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The presence of molds, especially certain species of Aspergillus, in food commodities 
may contribute to aflatoxin contamination. The aim of this study was to determine the 
biodiversity of Aspergillus species in dairy feeds from farms in select locations in Zimbabwe 
and assess their aflatoxin production potential using a polyphasic approach. A total of 96 
feed samples were collected, which consisted of dairy feed concentrate, mixed ration, 
brewers’ spent grain, and grass from 13 farms during the dry season (August–October, 
2016) and the following rainy season (January–March, 2017). A total of 199 presumptive 
isolates representing four sections from genus Aspergillus (Nigri, Fumigati, Flavi, and 
Circumdati) were recovered from the feeds. Section Flavi, which includes several aflatoxin 
producers, constituted 23% (n = 46) of the isolates. Species from this section were A. 
flavus, A. nomius, A. oryzae, A. parasiticus, and A. parvisclerotigenus, and 39 (84.4%) of 
these showed evidence of aflatoxin production in plate assays. Of the 46 section Flavi 
isolates examined, some lacked one or more of the five targeted aflatoxin cluster genes 
(aflD, aflR, aflS, aflM, and aflP). The presence of the five genes was as follows: aflD (76.9%), 
aflR (48.7%), aflS (74.4%), aflM (64.1%), and aflP (79.5%). This study highlights the species 
diversity of aflatoxigenic fungi that have the potential to contaminate different types of 
feed for dairy cows. Our findings underscore the importance of preventing contamination 
of feedstuffs by these fungi so that aflatoxins do not end up in the diets of consumers.

Keywords: Aspergillus, biodiversity, feeds, aflatoxins, morphological, molecular

INTRODUCTION

Worldwide mycotoxin contamination of agricultural commodities by members of the Aspergillus 
genus, especially A. flavus and A. parasiticus, has been reported (Dutta and Das, 2001; Ghiasian 
and Maghsood, 2011; Ibrahim et  al., 2016). These two species, together with A. nomius, are 
well known producers of the mycotoxin, aflatoxin, a secondary metabolite (Rodrigues et  al., 
2011; Monson et  al., 2015). The ability of aflatoxin production by other species from this section 
such as A. pseudotamarii, A. bombycis, A. toxicarius, A. parvisclerotigenus, A. minisclerotigenes, 
and A. arachidicola have been documented (Ito et  al., 2001; Pildain et  al., 2008; Matumba et  al., 
2015). Aflatoxin contamination of food and feeds has gained global attention due to their 
negative effects on the health of both humans and animals (Fink-Grernmels, 1999; Zain, 2011; 
Arapcheska et  al., 2015; Kumar et  al., 2017). The more serious mycotoxins produced by 
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Aspergillus species include aflatoxin (AF) B1, B2, G1, and G2 
(Kumar et  al., 2017). AFB1 is the most potent of them all 
and has been implicated as a causative agent of human 
hepatocarcinoma (Liu and Wu, 2010; Baranyi et al., 2013; Patel 
et  al., 2015). Biosynthesis of aflatoxins involves participation 
of several enzymes and regulatory proteins whose genes are 
found in a single cluster of 70–75  kb in size. The order of 
these genes in Aspergillus is highly conserved (Woloshuk and 
Prieto, 1998; Yu et  al., 2004; Adhikari et  al., 2016). Not all 
section Flavi species produce aflatoxins (Atanda et  al., 2006, 
2011; Degola et  al., 2007; Yazdani et  al., 2010). The inability 
to produce aflatoxins by some species in this section is mainly 
due to mutations in at least one of the genes in the aflatoxin 
biosynthetic gene cluster (Degola et  al., 2007; Adhikari 
et  al., 2016).

