
fmicb-11-599144 November 3, 2020 Time: 18:9 # 1

ORIGINAL RESEARCH
published: 09 November 2020

doi: 10.3389/fmicb.2020.599144

Edited by:
Fernando Poyatos-Jimenez,

University of Seville, Spain

Reviewed by:
Zeynep Basaran Bundur,
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To overcome the limitations of traditional conservation treatments used for protection
and consolidation of stone and lime mortars and plasters, mostly based on polymers or
alkoxysilanes, a novel treatment based on the activation of indigenous carbonatogenic
bacteria has been recently proposed and applied both in the laboratory and in situ.
Despite very positive results, little is known regarding its effect on the evolution of the
indigenous bacterial communities, specially under hot and humid tropical conditions
where proliferation of microorganisms is favored, as it is the case of the Maya area.
Here, we studied changes in bacterial diversity of severely degraded tuff stone and
lime plaster at the archeological Maya site of Copan (Honduras) after treatment with
the patented sterile M-3P nutritional solution. High-throughput sequencing by Illumina
MiSeq technology shows significant changes in the bacterial population of the treated
stones, enhancing the development of Arthrobacter, Micrococcaceae, Nocardioides,
Fictibacillus, and Streptomyces, and, in one case, Rubrobacter (carved stone blocks at
Structure 18). In the lime plaster, Arthrobacter, Fictibacillus, Bacillus, Agrococcus, and
Microbacterium dominated after treatment. Most of these detected genera have been
shown to promote calcium carbonate biomineralization, thus implying that the novel
bio-conservation treatment would be effective. Remarkably, the treatment induced the
reduction or complete disappearance of deleterious acid-producing bacteria such as
Marmoricola or the phylum Acidobacteria. The outcome of this study demonstrates
that such a bio-conservation treatment can safely and effectively be applied on
temples, sculptures and stuccos of the Maya area and, likely, in other hot and
humid environments.

Keywords: Maya area, bacterial diversity, bioconsolidation treatment, nutritional medium, carbonatogenic
bacteria, tuff stone, plasters

INTRODUCTION

Stone and lime plaster deterioration is one of the most serious problems affecting historical
structures and sculptures all over the world (Warscheid and Braams, 2000; Gil et al., 2015).
Deterioration is due to physical, chemical, and biological weathering phenomena, acting alone or in
combination, which frequently result in irreparable loss of priceless artworks. In aggressive tropical
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environments, characterized by heavy rainfalls, high
temperatures and high relative humidity, typical for most
Maya archeological sites in Mesoamerica, these phenomena are
particularly harmful and enhance biodeterioration related to the
impact of different (micro)organisms (Videla et al., 2000; Caneva
et al., 2005). Biodeterioration intensity depends on the material,
possible previous interventions, and environmental conditions
that determine the extent and composition of the microbial
communities colonizing the cultural artifacts (Valentín, 2010).

Microorganisms are able to cause several types of damage
on monument surfaces, including biophysical, biochemical, and
aesthetic biodeterioration, which may occur simultaneously
or separately (see reviews by Warscheid and Braams, 2000;
Valentín, 2010; Gil et al., 2015; Mihajlovski et al., 2017;
Sterflinger et al., 2018). Although some microorganisms can
cause biodeterioration, many of them can offer a very
effective solution for the conservation of deteriorated historical
sculpture and monuments.

The conservation of such historic and culturally important
artworks typically involves the application of consolidating
agents that in many cases do not provide long-lasting efficacy
and induce further damage due to pore blocking as well as
severe aesthetic alterations (Giorgi et al., 2010; Sassoni et al.,
2011). Bacterial bioconsolidation has emerged in recent decades
as an alternative to non-effective traditional consolidants. This
environmentally friendly conservation treatment involves the
consolidation of stone and plaster through bacterially induced
calcium carbonate biomineralization (González-Muñoz et al.,
2008). Bacterial biomineralization is a widespread phenomenon
reported for many natural environments such as soils and caves
(Boquet et al., 1973; Wright and Oren, 2005). This strategy is
effective for the protection of stone or plaster artworks because
it can form exceptionally strong hybrid organic-inorganic
carbonate cements (Jroundi et al., 2017). One particularly
effective strategy involves the application of a nutritional solution
(M-3P) that selectively activates indigenous carbonatogenic
bacteria present in the treated substrate (Rodriguez-Navarro
et al., 2003, 2012, 2015; Ettenauer et al., 2011; Jroundi et al., 2012,
2017). In fact, the application of the patented M-3P nutritional
solution containing amino acids (Bacto Casitone) and calcium,
promotes the growth of the indigenous chemoorganotrophic
bacteria that are able to use amino acids as a source of carbon,
nitrogen, and energy. The bacterial metabolic activity involves
the oxidative deamination of amino acids and the subsequent
release of ammonia, which leads to the formation of NH4

+ and
OH− ions and induces an increase in pH. Under these alkaline
conditions, dissolved CO2 (both atmospheric and metabolically
derived CO2) transform into CO3

2− ions that react with Ca2+

(present in the M-3P medium), leading to the precipitation of
calcium carbonate, once a sufficient supersaturation is reached
(Rodriguez-Navarro et al., 2003, 2015; Jroundi et al., 2012).

The first step to understand the relationship between
microorganisms and environment, as well as its potential
response during a bio-conservation treatment, is to identify
the bacteria present in the cultural artwork. Next generation
sequencing approaches have been developed to study the
complexity of microbial communities in a wide range of

environments, allowing in-depth studies of environmental
samples (Marvasi et al., 2019). Such sequencing technologies,
in addition to other molecular approaches, have also been
applied to analyze the diversity, composition and distribution of
microbial communities dwelling on different historical objects
(Zimmermann et al., 2006; Piñar et al., 2015; Mihajlovski et al.,
2017; Adamiak et al., 2018; Li et al., 2016, 2018), all of them
mainly focusing on the biodeteriorating role of these dwelling
microorganisms. However, monitoring the evolution of such
microbial communities, before and after the application of
conservation treatments, is rarely reported in the literature.
Here, we apply DNA extraction, PCR amplification and high-
throughput sequencing and use bioinformatics and statistical
analysis to characterize and compare bacterial colonization
on historic Maya mortar and stone before and after a
bioconsolidation treatment applied in the laboratory and in situ
at the archeological site of Copan. Up to now, this bacterial
conservation treatment based on the application of a sterile
nutritional solution (M-3P) has only been applied in situ
on monuments located in temperate, moderately humid-dry
European environments (e.g., Spain and Portugal) (Jroundi
et al., 2012, 2017; Rodriguez-Navarro et al., 2015; Delgado-
Rodrigues and Ferreira-Pinto, 2019). It is therefore unknown,
whether such a treatment is effective and does not produce
any deleterious side effects under extreme hot and humid
environmental conditions typical for the Maya area, where the
bacterial population is unknown and the potential for microbial
biodeterioration is very high. The outcome of this study will be
crucial for the evaluation of the effectiveness of bacteria-assisted
consolidation treatments in tropical climates and lay the basis
for the development of effective novel conservation strategies
for the Maya area. The approach presented here will also be
imperative for the understanding of natural biosystems and to
determine the effect and efficiency of different conservation
treatments (e.g., biocides and conventional organic consolidants,
which could serve as a nutritional source for microorganisms).
Furthermore, it could assist in the selection of appropriate
measures (e.g., climate control) to limit/restrain the impact of
deteriogenic communities on works of art, an important aspect
in conservation and restoration practice. In summary, this study
focuses on determining the impact of the biotreatment on the
substrates’ bacterial diversity as a means to gauge the applicability
of this environmentally friendly bioconsolidation approach in
tropical regions. In a parallel study we are currently evaluating the
effectiveness of the treatment applied on these Maya stones and
plaster by analyzing the formation of bacterial calcium carbonates
and their impact on the physical-mechanical properties of the
treated substrates.

