exported from DataAnalysis
in the mzXML generic file format for further processing. The files
were processed using R (statistical programming environment)
v3.1.0 and Bioconductor v2.14 under a Debian Linux 64-bot
environment. Molecular features were extracted for each file
using xcmx package and features that possessed a common mass
and retention time across samples were grouped together.

16S rRNA Gene Next Generation
Sequencing Library Preparation
DNA extractions from soil 66 samples were carried out at
the Australian Genome Research Facility (AGRF) (Adelaide
node) using Mo Bio Powersoil kit (Mo Bio Laboratories, Inc.)
following the manufacture’s protocol. DNA concentrations were
estimated using a Nanodrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, United States) and normalized
to 5 ng/µl using nanopure water.

We prepared 16S rRNA amplicon libraries by following
guidelines for the Illumina MiSeq System. Primers 515F and 806R
(Bates et al., 2011; Caporaso et al., 2011) specific for the Bacterial
16S rRNA gene hypervariable “V4” region (expected amplicon
and approximate size 390 bp, expected insert and approximate
size 259 bp) were used for PCR amplification of extracted DNA
and to prepare amplicon libraries. 515F worked as a universal
forward primer for all the samples and 806R included 12-base
sample specific barcodes to allow downstream de-multiplexing
(Supplementary Table 8).

Three replicated PCR reactions were performed for each of the
66 samples. Each of these runs included one negative control as
‘sample67’ with no template DNA added. PCR reactions included
10ng of extracted DNA, 12.5 µl Q5 high-fidelity 2∗master mix
(New England Biolabs), 8.5 µl dH2O, 1 µl forward and reverse
primers (10 µM) in 25 µl reaction system. The PCR thermocycler
(Bio-Rad T100) program was 95◦C for 6 min, followed by 38
cycles of 95◦C for 30 s, 50◦C for 30 s and 72◦C for 1 min and 30 s.

Success of PCR reactions was verified by agarose gel (1.5%
w/v) electrophoresis. Samples exhibiting poor or no PCR
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amplification (i.e., yielding faint or no visible bands on the
agarose gel) were reamplified by adjusting the amount of DNA
template. The triplicate reactions were then pooled into 67 pools.
Individual pools were quantified by Qubit fluorometric double
stranded DNA assay (Invitrogen, Carlsbad, CA, United States)
and then mixed on an equimolar base to generate six pools
each with 11 samples (each containing 5 µl of the water
control pool). Pools were size-selected to remove unused
primers using Agencourt AMPure XP (Beckman Coulter, Brea,
CA, United States) following the manufacturer’s protocol and
mixed to equimolar concentrations to make one final pool.
Library concentration and fragment size were estimated using
TapeStation (Agilent, Santa Clara, CA, United States) and
sequenced on the Illumina MiSeq platform (300 bp PE) (Illumina,
San Diego, CA, United States) at the Australian Genome Research
Facility-Adelaide node (AGRF).

Bioinformatics Analysis
Raw Illumina sequencing data was demultiplexed at AGRF-
Adelaide node. Forward and reverse sequences were merged
using bbmerge (Bushnell et al., 2017). Merged reads passing QC30
filter were analyzed using Quantitative Insight Into Microbial
Ecology (QIIME) (QIIME version 1.8.0) (Navas-Molina et al.,
2013). Operational taxonomic units (OTUs) were clustered using
open-reference picking with the default uclust method (Edgar,
2010) based on 97% sequence similarity to the 16S rRNA
Greengenes database (DeSantis et al., 2006; McDonald et al.,
2012). OTUs were aligned to the Greengenes core reference
database using PyNAST (Caporaso et al., 2010). Ribosomal
Database Project (RDP) classifier was used to assign taxonomy
(Wang et al., 2007). Both closed-reference OTU picking and
open-reference OTU picking were performed for later analyses.