Accurate identification of members of the Aspergillus genus 
using a single method is difficult due to their morphological 
similarities (Moslem et  al., 2010; Zulkifli and Zakaria, 2017). 
Also, use of macro- and micro-morphological characters alone 
for identification is tedious and time consuming (Henry et  al., 
2000). To accelerate the species identification process, molecular 
markers such as the internal transcribed spacer (ITS) region 
have become the primary locus for fungal identification (Schoch 
et  al., 2012; Raja et  al., 2017). Extrolite profiling (e.g., types 
of aflatoxin produced) has also been used to aid in the 
identification and classification of Aspergilli though less frequently 
(Frisvad et  al., 2007). Authors have proposed several media 
for cultural identification of aflatoxin producers (Bothast and 
Fennell, 1974; Lin and Dianese, 1976; Davis et al., 1987; Atanda 
et  al., 2006, 2011). These media have chemical additives that 
enhance aflatoxin production for easy detection under UV 
radiation at 365  nm (Fente et  al., 2001; Midorikawa et  al., 
2008). However, there are also limitations with using these 
types of plate assays (Suzuki and Iwahashi, 2016). Researchers 
report circumventing culture-based limitations by amplifying 
genes coding for key enzymes in the aflatoxin biosynthetic 
pathway (aflD, aflR, aflS, aflM, aflP) for identification of 
aflatoxigenic species (OBrian et  al., 2007; Abdel-Hadi et  al., 
2011a; Mejía-Teniente et  al., 2011; Baranyi et  al., 2013; Zhi 
et al., 2013; Verheecke et al., 2015). Thus, for precise identification 
of aflatoxigenic Aspergillus isolates, a polyphasic approach is 
encouraged (Adetunji et  al., 2019).

Animal feeds are formulated using agricultural commodities 
such as cereal grains and oil seed cakes. Cereal grain stovers 
and grass as silage can also be  used as animal feed (Pleadin, 
2015; Morrison et  al., 2017). Moreover, the high cost of feed 
has led to the addition of stale bread, kitchen, and bakery 
wastes to extend its use, while the scarcity of protein sources 
for animal feeds has led to amendments with items such as 
brewers’ spent grain (BSG; Li et al., 2014). These waste products 
are usually tainted with fungi which may be  a contributing 
factor in mycotoxin contamination in cattle feed. Upon ingestion 
by the cow, AFB1 is biotransformed into its hydroxylated 
metabolite aflatoxin M1 (AFM1), which is secreted in the 
milk (Britzi et  al., 2013; Giovati et  al., 2015) and becomes 
a route through which aflatoxins can be  introduced into 
humans. Therefore, it is important to assess the quality of 

the feed fed to dairy cows in order to curb the transfer of 
the aflatoxins into milk. In this study, the diversity of Aspergillus 
species in dairy feeds, as well as their potential contamination 
with aflatoxins, was assessed using cultural-based and 
molecular methods.

MATERIALS AND METHODS

Sample Collection
A total of 96 feed samples consisting of dairy feed concentrate 
(CN, n  =  32), mixed ration (MR, n  =  35), brewers’ spent 
grain (BSG, n  =  7), and grass (GR, n  =  22) were collected 
from 13 farms during the dry season (August–October, 2016) 
and the following rainy season (January–March, 2017). Samples 
were collected in sterile polythene zip-lock bags, which were 
transported in cooler boxes to the laboratory where they were 
ground to a fine powder using an IKA® M20 universal batch 
mill (Germany) and stored in the freezer at −20°C until time 
for analysis.

Isolation and Presumptive Identification of 
Aspergillus Fungi
Fungal isolation from feed samples followed the method of 
Aliyu et  al. (2012) with some modifications as follows: feed 
samples weighing 1 g were suspended in 9 ml of sterile distilled 
water and mixed through vortexing. The sample was allowed 
to settle and 1  ml of the supernatant transferred into a test 
tube containing 9  ml of distilled water. The 10-fold serial 
dilution was carried out up to 10−6. This was followed by 
spread plating 0.1  ml of each dilution onto potato dextrose 
agar (PDA) supplemented with chloramphenicol (100  μg/ml). 
The plates were incubated at 25  ±  2°C for 3–7  days. Pure 
cultures were obtained through the single spore method 
(Almoammar et  al., 2013). Since closely related Aspergillus 
species within each section have similar colony colors, we used 
this macro-morphological phenotype to identify our presumptive 
Aspergillus isolates to section level (Almoammar et  al., 2013; 
Mostafa and Amer, 2013).