MATERIALS AND METHODS

Site Description
This study was performed at the Maya site of Copan, Honduras
(Figure 1), one of the most important centers of the Mayan
civilization, which has been excavated since the 19th century
and was designated a World Heritage Site by UNESCO in 1980.
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FIGURE 1 | The Maya site of Copan: (a) general overview of Copan’s Acropolis; (b) stone blocks treated at Structure 18. The red x marks the treated stone block.
Note the large amount of stone debris located at the bottom of the wall; (c) detail of the tuff stone treated at the LACEM laboratory; (d) picture of the plaster treated
at the LACEM laboratory; (e) optical microscopy photomicrograph of the Maya plaster (crossed polarizer). Both micritic calcite (Ccmicri ) and sparitic-microsparitic
calcite (Ccspar ) are observed making up this (almost pure) lime plaster (no aggregate is visible in the images). The inset shows the X-ray diffraction pattern of the
plaster. The main Bragg reflections of minerals present in the plaster are indicated (Cu Kα radiation). Cc, calcite; Qtz, quartz.

This archeological site represents one of the most spectacular
achievements of the Classic Maya period (AD 420–820),
involving a number of architectural and sculptural monuments
constructed and extensively carved using a local volcanic tuff
stone, and decorated with lime plaster (Fash, 1991). It is
composed of complex ruins with several secondary complexes
surrounding them, including the well-known Hieroglyphic
Stairway, displaying the longest known Classic Maya inscription
(Fash et al., 1992; Webster, 1999). The remains are not only
endangered by physico-chemical and biological deteriorating
agents, but also by the continued erosive action of the Copan
river, current land use, and several restoration/conservation
interventions (performed during the 20th century) involving
the use of non-compatible materials such as Portland cement
(Doehne et al., 2005). Copan is situated on the southeastern
frontier of the Lowland Maya culture area; what is today western
Honduras (latitude, 14◦ 51′ 30′′ N, longitude, 89◦ 9′W) (Webster,
1999). The site is located at∼700 m a.s.l., has an average annual T
of∼26◦C and precipitation averaging∼2000–3000 mm annually
(McVey, 1998). It is therefore considered a hot and humid
tropical environment.

Bioconsolidation Treatment
For the testing of the bioconsolidation treatment based on the
application of the patented M-3P nutritional solution, two types

of substrates (tuff stone and lime plaster) were considered in
this study:

(1) Stone block (sample CI) located in the base section of
a vertical wall of a Late Classic Temple (Structure 18)
made up of a buff-colored carved tuff stone, showing
extensive deterioration and material loss due to scaling
(Figure 1B). The treatment was applied in situ (see details
below). The mineralogy and main weathering mechanisms
of this volcanic tuff stone are reported in Doehne et al.
(2005). The authors indicate that this rhyolitic tuff is
relatively porous (∼20%) and made up of a devitrified
silicate glass matrix (made up of zeolites and clay minerals),
with abundant phenocrystals of quartz and feldspars. It
typically displays extensive flaking and scaling, resulting in
continuous loss of stone and surface reliefs. Lost material
tends to accumulate at the bottom of exposed walls, as
can be seen in Figure 1B. The ultimate cause of such an
advanced weathering is not clear, although it has been
claimed that microbial biodeterioration and humidity play
an important role (Caneva et al., 2005; Doehne et al., 2005).

(2) Decontextualized stone block (sample CPN) originally
located on the ground next to the Copan Acropolis
(Figure 1C). The stone was partially covered by soil and
plant leaves. This buff colored tuff stone block was treated
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ex situ at the Laboratorio de Conservación de Escultura
Maya (LACEM; Laboratory for the Conservation of Maya
Sculpture), which is part of the Copan Sculpture Museum
(located within the site premises).

(3) Block of Late Classic lime plaster floor (sample MC) from
Structure 12 (AD ∼800). After excavation, it was stored
at the Copan Sculpture Museum storage area. This plaster
(Figure 1D) was treated ex situ at the LACEM. Preliminary
mineralogical and petrographic analyses show that it is
made up of calcite (binder) with a minor amount (<5
wt%) of quartz (according to X-ray diffraction analysis
performed on a X’Pert PRO, PANalytical diffractometer
using a CuKα source, 3–60 ◦2θ explored range and 0.01
◦2θ/min goniometer speed) (see inset in Figure 1E). Under
the polarized light petrographic microscope (Jenapol V),
it shows a compact but highly porous structure made up
of micritic and microsparitic calcite crystals (Figure 1E).
Basically, it is a pure lime plaster with almost no aggregate.

Note that this biotreatment application was a trial aimed
at gauging its potential effectiveness under the particular
exposure conditions in this tropical region. In order to
minimize possible negative side-effects in case of treatment
failure (i.e., possible activation of harmful bacteria leading to
substrate acidification or discoloration), we have restricted the
extent of its application for minimum impact. The extent of
the testing and sampling was further restricted taking into
account the value and uniqueness of this Maya site. Therefore,
the three selected substrates were chosen considering their
representativeness regarding the different materials and exposure
conditions at the site. The first substrate (stone at Structure 18)
is representative of the Copan tuff stones of different structures
at the Copan Acropolis; the decontextualized stone block is
representative of the excavated stone blocks and sculptures
currently located at the Copan Sculpture Museum and storage
area; and the plaster is representative of interior lime plaster
floors and walls in structures at the Copan Acropolis, as well
as plaster pieces located at the Copan Sculpture Museum
and storage area.