Alpha diversity (within-sample species richness and evenness)
was measured using non-phylogenetic (including the observed
number of OTUs, the Chao 1 and Shannon index) and
phylogenetic (Faith’s Phylogenetic Diversity) indices (Faith,
1992). Phylogenetic beta diversity (between-sample diversity)
was calculated using both weighted and unweighted UniFrac
(Lozupone and Knight, 2005) and three-dimensional principal
coordinates analysis (PCoA) plots were built through Emperor
(Vázquez-Baeza et al., 2013). We then constructed a neighbor
joining ultrametric tree in QIIME from the beta diversity
UniFrac distance matrix. The generated tree file, as well as the
Barossa Valley geographical map, vineyard locations and taxa
summary files, were input into GenGIS (Parks et al., 2009,
2013) to visualize the relationship between soil bacterial beta
diversity and vineyard location. The statistical significance of
this relationship was determined using the Mantel test based on
9,999 random permutations and implemented on GenAlex v6.5
(Peakall and Smouse, 2012).

To identify the association of environmental variables and
grape and wine properties (Supplementary Tables 1–7) with soil
bacterial microbiome, bacterial community dissimilarities were
visualized with non-metric multidimensional scaling (nMDS)
plots. All correlation analyses were done at species level,
however, for simplicity during result visualization we used the
highest taxonomical level available for the OTUs identified as

significantly correlated to the trait of interest. Variables were fitted
to the ordination plots using the function envfit in the package
Vegan version 2.5-2 (Oksanen et al., 2013) implemented in R
version 3.5.0 (R Core Team,, 2013). Spearman’s rank correlation
coefficients were measured between individual taxon abundance
and fruit and wine traits using the function rcorr in the package
Hmisc. Grape traits included those from sensory, basic chemistry
analyses, while wine traits included basic chemistry, wine
fermentation products and amino acids concentration. Those
traits and taxa with a significant (p-value < 0.05) correlation
coefficient larger than 0.80 or lower than −0.80 were deemed as
significantly associated.

To identify which variables are important in explaining the
composition of the soil microbial community, we performed
distance-based redundancy analysis (dbRDA), a form of
multivariate multiple regression that we performed directly
on a Bray-Curtis dissimilarity matrix of OTUs using the
ADONIS function in Vegan. We used automatic model building
using the function step in R. The step function uses Akaike’s
Information Criterion (AIC) in model choice, which is based
on the goodness of fit. The model building proceeds by steps
until the ‘best’ fit is identified. If two predictor variables were
highly correlated (>0.85) one, typically that which was more
difficult to measure, was removed as well as variables with
missing replicates (Variables included in the automatic model
building are marked with ∗ in Supplementary Tables 2–8).
Differential statistic functions within the edgeR package (Chen
et al., 2008) was used, as in Weiss et al. (2017) to determine
the significantly different taxa between vineyards separated by
the main environmental drivers of beta diversity (i.e., soil type
and soil phosphorous content). In order to avoid the influence of
taxa showing low counts, a minimum threshold was set up at 100
counts per million.

RESULTS

Analysis of Soil Properties
Of the three soil physicochemical properties tested, plant-
available phosphorous (P) and electrical conductivity (a
measure of soil salinity), differed significantly (Kruskal–
Wallis: p-value < 0.05) between sub-regions of the Barossa
(Supplementary Table 1). Plant-available P was lowest in the
Northern Grounds (11.5 ± 2.7 µg P/g soil) and highest in the
Eastern Edge (39.0 ± 14.2 µg P/g soil). Electrical conductivity
ranged from 111.0 µS/cm (Northern Grounds, SE = 34.2) to
302.5 µS/cm (Central Grounds, SE = 123.5). Soil pH did not
differ between sub-regions, ranging from 6.2 (Eden Valley,
SE = 0.4) to 6.8 (Southern Grounds, SE = 0.5).

Barossa Valley Soil Bacteria Community
Composition
After quality filtering of the raw sequencing results, an average
of 130,949 paired sequences remained per sample. Of these an
average of 86,835 paired-end sequences per sample (66.3%) could
be joined using bbmerge (Supplementary Table 9).
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Both bacterial and archaeal DNA was detected in all soil
samples. A total of 98.9% of sequences were classifiable at the
phylum level (Figure 1A) and 95.2% at the genus level. Of those
classifiable at the phylum level, 96.5% were assigned to one
of nine dominant groups (relative abundance ≥1.0%) in the
samples namely: Actinobacteria (26.9%), Proteobacteria (26.7%),
Acidobacteria (12.0%), Planctomycetes (6.2%), Chloroflexi
(5.6%), Firmicutes (5.3%), Gemmatimonadetes (3.9%),
Bacteroidetes (3.5%), Verrucomicrobia (2.5%) (Figure 1A).
The only dominant Archaea group was Crenarchaeota (4.0%).
The overall dominant Bacteria and Archaea groups were
consistently present in the six regions, but at different ratios

(Figure 1A). The phylogenetic inference of bacteria composition
differences between sub-regions showed three clusters with
Central and Northern Grounds, and Eden Valley and Western
Ridge sharing the more similar microbial profiles (Figure 1A).