Screening for Aflatoxin-Producing Isolates
Each presumptive Aspergillus isolate was screened for the 
production of aflatoxin using multiple plating methods. Yeast 
Extract Sucrose (YES) agar (2% yeast extract, 15% sucrose, 
and 1.5% agar) shows the presence of aflatoxin through an 
induced color change plum red when exposed to ammonium 
hydroxide vapors (Yazdani et al., 2010). Aflatoxin-producing 
Aspergilli grown on Neutral Red Desiccated Coconut Agar 
(NRDCA; 20% desiccated coconut, 2% agar, and 0.03% 
neutral red stain; Atanda et  al., 2011) and Neutral Red 
Desiccated Coconut Agar with β-cyclodextrin (β-CNRDCA; 
20% desiccated coconut, 2% agar, 0.03% neutral red stain, 
and 0.03% β-cyclodextrin; Adetunji et  al., 2019) will display 
a yellow/orange ring around the growing colony that will 
fluoresce on the reverse side of the plate when exposed to 
long-wave UV light (365  nm).
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Molecular Identification of Isolates
For molecular investigations, we first inoculated each presumptive 
isolate on PDA and incubated them at 28°C for 72  h. DNA 
extraction utilized a Zymo Research Quick-DNA™ Fungal/
Bacterial Miniprep Kit (The Epigenetics Company™, 
United  States), and purity was assessed using a Nano-200 
Microspectrometer (Allsheng Instruments Co., Ltd). DNA was 
stored at −20°C until time for use (Egbuta et  al., 2015).

To refine our presumptive isolate identifications to species 
level, we  amplified the internal transcribed spacer (ITS) 
region of each isolate’s DNA (ITS1-5.8S-ITS2) following the 
methods of Egbuta et  al. (2015) with some modifications. 
Briefly, universal primers, ITS1 (5'-CTTGGT CAT TTA GAG 
GAA GTA A-3') and ITS4 (5'-TCC TCC GCT TAT TGA 
TATGC-3') synthesized by Inqaba Biotec (Pretoria, 
South  Africa) were used. The PCR reaction consisted of 
12.5 μl of 2× PCR master mix, 0.5 μl of each 25 μM primer, 
and 5  μl of DNA and constituted to a final volume of 
25  μl with nuclease-free water and was carried out in a 
T100™ thermal cycler (Bio-Rad, Singapore) under the following 
conditions as follows: pre-dwelling at 95°C for 3  min, 
35  cycles of denaturation at 95°C for 1  min, annealing at 
58°C for 45  s, extension at 72°C for 1  min 30  s, post-
dwelling at 72°C for 10  min, and holding at 4°C until 
samples were retrieved (Egbuta et  al., 2015).

PCR amplification of key regulatory and structural genes 
from the aflatoxin pathway (aflD, aflR, aflS, aflM, aflP) involved 
primer pairs and cycling parameters previously described in 
other studies (Table 1). All PCR products were electrophoresed 
on a 1% agarose gel and visualized using a Bio-Rad Molecular 
Image® Gel Doc™ XR+ with Image Lab™ software (Bio-Rad, 
CA, United  States). The amplicons were sent to Inqaba Biotec 
(South Africa) for sequencing. Analysis and cleaning of 
chromatograms were done using Finch TV software version 
1.4.0 (Frickmann et al., 2015). Our Aspergillus sequences were 
queried against previously accessioned sequences in GenBank 
(National Centre for Biotechnology and Information) using 
the Basic Local Alignment Search Tool (BLAST; Magnani 
et  al., 2005; Castrillo et  al., 2012; Zarrin and Erfaninejad, 
2016). Species identification was based on the best score 
(≥99% similarity; Gajjar et  al., 2013; Frickmann et  al., 2015; 
Rossi-Tamisier et  al., 2015; Beye et  al., 2017).