The treatment application procedure is described in detail
in Jroundi et al. (2017). Briefly, it involves the application
of the sterile M-3P solution which contains 1% [wt./vol.]
Bacto Casitone (a pancreatic digest of casein), 1% [wt./vol.]
Ca(CH3-COO)2·4H2O (total calcium: 43.44 mM), 0.2% [wt./vol.]
K2CO3·1/2H2O (total potassium: 35.6 mM; total carbonate:
17.8 mM), and 10 mM phosphate buffer in distilled water
(pH = 8) (Rodriguez-Navarro et al., 2015). The nutritional
solution was sprayed onto the stone/plaster blocks until
saturation, twice a day for six consecutive days. Areas were
protected from light exposure with cardboards during treatment.
The treatment was performed during the dry season (February)
with outdoors T ranging from 18 to 28◦C and RH of
∼80 ± 5%. Note that the T and relative humidity (RH)
within the LACEM during treatment was not controlled
(∼20–26◦C, ∼80 ± 5% RH), thus basically reflecting the
outdoors conditions.

Both in situ and ex situ treatment applications where
performed considering that future conservation interventions
should be performed both in situ, on the different structures
exposed outdoors at this Maya site (e.g., Hieroglyphic Stairway),
as well as ex situ (indoors), on the vast collection of carved
stone, sculptures, and plasters currently exhibited at the Copan
Sculpture Museum as well as in the storage facilities. Once the
treatment effectiveness is fully evaluated, a feasibility study for
the scaling up of the treatment will be performed.

DNA Extraction, PCR Amplification, and
Sequencing
Genomic DNA was extracted from solid samples collected
aseptically (using sterile tweezers, and sterile Eppendorf tubes)
from all three samples, both before treatment application
(CI_CONT, CPN_CONT, and MC_CONT: taken at time
0, before the application of M-3P nutritional solution)
and 3 months after treatment application (CI_ TREATED,
CPN_TREATED, and MC_TREATED). Three replicates of
each sample were performed. After collection at the site, each
sample/replicate (∼0.5 g) was aseptically placed in a 2-mL sterile
screw-cap tube containing glass beads. One mL of lysis buffer
(100 mM Tris-HCl [pH 8.0], 100 mM EDTA [pH 8.0], 100 mM
NaCl, 1% polyvinylpyrrolidone [PVP], and 2% SDS), 24 µL
freshly made lysozyme (10 mg/mL), and 2 µL proteinase K
(20 mg/mL) were added to each tube. The tubes were vigorously
shaken for 2 min in vortex followed by mechanical lysis of the
cells performed twice using a FastPrep R© FP120 (at a speed of
5.5 m/s for 45 s) with intermittent cooling on ice for 5 min. The
tubes were incubated at 37◦C for 30 min and then at 60◦C for
another 30 min, and subsequently centrifuged at 14,000 × g
for 5 min at room T. The upper (aqueous) phase was mixed by
gently inverting with one volume of phenol:chloroform:isoamyl
alcohol (25:24:1, pH 8), and then centrifuged at 1,500 × g for
10 min at 4◦C. The upper (aqueous) phase was washed with one
volume of phenol:chloroform (1:1) and centrifuged under the
same conditions. DNA was precipitated by adding 1/10 volume
of sodium acetate (3 M, pH 5) and one volume of isopropanol,
incubating for 1 h at −80◦C and centrifuging for 30 min at
5,000 × g at 4◦C. The obtained DNA was dissolved in Tris
(5 nM, pH 8.5)-TE buffer (10 mM Tris-HCl [pH 8.0] and 1 mM
EDTA) previously heated at 65◦C. Extracted DNAs were stored
at −20◦C until all sample extractions were completed. The DNA
concentrations were determined on Qubit 3.0 Fluorometer using
the dsDNA HS (high sensitivity) assay kit (Jiang et al., 2015).

High-throughput amplicon sequencing using 250 bp paired-
end sequencing chemistry (MiSeq Illumina) was performed.
Total DNA of each sample was amplified targeting the
hypervariable V3-V4 regions by using the 16S rRNA gene
primers 341F and 785R (Klindworth et al., 2013). Illumina
libraries were constructed and sequenced at LGC Genomics1,
GMBH, Berlin, Germany. The resulting DNA libraries were
pooled equimolarly and barcoded to be sequenced in one
single Illumina lane.

1http://www.lgcgroup.com/
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Bioinformatics and Statistical Analysis
Demultiplexing of all libraries was carried out for each
sequencing lane using the Illumina bcl2fastq. After quality
controlling and combining using PandaSeq (Masella et al.,
2012), paired-end reads were renamed using BESPOKE
software (SeqSuite2) and then analyzed through the QIIME
v1.8 pipeline (Caporaso et al., 2010). UCLUST and SILVA
119 QIIME 16S database were used to identify, classify
and annotate operational taxonomic units (OTU). Explicet
(2.10.5) was finally used to analyze clustered and annotated
OTU. Rarefaction curves were determined using the
Vegan v2.4-6 package in R v3.4.3 environment (data not
shown).

Species richness was measured through the use of alpha-
diversity metrics (Chao1, Shannon diversity index, and observed
species) in Explicet and R softwares. Beta-diversity, the
similarity between the identities of taxa, and their abundances
in each sample were assessed using Bray-Curtis distances
(weighted UniFrac distances) measured in QIIME and
PAST3 v. 3.18 and the output was visualized by means
of principal coordinate analysis (PCoA). A heatmap was
constructed for the visualization of specific differences in
community composition using the heatmap.2 function in
the R gplots v2.11.0 package on log-normalized abundance
data. At the genus level, the heatmap included only taxa at
≥1.5% relative abundance in all samples/replicates. Relative
abundance graphs were constructed representing relative
microbial abundance averages of three biological replicates.
Additionally, similarity of percentages analysis (SIMPER)
was performed using PAST3 software. Network analyses were
conducted in the R environment using the VEGAN package
and only strong Pearson’s correlations (ρ > 0.8 or ρ < −0.8)
were considered. Network visualization and modularization
were carried out on the interactive platform of Cytoscape
(Shannon et al., 2003).

Data Availability
All raw sequences used in this study are available in the sequence
read archive (SRA) at NCBI database under the SRA accession
number PRJNA650538.

2http://bioware.soton.ac.uk

RESULTS

Richness and Distribution of the
Bacterial Communities
A total of 910,782 bacterial 16S rRNA gene sequences were
recovered for all samples. They were distributed in a mean
of 63,420 for CI_CONT, 40,835 for CI_TREATED, 46,518
for CPN_CONT, 219,251 for CPN_TREATED, 4,990 for
MC_CONT, and 46,108 for MC_TREATED. These sequences
were used for community analyses by QIIME and OTUs
were assigned by clustering sequences with over 97% sequence
identity. A number of 1,165 OTUs were identified, indicating
high microbial diversity.