The number of observed OTUs (Figure 1B) showed
significant differences (t-test: p-value < 0.05) between the OTU
rich sub-regions (Northern and Central Grounds) and the
relatively OTU poor sub-regions (Eden Valley and Western
Ridge) (Supplementary Table 10). Similarly, the Chao1 metric
showed that Northern and Central Grounds presented higher
levels of OTU richness while Eden Valley and Western Ridge
had the lowest (Figure 1C). Pairwise comparison of alpha

FIGURE 1 | Soil bacteria community composition and diversity in 6 Barossa sub-regions. (A) Phylogenetic inference of microbiome composition differences between
Barossa sub-regions. Bar plots show bacterial taxa with greater than 2% relative abundance at the phylum level. Neighbor joining tree was generated with weighted
UniFrac distances calculated with sequences classifiable at the phylum level (98.9% of total). (B) Alpha diversity: Chao1 diversity comparison, (C) and observed
species diversity comparison (Observed number of OTUs). Alpha diversity values were calculated based on rarefied data was established using 16S sequencing
reads from 3 soil samples per vineyard.
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diversity between sub-regions showed significant differences (t-
test, p-value < 0.05) between Northern Grounds and Eden Valley
and Western Ridge and between Central Grounds and Eden
Valley and Western Ridge (Supplementary Table 11). Pairwise
Shannon diversity analysis did not show significant differences
between any subregion (Supplementary Table 12).

A BIOM file was generated after OTU picking, then OTUs
identified in the negative control samples were removed
from soil sample OTUs, leaving between 37,176 and 114,777
OTUs per sample (mean = 60,147 OTUs). Data with and
without rarefaction were used for alpha diversity and beta
diversity analyses. 37,176 OTUs (the lowest amount of OTUs
in one sample) were randomly selected from each sample
for rarefaction. Dissimilarities in microbial communities
between samples (i.e., beta diversity) were calculated as
weighted and un-weighted UniFrac distances and both
methods showed similar patterns, and so only analyses
based on weighted results are shown here. For the most
part, the three replicates from within a given vineyard
were closely grouped on the ordination plot (Figure 2A),
indicating that bacterial communities were consistent within
sites. Pairwise analysis of the differences between groups
(vineyards and sub-regions) showed that all vineyards and
sub-regions are significantly different to each other (Adonis,
p-value < 0.001). Mantel test analysis of the association
between bacteria compositional differences and geographic

TABLE 2 | Main drivers of soil microbiome differentiation between Barossa Region
vineyards.

Step Df Deviance Resid. Df Resid. Dev AIC

1 NA NA 21 75.29566 29.06836

Soil P −1 8.170918 20 67.12475 28.54123

Soil texture −1 6.620899 19 60.50386 28.25662

Variables that explained the greatest variation in the soil microbiome through model
selection. The correlation test was carried out on environmental variables following
the removal of the highly correlated variables (>0.85) using the function ordisten,
in the package Vegan. *p < 0.05, **p < 0.01, and ***p < 0.001.

distance, showed a small but significant correlation (rxy = 0.315;
p-value = 0.0001) (Figure 2B).

To further explore dissimilarities among and within regions,
neighbor joining analysis was used to cluster samples and to
generate a similarity tree in QIIME. This information, along
with a geographical map of the regions and their locations, were
combined using the GenGIS software package (Parks et al., 2009).
This approach showed a low level of clustering of vineyards
according to their geographic location (Figure 2C).

Drivers of Soil Bacteria Differentiation
Model selection was used to identify the combination of
variables that explained the greatest variation in the soil
bacteria. This approach consistently selected soil plant-available

TABLE 1 | Fruit and wine characteristics significantly associated with microbial community composition in Barossa Region vineyards.