RESULTS

Identification and Characterization of 
Isolates
A sample population of 123 dry-season fungal isolates and 
78 rainy-season fungal isolates were presumptively identified 
as Aspergillus and segregated by colony color into two main 
subgenera, namely, Circumdati and Fumigati, and four sections: 
Fumigati (blue colonies), Flavi (green colonies), Circumdati 
(yellow colonies), and Nigri (black colonies). The relative 
abundances of isolates from each section during the dry 
season and rainy season, as well as in the different feeds, 
are shown in Figure  1.

The ITS PCR amplicons were of the expected size for the 
region (600  bp). A total of 107 dry season and 78 rainy 
season sequences were of good enough quality to BLAST 
query. The remaining amplicons (n  =  14 isolates) yielded 
poor sequences; therefore, these were not accessioned or 
subjected to further analysis. BLAST query of the ITS sequences 
of 185 presumptive Aspergillus isolates revealed that 83 of 
the isolates from the dry season had 99–100% similarity to 
the following species: A. niger, A. awamori, A. tubingensis, 
A. flavus, A. nomius, A. oryzae, A. parasiticus, A. fumigatus, 
A. foetidius, A. chavalieri, A. sydowii, A. brasiliensis, and  
A. cristatum. The remaining 24 belonged to other genera 
such as Byssochlamys, Cladosporium, Penicillium, Talaromyces, 
Eurotium, and Didymella. From the rainy season, 59 showed 
the same percentage similarity to A. niger, A. awamori,  
A. tubingensis, A. flavus, A. nomius, A. oryzae, A. fumigatus, 
A. ochraceus, A. welwitschiae, A. phoenicis, A. parvisclerotigenus, 
and A. japonicus. The other 17 isolates belonged to Byssochlamys, 
Cladosporium, Penicillium, Talaromyces, Alternaria, Paecilomyces, 
Rhizopus, and Sarocladium. The isolates were accessioned to 
GenBank and given numbers MG659595 to MG659694 for 
dry season isolates and MH270529 to MH270615 for rainy 
season isolates (Supplementary Table S1).

Out of the 142 isolates identified as members of the 
Aspergillus genus, 48 belonged to section Flavi. The distribution 
of the species in the various feeds is shown in Table  2.  
A. flavus (section Flavi) had the highest number of isolates 
in the dry season and were mainly from grass, whereas  
A. fumigatus (section Fumigati) was more predominant in the 
rainy season being isolated most frequently from the mixed 
ration samples. Section Nigri was dominated by A. niger, and 
most of these isolates were from the mixed ration and grass 
feeds. Only one isolate of A. ochraceus represented section 
Circumdati and it was isolated from a rainy season mixed 
ration feed sample (Table  2).