Alpha-diversity analysis revealed no significant differences
in bacterial richness of the studied samples regardless of the
metric used (Table 1). Chao1 richness estimator and observed
species index (Sobs) indicated high and comparable bacterial
richness in the communities of both stone and plaster samples.
As seen in Table 1, the samples have many sequences, which
were also confirmed by Shannon, Simpson and the Goods
coverage indexes. The samples displayed high richness and had
similar alpha-diversities. According to Simpson index, all taxa
were distributed equally in the CI bacterial communities after
treatment with an average ranging from 0.53 to 0.56, whereas in
the rest of the samples more than one taxon were dominating the
communities with a Simpson index ranging from 0.89 to 0.98.

Beta-diversity revealed significant differences in bacterial
community structure and abundance between the studied
samples before and after the M-3P treatment. The samples
formed three distinct clusters, in accordance with the structure
type, localization and substrate type, on the principal coordinate
analysis (PCoA = multidimensional scaling, MDS) plot of the
bacterial community composition (using OTU abundance) of
all tested samples (Figure 2). Consequently, the analysis of the
CI, CPN, and MC samples indicated that they were clearly
classified according to the type of substrate (mortar or tuff) and
treatment application.

Bacterial Community Composition and
Structure
Among the 30 phyla determined in all three samples,
Actinobacteria, Firmicutes, Cyanobacteria, Proteobacteria,

TABLE 1 | Inference statistics at genus level of the different samples of the Maya archeological site.

SAMPLES Taxa_richness Simpson_1-D Shannon_H Pielou’s evenness Fisher’s Alpha ACE CHAO1 Goods coverage index

CI_CONT 1561 0.94 3.77 0.51 291.81 137.3 139.1 0.999

CI_TREATED 496 0.54 1.8 0.29 79.8 105.9 107.4 0.999

CPN_CONT 2592 0.96 5.10 0.65 603.1 315.1 314.4 0.998

CPN_TREATED 4619 0.91 3.61 0.43 850.1 219.6 223.1 0.998

MC_CONT 239 0.98 4.65 0.85 47.9 85.3 85.9 0.998

MC_TREATED 1108 0.93 3.67 0.53 211.2 141 138.1 0.999

The species richness (Taxa_richness, CHAO1, ACE), evenness (Pielou’s evenness, Simpson_1-D), and diversity (Shannon_H, Fisher’s alpha) indexes were calculated
with a 3% distance cutoff. CI: Temple structure located outdoors; CPN: stone sample block located in the LACEM laboratory; and MC: lime plaster block located in the
LACEM laboratory.
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FIGURE 2 | Principal coordinates analysis (PCoA) showing the relationship between the bacterial population structures of the stone and plaster samples in the Maya
archeological site, untreated and treated with the M-3P nutritional solution (based on Bray–Curtis index). CI: Temple structure (Structure 18); CPN: stone block
treated in the LACEM laboratory; and MC: lime plaster block treated in the LACEM laboratory.

Chloroflexi, Deinococcus-Thermus, and Planctomycetes were
abundantly identified by >1% of the total communities
(Figure 3). Some other phyla such as Bacteroidetes,
Gemmatimonadetes, Acidobacteria, Verrumicrobia,
Nitrospirae, Candidate_division_OD1, Armatimonadetes,
and Candidate_division_TM7 were detected in
proportions below 1%.

In the stone sample treated in situ (CI), many phyla
including Cyanobacteria, Deinococcus-Thermus, Chloroflexi,
Proteobacteria, Bacteroidetes, and Gemmatimonadetes reduced
their proportions from 22.43, 11.68, 7.49, 3.90, 1.63, and
0.76% to 7.83, 0.64, 0.35, 0.91, 0.20, and 0.01% after
treatment with the M-3P nutritional solution, respectively,
while Actinobacteria increased from 50.96% to 89.68% after
the treatment (Figure 3). In the laboratory-treated stone
sample (CPN), Actinobacteria and Firmicutes increased
from 55.90 and 6.33% to 86.71 and 8.62%, respectively,
after treatment application. While others like Proteobacteria,
Chloroflexi, Planctomycetes, Acidobacteria, Gemmatimonadetes,
Verrumicrobia, Nitrospirae, and Bacteroidetes significantly
reduced their proportions from 14.03, 9.95, 6.24, 1.46, 1.34,
1.24, 0.83, and 0.80% to 1.81, 0.71, 0.75, 0.35, 0.20, 0.13, 0.07,
and 0.22%, respectively, after the bioconsolidation treatment.
In the lime plaster sample (MC), Actinobacteria and Firmicutes
increased their relative abundance after the treatment from
41.37 and 19.49% to 57.11, and 41.81%, respectively. In
contrast, phyla such as Proteobacteria, Chloroflexi, Bacteroidetes,
Planctomycetes, Acidobacteria, and Deinococcus-Thermus
reduced their relative abundance from 20.91, 4.99, 3.81, 2.14,
1.92, and 1.79% to 0.52, 0.12, 0.06, 0.06, 0.04, and 0.00%
after the treatment.

At genus level, identification of the bacterial groups revealed
the presence of 485 different genera in the bacterial communities
of all samples (Figure 4 and Supplementary Table 1). After the
application of the in situ treatment (sample CI), genera such
as Rubrobacter, Pseudonocardia, Microlunatus, Pseudomonas,
Propioniferax, Microbacterium, Friedmanniella, and unclassified-
Micrococcaceae, among others, increased their proportion in
comparison with untreated samples (i.e., samples collected before
treatment), while others like Chroococcidiopsis, Mastigocladopsis,
Truepera, Marmoricola, Nocardioides, Fibrisoma, and
unclassified-Micromonosporaceae, decreased their proportions,
by more than 50% in some cases, after the M-3P treatment. The
untreated laboratory stone (CPN_CONT) was colonized by many
bacteria including Crossiella, Nocardioides, Bacillus, Rhodococcus,
Agrococcus, Pseudonocardia, Arthrobacter, Microlunatus,
Microbacterium, Gemmata, Solirubrobacter, Iamia, unclassified-
Nitrosomonadaceae, unclassified-Planctomycetaceae, Nitrospira,
and Planctomyces. All these bacteria reduced their relative
abundance after the treatment with the M-3P nutritional
solution, with the exception of Streptomyces, unclassified-
Micrococcaceae, Fictibacillus, Agrococcus and Arthrobacter, which
increased from 0.25 to 4.75%, from 0.11 to 13.08%, from 0.3 to
6.82%, from 4.09 to 5.19%, and from 2.36 to 51.73%, respectively.
A more diverse community was observed in the lime plaster
sample (MC sample), where genera such as Nocardioides,
Bacillus, Oxalophagus, Arthrobacter, Propionibacterium,
Lachnospiraceae_Incertae_Sedis, unclassified-Rhizobiales, Sphin-
gomonas, Microlunatus, Agrococcus, unclassified-
Acetobacteraceae, unclassified-Intrasporangiaceae, Marmoricola,
unclassified-Paenibacillaceae, Deinococcus, Microvirga,
Othaekwangia, Blastococcus, Gaiella, Adheribacter,
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FIGURE 3 | Taxonomic distribution of the bacterial community at phylum level in the stone and plaster samples of the Maya archeological site. Averages of relative
abundance of three biological replicates from each sample are represented. Only phyla with a relative abundance of more than 0.1% are represented. CI: stone block
of the Temple structure; CPN: stone block treated at the LACEM laboratory; and MC: lime plaster block treated at the LACEM laboratory.