Variables NMDS1 NMDS2 r2 Pr(>r)

Basic berry properties 50 berries weight −0.87544 −0.48332 0.1612 0.008**

TA berry 0.9369 0.3496 0.1119 0.029*

Average color 0.76859 0.63974 0.1337 0.008**

Average total phenolics berry 0.76558 0.64334 0.135 0.015*

Malic acid −0.90493 0.42557 0.104 0.03*

Basic wine chemistry Total phenolics 0.83761 0.54627 0.2132 0.002**

Total anthocyanins 0.99519 0.09801 0.2507 0.001***

Color density (so2 corrected) 0.72894 0.68457 0.1449 0.006**

Hue −0.78985 0.61331 0.1314 0.011*

Wine amino acids Alanine 0.11831 0.99298 0.124 0.017*

Asparagine 0.55124 0.83435 0.1156 0.023*

Glutamate 0.39571 0.91837 0.103 0.031*

Glycine 0.62968 0.77685 0.1847 0.002**

Serine 0.54731 0.83693 0.0936 0.04*

Threonine 0.20213 0.97936 0.0934 0.049*

Tryptophan 0.56228 0.82695 0.119 0.025*

Wine ferment. products Acetic acid −0.99914 −0.04153 0.1689 0.003**

Propanoic acid −0.96827 0.24991 0.118 0.012*

3-methylbutanol 0.99079 0.13538 0.1184 0.02*

2-methylbutanol 0.98968 0.14332 0.108 0.034*

Butanoic acid −0.89212 0.4518 0.1298 0.013*

2-phenyl ethyl ethanol 0.70731 0.7069 0.2064 0.001***

2-phenyl ethyl acetate 0.82725 0.56183 0.1249 0.013*

Table shows the envfit output that was carried out the correlation test between grape and wine characteristics variables that fitted onto an ordination of non-metric
multidimensional scaling (nMDS) plots of microbial community data from soils in 22 vineyard sites. Analysis was conducted using 999 permutations with variables deemed
significant where p-value < 0.05.
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FIGURE 2 | Effect of vineyard location on soil microbiome differentiation. (A) PCoA based on Beta diversity of soil bacterial communities calculated using weighted
UniFrac distances. Values were calculated based on rarefied data to 37,176 sequences per sample. (B) Relationship between phylogenetic Beta diversity and
geographic distance. Unifrac_dist indicates weighted UniFrac distances. Geographic distances were calculated from latitude/longitude coordinates using GenAlex
v6.5 geographic distance function implemented as Log(1 + distances in Km). The relationship was tested using Mantel’s correlation coefficient (rxy) with its
probability estimate for significance (P) based on 9,999 random permutations and implemented using GenAlex v6.5. (C) Neighbor joining ultrametric tree calculated
from Beta diversity weighted UniFrac distance matrix between 22 vineyards located in six sub-regions: Northern Grounds (blue); Southern Grounds (yellow); Central
Grounds (green); Eastern Edge (red); Western Ridge (purple); Eden Valley (orange). Tree was overlayed with the Barossa Region elevation map using GenGIS. Beta
diversity was established using 16S sequencing reads from 3 soil samples per vineyard.

phosphorus (P) and soil texture as the main drivers (Model:
p-value = 0.001) of soil bacteria in the Barossa vineyards tested
(Figure 3). Together, both variables explained 19.7% of the
observed variability. Independent pairwise analysis of UniFrac
distances of vineyards grouped by these soil characteristics,
showed that microbial communities in clay soil types were
significantly dissimilar from those in sandy soils (PERMANOVA:
p-value < 0.001, Figure 4A). Microbial communities in soils
with high plant-available phosphorus (P > 30 mg/kg) were
also dissimilar from those with low plant available phosphorous
(PERMANOVA: p-value < 0.001, Figure 4B). Three and eight
taxa were significantly more abundant in clay and sandy soils,
respectively (Figure 4C), while eight taxa were found significantly
associated with low plant available phosphorous content, and
three associated high levels of plant available phosphorous in
soil (Figure 4D).

Envfit analysis identified a number of other environmental
factors as individually associated with microbial community
composition (Figure 5). Aside from plant available
phosphorous (r2 = 0.3706, p-value < 0.001), these
variables were: elevation (r2 = 0.3609, p-value < 0.001),
growing season rainfall (r2 = 0.2499, p-value < 0.001),
mean annual rainfall (r2 = 0.1621, p-value = 0.004),
spacing between rows (r2 = 0.1512, p-value = 0.006)
and between vines (r2 = 0.1561, p-value = 0.011),
and growing season mean temperature (r2 = 0.1113,
p-value = 0.022).