Findings Relating to Aflatoxin Production
Assessment of aflatoxin-producing ability was carried out on 
all the isolates belonging to the Aspergillus genus. Results for 
plate assays are shown in Table  3. Out of the 142 isolates, 42 
tested positive for aflatoxin on YES agar, 27 from the dry season, 
and 15 from the rainy season (Supplementary Table S2). From 
section Flavi, A. flavus dominated for both seasons. Other 
members of the same section included A. oryzae, A. parasiticus, 
and A. nomius. Some isolates outside section Flavi, such as  
A. tubingensis ND2 and ND9, A. ochraceus NR2, A. fumigatus NR37,  
and A. japonicus NR67 also tested positive on YES. For NRDCA 
and β-CNRDCA, some isolates only showed the yellow ring 
with no fluorescence under UV light, others had no yellow 
ring but showed some fluorescence, and others showed both a 
yellow ring and the fluorescence in the reverse 
(Supplementary Table S2). Only isolates showing both yellow 
ring and fluorescence were considered as positive for aflatoxin 
production. Distribution of the aflatoxin biosynthesis cluster 
genes across the 142 Aspergillus isolates analyzed is given in 
Table 4. The percentage occurrences of the aflatoxin biosynthetic 
genes were as follows: (51%) aflD (14%) aflR (29%) aflS (14%) 
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aflM, and (32%) aflP. Most of the isolates harbored at least 
one of the genes, and eight possessed all the five genes analyzed 
(Supplementary Table S3). Confirmation of aflatoxin-producing 
isolates using combined methods identified 30 positive isolates 
all belonging to section Flavi, namely, A. flavus, A. oryzae,  
A. parasiticus, A. nomius, and A. parvisclerotigenus (Table  5). 
The majority of the isolates were from the dry season and 
isolated from mixed ration and grass (Figure  2) and the least 
from brewers’ spent grain (Figure  3).

DISCUSSION

It has been reported that ingredients used in animal feed 
formulations can be  contaminated by molds that are capable 
of producing aflatoxins (Gelven, 2010). This has led to extensive 
research in order to understand the diversity of Aspergillus 
species in feeds and feedstuffs (Variane et  al., 2018). Findings 
from previous studies have indicated the presence of a wide 
range of Aspergillus species in feeds and feedstuffs. However, 
in Zimbabwe no work has reported on Aspergillus diversity 
and levels of aflatoxin contamination in animal feed.

Our findings showed that most of the isolates from our 
feed samples belonged to subgenera Fumigati (section Fumigati) 
and Circumdati (sections Nigri, Circumdati, and Flavi) based 
on observed morphological characteristics. The characteristic 
feature used in the identification of the isolates was the colony 
color that classified the isolates as follows: section Fumigati 
(blue), Nigri (black), Circumdati (yellow), and Flavi (green). 
However, use of only macro-morphological features has limitations 
since it does not guarantee accurate identification to species 
level. In order to identify the species with greater confidence, 
colony color should be  augmented by examination of micro-
morphological features of the isolates such as conidiophore, 
vesicle, metulae, phialides, and conidia, which was not done 
in our case. Alteratively, molecular analyses were performed 
on the isolates in order to resolve the limitations of the cultural 
methods. ITS sequence analysis using the BLAST search tool 
identified the black isolates as A. niger, A. brasiliensis, A. 
tubigensis, A. foetidus, A. phoenicis, A. welwitschiae,  
A. awamori, A. cristatus, A. sydowii, A. chevaliieri, and  
A. japonicus. The green isolates were identified as A. flavus, 
A. oryzae, A. nomius, A. parasiticus, and A. parvisclerotigenus. 
This shows the limitation of using morphological features for 
characterization; besides the process being time consuming and 
laborious (Henry et  al., 2000) it can lead to misidentification. 
Therefore, there is a need for a polyphasic approach for the 
proper identification of the isolates (Adetunji et  al., 2019). This 
work is limited in the sense that only the ITS region of the 
Aspergillus isolates was amplified. The use of ITS alone for the 
identification of some fungal genera has received criticism, 
especially in the discrimination of closely related species for 
genera such as Aspergillus, Cladosporium, Fusarium, Penicillium, 
and Trichoderma (Raja et  al., 2017). The inability of the ITS 
region to differentiate between identical species such as A. flavus 
and A. oryzae has also been highlighted by Adetunji et  al. 
(2019, 2020). Since amplification of ITS alone is not sufficient, TA
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further analysis of the isolates using other gene markers such 
as calmodulin (caM) and β-tubulin (benA) is therefore 
recommended in order to improve species identifications.