Solirubrobacter, Acinetobacter, and Granulicella dominated
the bacterial community of the lime plaster before treatment.
After the M-3P bioconsolidation treatment these bacteria
significantly reduced their proportions. Other genera increased
their relative abundance after the treatment such as Arthrobacter,
Fictibacillus, Bacillus, and Agrococcus, which increased their
relative abundance from 4.47, 0.5, 9.45, and 2.85 to 32.83,
20.86, 15.31, and 7.59%, respectively. Microbacterium,
Streptomyces, Paenibacillus, and unclassified members of
Micromonosporaceae, Micrococcaceae, Microbacteriaceae,
Bacillaceae, and Planococcaceae, also increased their relative
abundance after the application of the treatment in MC sample
and passed from less than 0.5% to 5.99, 0.84, 0.84, 3.30, 2.69,
2.04, 1.96, and 1.29%, respectively.

Statistical Analyses and Correlation
Network
To further identify the similarity in abundance among the
bacterial communities, a heatmap was produced based on the

relative abundance of the genera with an average abundance
of >1.5% in at least one sample, which were defined
as dominant. Abundance of 35 major genera present in
all the samples was illustrated (Figure 5). Major genera
with occupancies of >80% of all samples were defined
as common genera in the present study. Among these
35 major genera, 20 belonging mainly to Actinobacteria, 6
to Firmicutes, 4 to Proteobacteria, and 2 to Deinococcus-
Thermus were considered as common genera. These included
Rubrobacter, Arthrobacter, Crossiella, Fictibacillus, Nocardioides,
Bacillus, Truepera, Micrococcaceae, Agrococcus, Oxalophagus,
Microbacterium, Rhodococcus, Streptomyces, Propionibacterium,
and Pseudonocardia.

Similarity of percentages analysis (SIMPER) was used to
determine the relative contribution of each individual taxon
to the dissimilarity among the three substrates (CI, CPN,
and MC). The average Bray–Curtis dissimilarity and the
contribution of each genus to the total dissimilarity between
communities of treated and untreated samples were calculated,
and the top major genera responsible for the microbial
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FIGURE 4 | Taxonomic distribution of the bacterial community at genus level in the stone and plaster samples of the Maya archeological site. Averages of relative
abundance of three biological replicates from each sample are represented. Only genera with a relative abundance of more than 0.2% are represented. CI: stone
block of the Temple structure; CPN: stone block treated at the LACEM laboratory; and MC: lime plaster block treated at the LACEM laboratory.

community difference (>98% contribution to cumulative
dissimilarity) are summarized in Tables 2, 3. Among the
genera responsible for dissimilarity in the communities of
untreated samples, Rubrobacter had the largest dissimilarity
contribution (21.33%), followed by Chroococcidiopsis
(9.27%), Crossiella (7.13%), Nocardioides (6.24%), Truepera
(5.83%), Bacillus (4.09%), Oxalophagus (2.78%), Arthrobacter
(1.78%), Agrococcus (1.66%), Propionibacterium (1.62%),

Rhodococcus (1.58%), Microlunatus (1.53%), Sphingomonas
(1.15%), and Pseudonocardia (1.10%). After the bio-
consolidation treatment, the genera contributing to the
dissimilarity between the samples changed to some extent,
being Rubrobacter again the largest dissimilarity contributor
followed by Arthrobacter (21.16%), Fictibacillus (8.53%),
Bacillus (6.26%), unclassified_Micrococcaceae (5.11%),
Nocardioides (3.54%), Agrococcus (3.10%), Microbacterium

Frontiers in Microbiology | www.frontiersin.org 8 November 2020 | Volume 11 | Article 599144

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-599144 November 3, 2020 Time: 18:9 # 9

Jroundi et al. Bacterial Diversity in Maya Artworks

FIGURE 5 | Heatmap based on the relative abundance of genera with an average abundance of >1.5% in at least one sample/replicate. Averages of relative
abundance of three biological replicates from each sample are represented.

(2.39%), Streptomyces (1.93%), Chroococcidiopsis (1.76%), and
unclassified_Micromonosporaceae (1.35%).

To comprehensively understand the interaction effects
between bacteria detected before and after the application of
the nutritional solution, a network of significant co-occurrence
and co-exclusion relationships among genera was constructed
on the basis of strong Pearson correlation matrix (ρ > 0.8

or ρ < −0.8) (Figure 6). Among the 485 bacterial genera
detected, those showing a relative abundance of more than 0.5%
in at least one sample were used to construct this association
network. A total of 73 nodes and 699 edges were identified.
The network could be divided into three clear clusters formed
by nodes interacting more strongly among themselves than
with others. The three clusters were occupied by 4, 14, and
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TABLE 2 | SIMPER analysis of bacterial community dissimilarity (>98% of contribution to cumulative dissimilarity) of the three untreated Maya substrates (CI_CONT:
stone sample in situ; CPN_CONT: stone sample in the LACEM laboratory; and MC_CONT: lime plaster in the LACEM laboratory).