Analysis of the correlation between individual environmental
and vineyard management variables and taxa abundance,
identified 4 positive (Spearman’s > 0.80, p-value < 0.001)
and 3 negative (Spearman’s < −0.80, p-value < 0.001)
significant correlations (Supplementary Figure 2). Positive
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FIGURE 3 | Main drivers of soil microbiome differentiation between Barossa Region vineyards. The observed important soil factors that affect soil microbial
community groups in combinations. CAP plot displays the combination of variables that explained the greatest variation in the soil microbiome through model
selection (full results Table 2). The correlation test was carried out on environmental variables following the removal of the highly correlated variables (>0.85) using
the function ordisten, in the package Vegan. The variables implemented in the final model were soil phosphorous and soil texture, which explained 19.7% of variation
in the soil microbiome. Distance based redundancy analysis (dbRDA) with Bray-Curtis dissimilarity matrix of OTUs was used to examine the influence of these
predictor variables using the function capscale in the package Vegan in R.

correlations with individual taxa included, pH (order iii1-
15 and family Pirellulaceae), elevation (family Isosphaeraceae),
and plant age (family Hyphomicrobiaceae); while negative
correlations included P (family OPB35), elevation (family
Conexibacteraceae), and the spacing between vines on the same
row (family Haliangiaceae).

Terroir and Vineyard Soil Bacteria
Twenty four of the 75 grape and wine characteristics included
in the study displayed a significant correlation with the soil
microbial community composition (Table 1). The strongest
associations identified for each of the four groups of traits
tested were: 50 berry weight and average color per berry

(basic berry properties); total anthocyanins and total phenolics
(basic wine chemistry); Glycine and Alanine (wine amino
acids); and 2-phenyl ethyl ethanol and acetic acid (wine
fermentation products).

Significant positive correlation (Spearman’s > 0.80,
p-value < 0.05) were identified between the abundance of
one taxon (order IS_44) and the average level of total phenolics
mg/g berry weight (Supplementary Figure 3A). Similarly, six
wine traits showed positive correlations with the abundance of six
microbial taxa (Supplementary Figures 3B–F). Briefly, the genus
Rhodoplanes (Order Rhizobiales; family Hyphomicrobiaceae)
was positively associated with the level of wine total phenolics
and the family Chitinophagaceae (Order Chitinophagales)
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FIGURE 4 | Identification of microbial genera associated to soil texture and plant-available phosphorous in Barossa Region vineyards. Principal coordinate analysis
plots display weighted UniFrac distances of soil samples from 22 vineyards in six sub-regions of Barossa Valley. Venn Diagrams show significantly different (P > 0.01)
genera. Plots and diagrams are grouped by (A,C) soil type [clay (red) versus sandy soils (green)], and (B,D) plant-available Phosphorous (P) [P < 30 µg P/g soil (red),
P > 30 µg P/g soil (green)]. Beta diversity was established using 16S sequencing reads from 3 soil samples per vineyard.

was associated with color density of SO2 corrected wine and
with the level SO2 resistant pigments in wine, while the family
Kouleothrixaceae (Order Roseiflexales) was positively correlated
with wine color density.

DISCUSSION

Previous studies have shown that environmental factors (e.g.,
climate and soil properties) and crop management may affect
microbial populations in vineyards (Burns et al., 2015; Gupta
et al., 2019; Liu et al., 2020). To date, the largest number of
vineyards included in a single vineyard microbiome study is 15
(Liu et al., 2020). Here the authors made a thorough examination
of the contribution of microbial communities to wine regionality
at a supra-regional level (up to 400 km) and identified the
fungal microbiome as a potential driver of terroir. To better
understand how these variables contribute to vineyard microbial
communities and how microbial diversity and composition
correlate with fruit and wine quality traits at a regional and
subregional level, we studied the soil bacteria composition of 22

commercial Shiraz vineyards representative of the Barossa Valley
wine region of South Australia, Australia.