Some Aspergillus species outside section Flavi, such as those 
from sections Nidulantes and Ochraceorosei, have been reported 
to have the ability to produce aflatoxins (Cary et  al., 2005; 
Varga et  al., 2009); therefore, all 142 isolates were screened 
for aflatoxin producing potential (Supplementary Table S3). 
Sudini et  al. (2015) indicated chances of having false-positive 
and false-negative results when using cultural methods as some 
non-aflatoxigenic species can produce yellow pigmentation and 
also fluoresce under UV light. This has been previously 
highlighted by Stark (2009) and Atanda et  al. (2011). In this 
study, one A. fumigatus isolate NR12 exhibited some fluorescence 
and presence of yellow ring on β-CNRDCA, whereas for YES 
and molecular analysis the results were negative for the same 
isolate for aflatoxin production. Identification of these isolates 
based on the use of plate assays classified them as aflatoxin 
producers (Supplementary Table S2) while they are 
non-aflatoxigenic strains. Similarly, A. ochraceus isolate NR2 
tested positive in both plate assays but lacked all aflatoxin 
cluster genes examined. This species is known for ochratoxin 
A production, which is able to fluoresce under UV light 
(Mohamed et  al., 2013; Bueno et  al., 2017); hence, using 

cultural methods would have classified it inappropriately as 
an aflatoxin producer. Similar observations were observed for 
isolates A. oryzae NR57 and A. fumigatus NR37, which indicated 
aflatoxin-positive results for both plate assays yet lacked one 
or more of the genes examined during molecular analysis. On 
the other hand, classification of isolates A. flavus NR3 and A. 
oryzae NR35 using only the coconut-based media suggested 
both as non-aflatoxigenic strains, yet the YES plate assay suggested 
they were aflatoxin positive, and both contained all the genes 
examined. Thus, it is important to classify organisms using 
combined methods. Another isolate, A. parvislerotigenus NR40, 
gave negative results for plate assays but had all major aflatoxin 
cluster genes analyzed in this study. It could have been that 
the isolate produced the toxins in low enough quantities to 
escape detection by culture assays. Therefore, in addition to the 
plate assays, the presence of aflatoxin could have been confirmed 
by chromatographic methods such as thin layer chromatography, 
high performance liquid chromatography (HPLC) or liquid 
chromatography with tandem mass spectrometry (LC-MS/MS).

Use of enhancing agents like β-cyclodextrin to improve 
fluorescence of aflatoxins has been reported (Abbas et al., 2004; 
Stark, 2009; Degola et al., 2012). In this study, only one isolate, 
A. japonicus NR67, had enhanced fluorescence on β-cyclodextrin-
supplemented NRDCA. This may suggest that the use of plain 
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FIGURE 1 | Pie charts showing the percent distributions of the four Aspergillus sections represented by the (A) dry season isolates (B) rainy season isolates 
(C) CN isolates (D) MR isolates (E) BSG isolates, and (F) GR isolates.
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media or supplemented media does not affect the results. 
Although this isolate gave positive results on YES and exhibited 
some fluorescence under UV light on β-cyclodextrin-
supplemented media, it was classified as a non-aflatoxigenic 
strain as none of the aflatoxin cluster genes were amplified. 
There are no reports of aflatoxin production by species from 
sections Nigri and Fumigati, which is also in agreement with 
our observation from this study. The fluorescence under UV 
light exhibited by the isolates suggests possibility of production 
of other metabolites that can fluoresce. Investigations into the 
identities of these extrolites need to be carried out in the future.

Characterization of the isolates using molecular methods 
showed the presence of the aflD gene in 52% of the isolates. 
According to previous studies (Cleveland et  al., 2009; 

Abdel-Hadi et al., 2011a,b; Yu, 2012), aflD codes for an enzyme 
that converts norsolorinic acid, the first stable intermediate in 
the aflatoxin biosynthetic pathway, to averantin. The other two 
structural genes, aflM and aflP, had a frequency of 14 and 
25%, respectively. The aflatoxin biosynthetic pathway is said 
to be regulated by the aflR gene which encodes for transcriptional 
activators for the structural genes, however the discovery of 
yet another gene, aflJ, showed that aflR does not solely regulate 
the biosynthesis of aflatoxins since its activities were affected 
by aflS (Cleveland et al., 2009). Therefore, in this study, we used 
aflD, aflR, and aflS as the key markers for discriminating 
aflatoxigenic species from non-aflatoxigenic strains. In this 
study, detection of aflR was low with only 17% of the isolates 
showing the presence of the gene. This is in agreement with 

TABLE 5 | Aflatoxigenic isolates based on polyphasic examination.