Taxon Avg dissimilarity
(%)

Contribution to
dissimilarity (%)

Cumulative
dissimilarity (%)

Mean abundance (%)

Mean CI_CONT Mean CPN_CONT Mean MC_CONT

Rubrobacter 18.24 21.33 21.33 51.3 0.494 0.282

Chroococcidiopsis 7.931 9.276 30.61 22.2 0.153 0

Crossiella 6.092 7.125 37.73 0.00152 21.3 0

Nocardioides 5.333 6.236 43.97 1.1 17.6 9.63

Truepera 4.981 5.826 49.79 13.9 0.497 0

Bacillus 3.496 4.088 53.88 0.00442 7.18 9.4

Oxalophagus 2.374 2.776 56.66 0 0.00134 6.65

Arthrobacter 1.519 1.776 58.43 0.198 2.35 4.45

Agrococcus 1.421 1.662 60.09 0.00656 4.09 2.84

Propionibacterium 1.381 1.615 61.71 0.00694 0.0196 3.87

Rhodococcus 1.354 1.583 63.29 0.000829 4.74 0

Microlunatus 1.31 1.532 64.82 0.22 2.25 3.02

Incertae_Sedis 1.178 1.377 66.2 0 0 3.3

Unclassified_JG35-K1-AG5 1.133 1.325 67.53 0 0 3.17

Sphingomonas 0.9831 1.15 68.68 0.512 0.493 3.06

Pseudonocardia 0.9415 1.101 69.78 0.54 3.58 0.761

Unclassified_Acetobacteraceae 0.8125 0.9502 70.73 0.0348 0.0135 2.27

Unclassified_Intrasporangiaceae 0.6897 0.8066 71.53 0.118 0.312 2.05

Deinococcus 0.6463 0.7558 72.29 0.101 0 1.75

Unclassified_Paenibacillaceae 0.6423 0.7512 73.04 0 0.00293 1.8

Ohtaekwangia 0.6238 0.7295 73.77 0 0.619 1.68

Microvirga 0.6036 0.7059 74.48 0.00809 0.0369 1.7

Marmoricola 0.6028 0.705 75.18 2.24 0.415 1.93

Gaiella 0.5787 0.6768 75.86 0 0.809 1.62

Blastococcus 0.5766 0.6744 76.53 0.0258 0.0181 1.63

Microbacterium 0.5615 0.6567 77.19 0.0143 1.96 0

Gemmata 0.5386 0.6299 77.82 0.106 1.91 0.184

Solirubrobacter 0.5352 0.6259 78.45 0.165 1.81 1.06

Iamia 0.4541 0.5311 78.98 0.0403 1.53 0.424

TABLE 3 | SIMPER analysis of bacterial community dissimilarity (>98% of contribution to cumulative dissimilarity) of the three treated Maya substrates (CI_TREAT: stone
sample treated in situ; CPN_TREAT: stone sample treated in the LACEM laboratory; and MC_TREAT: lime plaster treated in the LACEM laboratory).

Taxon Avg dissimilarity
(%)

Contribution to
dissimilarity (%)

Cumulative
dissimilarity (%)

Mean abundance (%)

Mean CI_Treat Mean CPN_Treat Mean MC_Treat

Rubrobacter 29.09 35.74 35.74 87.30 0.02 0.01

Arthrobacter 17.22 21.16 56.90 0.06 51.70 32.80

Fictibacillus 6.94 8.53 65.43 0.01 6.82 20.80

Bacillus 5.09 6.26 71.69 0.01 1.84 15.30

Unclassified_Micrococcaceae 4.16 5.11 76.80 0.59 13.10 2.69

Nocardioides 2.88 3.54 80.35 0.15 8.80 0.37

Agrococcus 2.52 3.10 83.44 0.01 5.19 7.58

Microbacterium 1.94 2.39 85.83 0.22 0.20 5.98

Streptomyces 1.57 1.93 87.76 0.02 4.73 0.84

Chroococcidiopsis 1.43 1.76 89.52 4.30 0.00 0.00

Unclassified_Micromonosporaceae 1.10 1.35 90.87 0.02 0.02 3.30

Unclassified_Microbacteriaceae 0.68 0.83 91.70 0.01 0.36 2.03

Unclassified_Bacillaceae 0.65 0.80 92.50 0.00 0.08 1.96

Pseudonocardia 0.62 0.77 93.27 1.89 0.13 0.03
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FIGURE 6 | Network analysis revealing co-occurrence patterns among bacterial taxa in the different samples of the Maya archeological site. The nodes and edges
are colored according to Betweenness Centrality. Only taxa with a relative abundance of more than 0.5% in at least one sample were used. Each connection
represents strong correlations based on Pearson’s correlation coefficient (ρ of >0.8 and ρ of > –0.8). The thickness of each line is proportional to the significance of
the interaction (ρ-value), and the size of the circle (the node) is proportional to the number of connections, i.e., the degree, of bacterial genera.

55 nodes out of the 73 total vertices and, with the exception
of three (i.e., Rubrobacter, Agrococcus, and Mastigocladopsis)
all were found to be strongly positively correlated. In the
first cluster, Arthrobacter, Streptomyces, Micrococcaceae, and
Brevibacterium were equally distributed and no keystones were
distinguished over the rest of the bacteria, being nodes with low
mean degree and low Betweenness Centrality. Microbacterium,
Fictibacillus, Microbacteriaceae, and Mastigocladopsis were
considered potential keystones in the second cluster showing
strong correlation connections with the rest of core bacteria
in the cluster. In the most complex cluster, the 55 nodes
formed a complex network with strong interactions and taxa
like Planctomycetaceae, Pirellula, Gaiella, Solirubrobacter,
Gemmatimonadaceae, Pedomicrobium, Acidimicrobiaceae,
Ramlibacter, among others, which were considered keystone
bacteria, exhibiting strong positive correlations with other core
genera. Finally, only three genera Rubrobacter, Agrococcus and
Mastigocladopsis presented negative Pearson correlation matrix
(ρ < −0.8) in the community, meaning that the presence of
Rubrobacter was negatively correlated with the presence of
Agrococcus and Mastigocladopsis in the bacterial population. The
presence of Matigocladopsis was also negatively correlated with
the presence of Agrococcus. For this reason, Rubrobacter was only
present in the temple Structure 18, whereas Agrococcus was only
detected in the stone sample CPN and the mortar sample MC
treated indoors in the laboratory.

DISCUSSION

Before Treatment
High-throughput sequencing results in our study revealed a
rich diversity of bacterial communities on the deteriorated
stone and plaster samples of the Maya archeological site.
We identified a total of 161 genera in the CI_Cont, 309
in CPN_Cont, and 141 in MC_Cont. Association networks
constructed to the genus level showed mainly positive correlation
patterns with strong and complex connections, as well as
some negative correlations with loose and simple connections.
These interactions between microbial taxa in stone and plaster
artworks indicated significant co-occurrence patterns helping
to decipher the relationships between community members.
Most of these genera belong to Actinobacteria, Cyanobacteria,
and Firmicutes, which are identified as the keystone taxa
and contribute to the association of the bacterial community,
suggesting either shared or preferred environmental conditions
or the performance of similar or complementary functions
(Jroundi et al., 2020).