Vineyard Soil Bacteria Composition and
Diversity
With over 37,176 sequences per sample we reached a sequencing
depth deemed sufficient to describe patterns in bacterial
alpha and beta diversities (e.g., Caporaso et al., 2010; Lundin
et al., 2012). From a species composition point of view, our
results indicate that vineyard soil bacteria present similarities
across the six sub-regions studied. All soils analyzed presented
both bacteria and archaea. A total of 96.5% of the all
identified sequences were allocated in one of ten main
dominant phyla (relative abundance ≥1.0%). Of these, nine
(Actinobacteria, Proteobacteria, Acidobacteria, Planctomycetes,
Chloroflexi, Firmicutes, Gemmatimonadetes, Bacteroidetes, and
Verrucomicrobia) were Eubacteria, while only one dominant
taxon was from Archeabacteria (Crenarchaeota). Although
dominant phyla were consistently found in the six regions
tested, they were present in different ratios. This finding
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FIGURE 5 | Environmental and vineyard management factors significantly associated with soil microbial community composition in Barossa Region vineyards.
Non-metric multidimensional scaling plot displays the microbial community composition of 22 vineyards located in six sub-regions: Northern Grounds (blue);
Southern Grounds (yellow); Central Grounds (green); Eastern Edge (red); Western Ridge (purple); Eden Valley (orange). Vector arrows indicate the association with
environmental variables with p-value < 0.05. Arrow heads indicate the direction and length indicates the strength of the variable and nMDS correlation. Analysis was
conducted using 999 permutations with variables deemed significant where p-value < 0.05.

is similar to earlier work; for example, investigating Pinot
Noir vineyards in regions of Victoria and South Australia,
Australia, Liu et al. (2020) found the same nine top dominant
bacteria groups. However, in Australian agricultural soils, Bissett
et al. (2010) found top six dominant soil bacteria groups
(>3% occurrence) are slightly different and Cyanobacteria
replacing Planctomycetes, Chloroflexi, Gemmatimonadetes, and
Verrucomicrobia (Bissett et al., 2010). Interestingly, studies
investigating vineyard and agricultural soils outside of Australia
found similar results as soil samples from Australian vineyards.
Burns et al. (2015) found the same nine top dominant bacteria
groups in Napa Valley American Viticultural Area (AVA).
Similarly, Liu et al.’s (2014) analysis of agricultural black soils
in northeast China found almost the same dominant bacterial
groups. However, analysis of non-agricultural soils outside

Australia by Lauber et al. (2009) and Faoro et al. (2010)
identified the same dominant groups, with the exception of
Verrucomicrobia which was replaced by Nitrospira (Faoro et al.,
2010) and TM7 and Cyanobacteria replacing Planctomycetes and
Chloroflexi (Lauber et al., 2009).

Location, Soil Properties, Climate and
Vineyard Management Are Associated
With Soil Microbial Community
Dissimilarity in the Barossa
Although dominant taxa were constant at a regional level,
soil bacteria diversity and composition seemed to be a better
factor separating soil bacteria from different sub-regions. The
phylogenetic inference of bacteria composition differences
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between sub-regions showed that OTU richer sub-regions
(Northern and Central Grounds) clustered independently from
the OTU poorer ones (Eden Valley and Western Ridge).

Previous studies have shown that the major factors
determining compositional dissimilarities of soil bacteria
between sites are dispersal constraints (which predicts that more
distant soils should have greater phylogenetic dissimilarity) and
environmental heterogeneity (Fierer, 2008; Liu et al., 2014; Burns
et al., 2015). Analysis of the influence of geographical distance
on soil bacteria composition differences between Barossa
Valley Region vineyards showed a small significant correlation
between both parameters. It could be argued that such small
contributions to vineyard soil bacteria composition differences
could be associated with the relatively small distances between
the vineyards in this study (Average distance 11.7 km, minimum
distance 0.7 km and maximum distance 26.5 km). However, this
correlation was similar to that observed by Burns et al. (2015)
when studying 19 vineyards of the Napa Valley AVA that were
separated by up to 53 km. This suggests that dispersal constraints
contribute to soil bacteria differences at a much smaller scale
than previously perceived.