Isolate 
vouche

Season Feed type Species GenBank 
accession #

ND26 Dry MR A. flavus MG659620
ND27 Dry GR A. nomius MG659621
ND29 Dry CN A. oryzae MG659623
ND30 Dry GR A. flavus MG659624
ND31 Dry MR A. flavus MG659625
ND32 Dry MR A. parasiticus MG659626
ND33 Dry GR A. flavus MG659627
ND34 Dry GR A. flavus MG659628
ND35 Dry GR A. oryzae MG659629
ND37 Dry MR A. flavus MG659631
ND38 Dry GR A. flavus MG659632
ND39 Dry MR A. oryzae MG659633
ND40 Dry CN A. flavus MG659634
ND41 Dry GR A. flavus MG659635
ND51 Dry GR A. flavus MG659645
ND52 Dry GR A. flavus MG659646
ND59 Dry MR A. flavus MG659653
ND75 Dry MR A. flavus MG659669
ND93 Dry MR A. parasiticus MG659687
ND96 Dry GR A. oryzae MG659690
ND99 Dry GR A. flavus MH270605
NR3 Rainy MR A. flavus MH270531
NR20 Rainy CN A. flavus MH270548
NR31 Rainy BSG A. flavus MH270559
NR35 Rainy MR A. oryzae MH270563
NR40 Rainy MR A. parvisclerotigenus MH270568
NR46 Rainy MR A. flavus MH270574
NR50 Rainy MR A. flavus MH270578
NR66 Rainy MR A. oryzae MH270594
NR72 Rainy GR A. nomius MH270600

MR, mixed ration; CN, concentrate; GR, grass; BSG, brewers’ spent grain.

TABLE 4 | Presence and absence of five aflatoxin cluster genes in Aspergillus isolates.

aflD aflR aflS aflM aflP

Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative

Dry season 37 46 13 70 26 57 12 71 21 62
Rainy season 37 22 7 52 15 44 8 51 25 34
Total 74 68 20 122 41 101 20 122 46 96
Percentage (%) 52 48 14 86 29 71 14 86 32 68

TABLE 2 | Distribution of species from various sections in the different feeds.

Section Species Number of isolates

Dry 
season

Rainy 
season

MR CN GR BSG

Flavi A. flavus 26 8 11 6 14 3
A. oryzae 4 5 4 2 2 0
A. parasiticus 2 0 2 0 0 0
A. nomius 1 1 0 0 2 0
A. parvisclerotigenus 0 1 1 0 0 0

Nigri A. niger 24 7 12 6 12 1
A. tubingensis 6 1 0 4 3 0
A. awamori 4 1 3 0 1 1
A. chevalieri 1 1 2 0 0 0
A. cristatus 1 0 1 0 0 0
A. foetidus 1 0 0 0 1 0
A. sydowii 1 0 0 0 0 1
A. brasiliensis 1 0 0 0 1 0
A. phoenicis 0 4 2 2 0 0
A. japonicus 0 1 1 0 0 0
A. welwitschiae 0 1 0 1 0 0

Fumigati A. fumigatus 11 27 16 8 8 6
Circumdati A. ochraceus 0 1 1 0 0 0

MR, mixed ration; CN, concentrate; GR, grass; BSG, brewers’ spent grain.

TABLE 3 | Plate assay results for aflatoxin producing ability of Aspergillus 
isolates.