Generally, microbial communities in archeological sites
have been reported to have distinct diversity patterns under
different environmental conditions (Gaylarde et al., 2007; Piñar
et al., 2015; Li et al., 2016; Dhami et al., 2017; Mihajlovski
et al., 2017; Sterflinger et al., 2018). The results of this
study show that the microbial community patterns detected
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on archeological/historic stone and mortar surfaces not only
depended on the overall environmental conditions, but were
also greatly influenced by the location of each individual
building or decorative element within the archeological Maya
site. Data presented (in Figure 4 and Table 2) reveal that the
microbial population of the untreated stone sample (CI) from
a vertical wall of Structure 18 was dominated by Rubrobacter,
Chroococcidiopsis, and Truepera. Remarkably, these bacteria
were completely absent from the remaining untreated stone
and plaster floor samples (CPN and MC), which were in
direct contact with the ground. Consequently, these genera,
and particularly Rubrobacter, had the largest contribution to
bacterial community dissimilarity. Members of Rubrobacter sp.
have been isolated from a range of environmental samples
including different soil niches (Holmes et al., 2000) and many
monuments including the Mayan ruins of Uxmal (Mexico)
(Ortega-Morales et al., 2004; Sterflinger and Piñar, 2013;
Mihajlovski et al., 2017; Adamiak et al., 2018). They are
known to be thermophilic, halotolerant, and gamma-radiation
resistant bacteria, which also colonize salt laden building
materials (Laiz et al., 2009; Jurado et al., 2012; Adamiak
et al., 2018). The preferential colonization of Rubrobacter on
the vertical walls of Structure 18 confirms previous results,
indicating that their resistance toward temporary desiccation
and intensive daylight irradiation would bestow them a
selective advantage over other bacteria (Laiz et al., 2009).
Often, the presence of Rubrobacter has been associated with
biodeterioration processes/phenomena in monuments, including
pink discoloration (Ortega-Morales et al., 2004; Laiz et al.,
2009; Sterflinger and Piñar, 2013; Mihajlovski et al., 2017;
Adamiak et al., 2018). Laiz et al. (2009) associated stone
biodeterioration with the Rubrobacter-induced precipitation
of struvite (NH4MgPO4·6H2O), a mineral which is also
produced by other carbonatogenic bacteria such as Myxococcus
xanthus cultured in Mg- and phosphate-containing medium
(González-Muñoz et al., 2008). Note that the latter bacterium
has an outstanding biomineralization capacity and is known
to produce cementing calcium carbonate under adequate
conditions (Rodriguez-Navarro et al., 2003). Furthermore, the
possible role of struvite precipitation by Rubrobacter inducing
salt damage in stone as suggested by Laiz et al. (2009) is
questionable, considering its low solubility. Struvite is a sparingly
soluble phase with solubility of 4.07 × 10−5 mol/L at 25◦C
(Hanhoun et al., 2011), a value slightly lower than that of calcite
(5.75 × 10−5 mol/L), a benign sparingly soluble carbonate.
In fact, calcite effectively cements porous stone, being the
basis of the bacterial biomineralization consolidation treatment
(Rodriguez-Navarro et al., 2015). It seems even possible that
struvite could act as a consolidant as it has been reported in the
case of other alkaline-earth phosphates such as hydroxyapatite
(Sassoni et al., 2011).

In general, the microbial communities living in the
archeological sites or historical buildings all over the world
are linked to environmental conditions (Gaylarde et al., 2007;
Li et al., 2016). The high-throughput sequencing results in our
study revealed a rich diversity of bacterial communities on the
stone and plaster samples of the Maya archeological site. Indeed,

although samples showed similar signs of biodeterioration and
microbial colonization, overall, the microbial diversity in this
study varied enormously in composition, seemingly affected by
sample location, substrate type (i.e., silicate tuff stone vs. calcium
carbonate lime plaster), and environmental conditions.

The diversity of the bacterial communities in samples CPN
(stone) and MC (mortar) was almost twice as large as compared
with sample CI (stone in Structure 18). Possibly, the direct
contact with the soil microbiota of the ground had a significant
impact on the bacterial population in the former samples.
Remarkably, the degree of similarity was higher between the
stone sample CPN and mortar sample MC than between the
two volcanic tuff stone samples, indicating that the original
sample location was of greater importance than substrate
characteristics (composition, mineralogy and textural features).
Additionally, Bacillus was detected in all samples, which was
not surprising since many members of these bacteria have
been identified on stone surfaces and are frequently used for
the bioconsolidation of deteriorated historical monuments and
sculptures of different substrate types including calcareous stone,
concrete and mortars (Dhami et al., 2012, 2014; Achal et al., 2013;
Wang et al., 2014; Montaño-Salazar et al., 2018). Other genera
such as Agrococcus, Pseudonocardia, Microlunatus, Pseudomonas,
Propioniferax, Microbacterium, and Friedmanniella (the latter 4
were present at concentrations below 0.1% and are not included
in Figure 4) were also detected in our study, which have the
ability to survive in extreme environments and were previously
identified in archeological sites (Li et al., 2016), caves (Portillo
et al., 2009; Fang et al., 2017), Roman catacombs (Krakova
et al., 2015), wall paintings of a medieval chapel in Austria
(Schabereiter-Gurtner et al., 2001), and on the tomb walls of
an Etruscan Necropolis (Diaz-Herraiz et al., 2013). Although
present at low relative abundance, some bacteria are able to play
an important role in many environments because of their high
metabolic activity. Some of them such as Pseudomonas strains
have been shown to precipitate calcium carbonate crystals in
the surface of bacterial isolates and are considered among the
most common microorganisms detected on stone monuments
(Li et al., 2018). Pseudonocardia sp. have been previously
detected as a dominant component of the microbial community
in caves, wall paintings, tomb walls and Roman catacombs
(Portillo et al., 2009; Diaz-Herraiz et al., 2013; Krakova et al.,
2015). Some studies demonstrated that members of this genus,
and of the phylum Actinobacteria in general, were able to
precipitate calcium carbonate in culture media supplemented
by different calcium salts (Fang et al., 2017), suggesting their
potential to precipitate such calcium carbonate to consolidate
stone of cultural heritage; although this needs to be confirmed
by further studies.

Finally, members of the phylum Acidobacteria were detected
in CPN and MC samples. Many studies have reported
the presence of these non-culturable Acidobacteria in cave
habitats, including catacombs (Zimmermann et al., 2006).
Acidobacteria seem to adapt well to low nutrient substrates,
which corroborates their possible oligotrophic lifestyle in many
environmental habitats (Naether et al., 2012). They are also
known to be acidophilic, strictly aerobic, chemo-organotrophic
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bacteria, capable of degrading sugars and some polysaccharides
(Pankratov et al., 2012).

