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Bacteria play a pivotal role in shaping ecosystems and contributing to elemental

cycling and energy flow in the oceans. However, few studies have focused on bacteria

at a trans-basin scale, and studies across the subtropical Northwest Pacific Ocean

(NWPO), one of the largest biomes on Earth, have been especially lacking. Although

the recently developed high-throughput quantitative sequencing methodology can

simultaneously provide information on relative abundance, quantitative abundance,

and taxonomic affiliations, it has not been thoroughly evaluated. We collected surface

seawater samples for high-throughput, quantitative sequencing of 16S rRNA genes on

a transect across the subtropical NWPO to elucidate the distribution of bacterial taxa,

patterns of their community structure, and the factors that are potentially important

regulators of that structure. We used the quantitative and relative abundances of

bacterial taxa to test hypotheses related to their ecology. Total 16S rRNA gene copies

ranged from 1.86 × 108 to 1.14 × 109 copies L−1. Bacterial communities were

distributed in distinct geographical patterns with spatially adjacent stations clustered

together. Spatial considerations may be more important determinants of bacterial

community structures than measured environmental variables. The quantitative and

relative abundances of bacterial communities exhibited similar distribution patterns and

potentially important determinants at the whole-community level, but inner-community

connections and correlations with variables differed at subgroup levels. This study

advanced understanding of the community structure and distribution patterns of marine

bacteria as well as some potentially important determinants thereof in a subtropical

oligotrophic ocean system. Results highlighted the importance of considering both the

quantitative and relative abundances of members of marine bacterial communities.

Keywords: relative abundance, bacterial community structure, distribution patterns, ecology of marine bacteria,

quantitative abundance
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INTRODUCTION

Bacteria play a pivotal role in shaping ecosystems and
contributing to the cycling of elements and the flow of energy
in the oceans (Ducklow, 2000; Kirchman, 2016; Steinberg and
Landry, 2017). Knowledge of the distribution patterns of marine
bacteria, their community composition, and the factors that
shape that composition in surface seawater is of great interest,
especially because of the ongoing climate changes that are
expected to cause warming and acidification of the surface
waters of the ocean, shoaling of the surface mixed layer,
and increased irradiance within that shallower mixed layer
(Hutchins and Fu, 2017). With well-developed, high-throughput
sequencing (HTS) technology, it is now technologically and
economically feasible to finely resolve bacterial community
composition. Sequences obtained from HTS can provide both
genetic (taxonomic) information and relative abundance. This
information has dramatically expanded our understanding of
the composition and biogeography of bacterial communities and
the mechanisms by which they are assembled (Sunagawa et al.,
2015; Goodwin et al., 2016; Lindh et al., 2018). Even though
HTS can provide only two basic attributes of a community on
relative abundance and taxonomic affiliation; it cannot provide
information on absolute abundance, which is needed for an
accurate and comprehensive interpretation of the biological
and ecological implications of bacterial community structure
(Props et al., 2017; Vandeputte et al., 2017; Zhang et al., 2017;
Yang et al., 2018). The addition of artificial standard spike-ins
(i.e., internal standard sequences) before HTS (that is, high-
throughput quantification sequencing, HTQS) makes it possible
to estimate microbial abundances (Tourlousse et al., 2017; Yang
et al., 2018). Although the effects of PCR bias cannot be ruled out
in HTQS and would impact estimates of microbial abundances, it
has been shown that estimates of microbial community structure
and composition are not perturbed by artificial standard spike-
ins, and even complex 16S rRNA gene pools do not affect
quantification based on artificial standard spike-ins (Tourlousse
et al., 2017). In this study, we considered that gene copy numbers
estimated from HTQS were metrics of quantitative abundance
rather than relative abundance and could provide, at least to some
extent, information about all three community attributes (i.e.,
taxa, relative abundance, and quantitative abundance) and could
thereby enhance the significance of HTS-based microbiome
studies (Tourlousse et al., 2017; Wang et al., 2018; Yang et al.,
2018; Jiang et al., 2019; Mou et al., 2020). However, to our
knowledge, only one study has previously applied this improved
HTQS method to an aquatic ecosystem. That study linked net
community production and microbial community composition
in the western North Atlantic and revealed that the microbial
community that resulted from an algal bloomwas associated with
a regional peak of net community production (Wang et al., 2018).
Moreover, little is known about the differences and similarities
of the implications of relative and quantitative abundances in
marine microbial ecology.

The subtropical NWPO is one of the largest biomes on
Earth and is characterized by warm, nutrient-poor, low-biomass,
stratified surface waters (Spalding et al., 2012; Tseng et al., 2016).

Although the subtropical NWPO plays a significant role in
moderating the global climate and biogeochemical cycles, it is
undersampled and not well understood in terms of its ecosystem
structure and functionality (Tseng et al., 2016; Karl and Church,
2017; Kavanaugh et al., 2018).

There have previously been many studies of marine bacterial
communities over different geographic ranges with high sample
numbers and/or great depth coverage. However, those studies
have been conducted at only a few scattered stations or within
only a few subdivisions of the North Pacific Ocean, and only
a small number of samples have been collected from the
subtropical NWPO (Fuhrman et al., 2008; Zinger et al., 2011;
Sunagawa et al., 2015; Lindh, 2017; Shulse et al., 2017; Li et al.,
2018; Lindh et al., 2018). Zinger et al. (2011) identified the
global patterns of bacterial distributions across the world’s oceans
by analyzing 509 samples, encompassing snapshot locations in
the North Pacific Ocean. Sunagawa et al. (2015) have studied
the structure and function of the global ocean microbiome
based on samples from 68 locations, including six from the
eastern North Pacific Ocean. Li et al. (2018) have estimated
bacterial diversity and nitrogen utilization in the northwestern
Pacific Ocean, and Shulse et al. (2017) have collected samples
from the Clarion-Clipperton Zone of the Eastern North Pacific
to examine the diversity and composition of the microbial
communities. The distribution patterns and mechanisms of
assembly of communities are affected by spatial scale (Martiny
et al., 2011; Shi et al., 2018). To our knowledge, however, there
has been no trans-basin study of marine bacteria in the North
Pacific Ocean.