Media YES NRDCA β-CNRDCA

Dry season 28 21 22
Rainy season 14 8 7
Total 42 9 29
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Abdel-Hadi et  al. (2011b) who highlighted failure of aflR in 
discriminating aflatoxin producers from non-aflatoxin producing 
isolates. Similarly, Adetunji et  al. (2019) observed the presence 
of the aflR gene in some A. oryzae isolates from cashew nuts 

even though these isolates tested negative for aflatoxin production. 
A much higher percentage of the isolates (23%) showed the 
presence of aflS. This suggests that aflS may be  the main 
regulatory gene in the isolates found in Zimbabwe. The inability 
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FIGURE 2 | Pie charts showing the percent distributions of species within section Flavi represented by the (A) dry season isolates (B) rainy season isolates (C) CN 
isolates (D) MR isolates (E) BSG isolates, and (F) GR isolates.

FIGURE 3 | Bar charts showing occurrence of aflatoxigenic Aspergillus strains in the different types of feeds. The mixed ration harbored most of the aflatoxigenic 
strains and BSG the least.
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of amplification by some of the genes in the isolates could 
be  due to the fact that they could not be  expressed under 
the lab conditions and there is a need to provide conditions 
that can lead to the expression of the genes.

Isolates from section Flavi had an occurrence frequency of 
34% across the feeds (Supplementary Table S4). This is a cause 
of concern as this section is well known for its aflatoxin producing 
species, A. flavus (Rodrigues et  al., 2007). From this study, 88% 
of the isolates from section Flavi tested positive for aflatoxin 
production. A. flavus constituted 71% of the isolates in this section, 
and 56% of these isolates showed the potential to produce aflatoxin 
using both the cultural and molecular methods of validation. 
Aspergillus oryzae has not been associated with aflatoxin production 
and has been used in the production of fermented foods (Chang 
et  al., 2006); however, six out of the nine isolates identified as 
A. oryzae exhibited aflatoxin production potential in our plate 
assays. Reconfirmation of the identities of these six isolates should 
involve BLAST query of other conserved genomic loci such as 
calmodulin (caM) and β-tubulin (benA). Aspergillus oryzae is the 
domesticated form of A. flavus, and the duo are morphologically 
identical (Payne et  al., 2006); hence, there is a possibility that 
the accessioned sequences in GenBank were misidentified by 
their submitters. However, the presence of aflatoxin regulatory 
gene, aflR has been reported in A. oryzae (Kusumoto et al., 1998; 
Lee et  al., 2006; Adetunji et  al., 2019), but they were found to 
be non-aflatoxin producers. The presence of aflR cannot be readily 
associated with aflatoxin production, since any of 25 genes in 
the aflatoxin pathway could be  present and non-functional.

This study reports for the first time the biodiversity of 
aflatoxigenic Aspergillus species in feeds used in dairy farming 
in Zimbabwe, and the findings showed the presence of four 
sections of Aspergilli with the predominating section being Nigri. 
Nigri species are non-aflatoxigenic; however, some are capable 
of producing ochratoxin A, another regulated mycotoxin. This 
wide diversity could be attributed to use of contaminated ingredients. 
Omeiza et al. (2018) highlighted strain diversity as a risk associated 
with unregulated trade routes used by farmers in Africa when 
acquiring ingredients for animal feeds. Aflatoxin-producing fungi 
have a preference for oil seed crops such as maize, cotton, and 
peanut. The most contaminated feed type was mixed ration, 
which is usually made by mixing mainly waste products of oil 
extraction from seeds and other ingredients. Cottonseed cake 
was the main waste product used by most farmers for the mixed 
ration. Therefore, farmers are encouraged to avoid contaminated 
ingredients for formulating mixed rations. The fact that feed 

producers could be  using potentially contaminated ingredients 
is a serious issue. The local government should regulate these 
cottonseed meal producers and force them to assess the presence 
of aflatoxin in their product before they can sell it to growers.
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