After Treatment
Regardless of treatment location (i.e., in situ or ex situ) the
application of the patented nutritional solution (M-3P) caused
an important change in bacterial population in all samples,
particularly increasing the amount of Actinobacteria in samples
CI, CPN, and MC by 89.68, 86.71, and 57.11%, respectively.
The increase in the amount of carbonatogenic Actinobacteria
can be considered as an indicator for the potential efficacy of
this bioconsolidation treatment since this bacterial phylum is
known to be able to utilize various carbon and nitrogen sources
and produce calcium carbonate (Fang et al., 2017). Remarkably,
the increase in Actinobacteria was more pronounced in stone
samples as compared to the mortar sample, where Firmicutes
(dominated by the genera Fictibacillus and Bacillus) became
the second most dominant phylum (increasing from 19.49 to
41.81%). These bacteria are found in various environments and
can survive extreme conditions. Some of them are known for
their endospores production, which makes them resistant to
desiccation (Parkes and Sass, 2009; Nazir et al., 2019). These
bacteria, specially Bacillus spp., have been suggested to have
a direct relationship with carbonate deposition and have been
widely used for the consolidation and strengthening of sand
columns and soils, the repairment of concrete cracks and in the
field of limestone building conservation, showing in all cases
a high capacity to precipitate calcite and vaterite (Le Métayer-
Levrel et al., 1999; De Muynck et al., 2010, 2013; García et al.,
2016).

Our results show that the composition of the original
bacterial population has an important influence on the bacterial
population developed after the consolidation treatment. In the
case of the stone sample from Structure 18 (CI), Rubrobacter
remained the dominant genus, experiencing an increase in
relative abundance of 66% after the bioconsolidation treatment,
whereas all other genera suffered an, in certain cases dramatic
(i.e., Truepera and Chroococcidiopsis), decrease. It is very likely
that Rubrobacter would play a relevant role in the production
of calcium carbonate cement, without any detrimental side
effects (e.g., salt damage or discoloration). As stated above, it
is very unlikely that Rubrobacter-induced struvite precipitation
could have any salt damaging effect. Besides, struvite formation
after application of the M-3P treatment is improbable, as this
medium lacks magnesium. In contrast, it is very likely that
Rubrobacter can effectively contribute to the biomineralization
of calcium carbonates. On the one hand, it has been shown
that Rubrobacter spp. are associated with CaCO3 precipitation
in endostromatolites (Pellerin et al., 2009). On the other hand,
the observed increase in Rubrobacter abundance after the M-
3P treatment is consistent with this bacterium being able to
use amino acids for its metabolic activity. It is thus expected
that it contributes to an alkalinization of the medium resulting
in the formation of cementing calcium carbonates. Regarding
any potential problems of discoloration associated with this
bacterium, as it is indicated in the Materials and Methods
section, we covered the substrates during the whole duration

of the treatment to prevent light irradiation of treated surfaces,
precisely to avoid any possible pigmentation by bacteria. Actually,
we observed no color changes/discoloration 3 months after
treatment application. In any case, a detailed characterization of
the untreated and treated substrate (i.e., compositional, textural
and physico-mechanical analysis) is currently underway in order
to proof bacterial carbonate biomineralization and to rule out
possible negative side effects.

In samples CPN and MC, Arthrobacter showed the strongest
response to the nutritional supply and became the dominant
genus, augmenting its relative abundance by a factor of 21.9x and
7.3x, respectively. Consequently, they have, after Rubrobacter, the
second largest contribution to bacterial community dissimilarity
in treated samples. Jroundi et al. (2012) have shown that
Arthrobacter species are promising candidates for successful
biomineralization induced by the application of a nutritional
solution that selectively activates carbonatogenic bacteria. The
observed improved mechanical strength in treated monumental
stone and mortars, especially in the case of Arthrobacter
crystallopoietes, has even prompted their consideration for
industrial applications (Park et al., 2010; Dhami et al., 2012,
2014; Jroundi et al., 2012; Montaño-Salazar et al., 2018).
Other carbonatogenic bacteria, including Fictibacillus, Bacillus,
Streptomyces, and Agrococcus also reacted positively to the
treatment and increased their abundance.

Remarkably, members of the phylum Acidobacteria were
also significantly affected by the bioconsolidation treatment,
experiencing an important decrease of 76 and 98% in abundance
in the case of sample CPN and MC, respectively. Zimmermann
et al. (2006) reported on their active negative role on cultural
heritage in collaboration with other microorganisms. The acidic
metabolic products of these bacteria have been shown to cause
severe irreversible damage to stone monuments, leading to the
dissolution of the stone matrix, especially in the case of calcareous
rocks (Douglas and Beveridge, 1998; Warscheid and Braams,
2000). Therefore, such a negative impact of this bioconsolidation
treatment on Acidobacteria can be taken as additional evidence
for the suitability of the proposed strategy for the consolidation
and conservation of monuments and archeological sites in
tropical hot and humid environments.

CONCLUSION

In this study, we showed for the first time the enormous impact
of the bioconsolidation methodology based on the application
of a sterile nutritive solution (M-3P) on the indigenous bacteria
present in stone and plaster at the Maya archeological site of
Copan. A detailed characterization of the bacterial population
evolution revealed that the bioconsolidation treatment induced
a significant increase in beneficial indigenous carbonatogenic
bacteria and a concomitant suppression of potentially damaging
Acidobacteria. Positive results were obtained under varying
treatment conditions (i.e., treatments in the laboratory and
in situ) and independent of substrate type (i.e., stone and
mortar). This study also revealed that the original bacterial
population of the substrate was decisive for the population
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evolution upon treatment, being influenced by the location of
the sample within the archeological site (i.e., stone samples
from vertical walls versus semi-buried stone and floor plaster
fragments with contact to soil microbiota). Importantly, the
application of the sterile M-3P nutritive solution did not result in
the flourishing of any damaging bacteria in this hot and humid
environment. At present we are evaluating the consolidation
effect of such a treatment applied on Maya stones and plasters
of Copan, focusing on the quantification and distribution of
the newly formed bacterial calcium carbonate cement and its
impact on the treated substrates’ physical-mechanical properties.
Combined results will lay the basis for the development of
an environmentally friendly compatible conservation treatment
for monuments in hot and humid climates based on the
bacterial precipitation of cementing calcium carbonate for the
consolidation of plaster and stone.

Furthermore, the relative safety and ease of application of
the treatment proposed here as compared to conventional
biotreatments using bacteria inoculums are worth highlighting.
The former simply consists of spraying the patented nutritional
solution onto the degraded substrate surface, allowing for large-
scale applications without posing any significant risk to operator
or environment. Admittedly, the biotreatment is labor intensive
(i.e., relatively large number of applications are required).
However, overall material-related treatment costs are comparable
to those of conventional consolidation treatments.
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