Environmental heterogeneity has been largely claimed to
be more important than geographic distance in shaping
bacterial community at different geographical scales (Fierer and
Jackson, 2006; da et al., 2009; Ranjard et al., 2013; Hermans
et al., 2017; Miura et al., 2017). The main contributors to
environmental associated variability in soil communities are
differences in climatic conditions, topography, soil properties,
and cultivation practices (Burns et al., 2015; Mezzasalma et al.,
2018). Bacteria composition similarity analysis results did not
show a clear clustering of vineyards according to their geographic
location, indicating that even at a close geographic distance,
environmental heterogeneity is the dominant factor shaping
soil bacteria composition. Bissett et al. (2010) pointed that in
Australian agricultural soils, the correlations between bacterial
communities and both environmental factors and geographic
distance depend critically on the taxonomic resolution used to
evaluate microbial diversity, as well as life history of the taxa
groups being investigated. For example, geographic distance had
more influence over community structure of bacteria known
to be poor dispersers/colonizers than good dispersers/colonizers
(Bissett et al., 2010). Furthermore, previous work on a more
detailed analysis on the effect of soil-plant compartment, as
previously done for grapevine fungal microbiomes (Martínez-Diz
et al., 2019), is adamant to fully understand the diversity and
composition of grapevine microbiomes.

To determine which environmental factors contribute to the
observed differences in soil microbial communities we used an
automatic model building approach. This analysis revealed that
when taken in combination, plant-available phosphorous and soil
texture were the major contributors to soil bacteria differences
between vineyards (approximately 20% of the total observed
variability). Gupta et al. (2019) found in an Australian vineyard
planted on silty loams over clays with some areas of sandier
soils, P and sand percentage showed significant correlations
with bacterial community variation. Soil particle size has been
previously negatively correlated with bacteria community alpha

diversity (Sessitsch et al., 2001) indicating that both variables
could be affecting bacteria composition in an, at least partially,
independent manner. Moreover, while genera Streptomyces,
Rubrobacter (both Actinobacteria) and unclassified MND1,
were especially prevalent in clay soils, genera Streptomyces,
Pseudomonas and unclassified Sinobacteraceae were found in soils
with plant-available phosphorous content higher than 30 µg/g
soil. Pseudomonas, are inorganic P solubilizing bacteria (Awasthi
et al., 2011; Goswami et al., 2013; Schmalenberger and Fox, 2016).
Conversely, P levels negatively correlated with the abundance
of the organic P mineralizing taxon OPB35. Pairwise analysis
of individual taxa and environmental variables also identified
previously reported strong and positive correlations between soil
pH and order iii1-15 (acidobacteria-6) and family Pirellulaceae
(Rousk et al., 2010; Hermans et al., 2017; Wu et al., 2017).

Previous studies have shown that climatic variables
such as rainfall (Wildman, 2015) and temperature (Cong
et al., 2015) are major shapers of soil microbial population
composition and activity. Our results indicate that cooler
and wetter regions (Western Ridge and Eden Valley; mean
annual rainfall: mean = 663.18 mm, SD = 0; growing
season rainfall: mean = 245.26 mm, SD = 0; mean January
temperature: mean = 21.3◦C, SD = 0.9; growing season mean
temperature: mean = 18.19◦C, SD = 0.8) had relatively lower
soil microbial diversity, and a higher ratio of dominant
species, than the warmer and drier sites (mean annual rainfall:
mean = 585.85 mm, SD = 71.60; growing season rainfall:
mean = 224.00 mm, SD = 15.56; mean January temperature:
mean = 21.6◦C, SD = 0.65; growing season mean temperature:
mean = 18.68◦C, SD = 0.66). Additionally, elevation, which
negatively affects air temperature, showed a positive correlation
with the families Isosphaeraceae and an unsurprising negative
correlation with the thermophilic taxon Conexibacteraceae
(Wagner and Wiegel, 2008).

Agricultural lands tend to show similar patterns of dominant
bacteria (Lauber et al., 2009; Faoro et al., 2010; Liu et al.,
2014; Burns et al., 2015), indicating that microbial community
composition can be profoundly affected by cropping practices
(Hartman et al., 2018). Our results show that, both spacing
between row and vine (Supplementary Table 2), which
determine the vineyard’s planting density (between 772 and
1,792 vines/ha in our study), are significantly associated with
global differences in soil microbial community. Work in oil
palm plantations has shown that planting density affects soil
bacteria by altering the level of solar light incidence on soils,
which can have dramatic effects on soil temperature and
moisture (Tripathi et al., 2016). Pairwise comparisons between
agronomical practices and individual taxa showed a negative
correlation between spacing among vines on the same row and
the abundance of representatives of the Haliangiaceae family.
These are mesophilic organisms previously identified to be
sensitive to agricultural practices (e.g., Ding et al., 2014; Kim
and Liesack, 2015; Wang et al., 2016), which abundance could be
favored by lower soil temperatures in densely planted vineyards.
This highlights the importance of temperature, shown above,
in the formation of soil bacterial communities. However, vine
density and the use of under-vine cover crops could also cause
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different levels of interactions between plant roots and soil
microbes. This is particularly prominent when comparing sites
with similar topography and soil texture, in which spatial patterns
of soil biota are assumed to be structured primarily by plant
growth, age, growth form and density (Ettema, 2002). Our results
indicate that the abundance of taxa from the bacterial family
Hyphomicrobiaceae is positively correlated with the vineyard
age. Plant age has previously been linked to differences in soil
bacterial communities in annual crops (Marques et al., 2014;
Walters et al., 2018) and in wild plant species (Wagner et al.,
2016; Na et al., 2017). However, how composition and diversity
of rhizosphere communities shift with plant age in perennial,
long-living crops has received less attention and needs to be
investigated in the future.

Correlations Between Soil Bacterial
Communities and Berry and Wine
Parameters
Berry parameters were found to be significantly associated
with both the composition and diversity of soil bacteria and
with the abundance of single taxa. A total of six fruit traits
correlated with differences in bacterial community composition
and diversity, while one fruit trait (total phenolics in berry) was
found significantly associated with the abundance of specific taxa.
Plant–microbe interactions are known to modify the metabolome
of Arabidopsis thaliana plants grown under controlled conditions
(Badri et al., 2013), however, the modulating effect of soil
bacteria on the metabolome of commercial crops is unexplored.
Unfortunately, the non-intervention nature of this research
impedes us determining if the relationships observed between
vineyard soil bacteria and fruit traits are causal or simply
mere correlations.

Soil microbes have previously been described as a contributor
to the final sensory properties of wines by affecting wine
fermentation. Soil (Gupta et al., 2019) and grape must (Bokulich
et al., 2016; Liu et al., 2020) microbiota were found to be
correlated to regional metabolite profiles and was suggested to
be potential predictor for the abundance of wine metabolites. In
what, to this date, is possibly the most thorough analysis of the
contribution of vineyard soil microbiomes to wine regionality,
Liu et al. (2020) found that soil and must fungal communities
are affected by the vineyard’s edaphic and climatic characteristics
and, in turn, associated to wine regionality. Similarly, through
the analysis of soil bacterial communities in 22 vineyards,
our study identified 18 wine traits correlated with differences
in bacterial community composition and diversity, and four
correlated with the abundance of specific taxa. Vineyard soils
may serve as a bacterial reservoir since bacterial communities
associated with leaves, flowers, and grapes share a greater
proportion of taxa with soil communities than with each other
(Zarraonaindia et al., 2015). Liu et al. (2020) proposed the
xylem sap as one mechanisms joining the soil and the fruit
microbial communities. Unfortunately, the non-intervention
nature of this research, the lack of replicability and the use of
commercially produced wines (each of these wines was made
commercially by different producers so there is potential for a

certain level of winemaking effect), preclude us from determining
if the relationships observed between vineyard soil bacteria and
fruit/wine traits are causal or simply mere correlations. Future
work should be aimed at experimentally testing the true nature of
the observed correlations.

CONCLUSION

Taken collectively our results show that geographic separation
between vineyards contributes to bacterial community
dissimilarities at a much smaller scale than previously reported.
Environmental variables (e.g., climatic, topography, soil
properties, and management practices) were the greatest
contributor to such differences. Particularly, we found that soil
variables are the major shapers of bacterial communities. Also,
we show that variables highly affected by soil anthropogenisation
(pH, plant available Phosphorous) and agricultural management
variables (plant age, planting density) have strong correlations
both with the community composition and diversity and the
relative abundance of individual taxa. Our results provide an
important starting point for future studies investigating the
potential influence of bacterial communities on the metabolome
of grapevines in general, and on the definition of local Terroirs.
Future studies should include the analysis of fungal communities,
which has been shown to be strongly associated with wine
regionality. It will also be important to study a wider range of
soil physicochemical properties, and vineyard floor vegetation,
on the soil microbiome.
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