In this study, we collected surface seawater samples for
HTQS of the 16S rRNA gene along a transect across the
subtropical NWPO. The objectives of the study were to (1)
reveal bacterial community structure, distribution patterns,
and potential determinants thereof, and (2), to compare the
quantitative and relative bacterial abundances as indicators
of the roles of bacterial communities in subtropical NWPO
surface seawater.

MATERIALS AND METHODS

Sample Collection and Processing
Surface seawater from 20 stations located in the subtropical
NWPO (Figure 1), ranging from 126.21◦W to 158.77◦E and
from 9.31◦N to 28.96◦N, were collected with 12-L Niskin
bottles deployed with a conductivity-temperature-depth
(SBE911 plus CTD system) profiler or manually from July
16 to August 5, 2018, as a part of the Dayang 50 cruise
(Supplementary Table 1). The map of sampling stations was
constructed using the Ocean Data View version 4.7.10 (Schlitzer,
2015). Sea surface temperature was measured with an onboard
thermosalinograph (SeaBird Electronics model SBE 45). Daily
mean sea surface salinity data for each sampling location
were extracted from the GLOBAL-REANALYSIS-PHY-001-30
reanalysis product (1/12◦ horizontal resolution) provided
by the Copernicus Marine Environment Monitoring Service
(http://marine.copernicus.eu/).
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FIGURE 1 | Sampling locations in the Northwest Pacific Ocean. Surface

seawater samples were collected from 20 stations (marked by black dots). The

map with sampling locations was constructed using Ocean Data View version

4.7.10.

The seawater was passed through 200-µm nylon mesh to
remove metazoans, and the cells from 4.25 to 7.3 liters of the
filtrate were harvested through 47-mm-diameter polycarbonate
filters (0.2-µm pore size, Millipore, USA). It was inevitable
that bacteria-associated particles (> 200µm) were also removed
with the 200-µm nylon mesh. The filters were then stored at
−80◦C until DNA extraction. Duplicate seawater samples from
each station were stored at −20◦C in acid-washed, 250-mL
polyethylene bottles, which were transported to the laboratory
and analyzed (i) for dissolved reactive phosphorus (DRP)
concentrations following the manual, solid phase extraction
method described previously (Yuan et al., 2016), (ii) for
NOx (nitrate + nitrite) concentrations using a colorimetric
method with a Flow Injection Analysis-Liquid Waveguide
Capillary Cell system (Zhang, 2000) and (iii) for Si(OH)4
concentrations using an AA3 AutoAnalyzer (Bran+Luebbe,
Germany) following procedures described previously (Du et al.,
2013).

For measurement of chlorophyll a (Chl a) concentrations,
4.3 liters of seawater from each station were filtered onto
Whatman 25-mm-diameter GF/F filters and stored at −80◦C.
Chl a was extracted with N, N-dimethylformamide from filters,
and measured by high-performance liquid chromatography (Liu
et al., 2016). Seawater samples for enumeration of bacterial
abundance were fixed with 50 % paraformaldehyde (Sangon
Biotech, China) at a final concentration of 1 % (v/v), incubated
in the dark for 10–15min, and stored at −80◦C. Bacteria were
stained with 100× SYBR Green I (final concentration 1×)
(Thermo Fisher Scientific, USA) were counted using a BD Accuri
C6 flow cytometer (BD Biosciences, USA) after mixing with
1-µm yellow-green latex beads (Sigma, USA) (Marie et al.,
1999).

High-Throughput Quantification
Sequencing
To quantify taxa abundance across samples, HTQS, which has
been described in pioneer studies (Tourlousse et al., 2017; Wang
et al., 2018; Jiang et al., 2019; Mou et al., 2020), was applied
and carried out mainly in Genesky Biotechnologies (China),
with some modifications. Briefly, total genomic DNAs were
extracted using a DNeasy PowerWater Kit (Qiagen, Germany)
following the manufacturer’s instructions from polycarbonate
filters with concentrated cells. DNA quality and purity were
evaluated by gel electrophoresis and NanoDrop 2000 (Thermo
Fisher Scientific, USA), and the concentration was quantified
with an Invitrogen Qubit 3.0 Spectrophotometer (Thermo Fisher
Scientific, USA). Artificial standard spike-in sequences consisted
of both conserved regions that were identical to natural 16S rRNA
genes and artificial variable regions that were random sequences
with about 40% G+C content and that shared negligible identity
with sequences in the public databases. Artificial standard spike-
ins were designed and synthesized in Genesky Biotechnologies
(China). Nine artificial standard spike-ins were added to genomic
DNAs for each sample at four different concentrations (103,
104, 105, and 106 copies of sequences for three, two, two, and
two standard spike-ins, respectively), followed by amplification
of the V3-V4 region of bacterial 16S rRNA gene with primers
341F and 805R in triplicate for 25 cycles (Herlemann et al.,
2011). Amplicons were checked using gel electrophoresis and
purified with Agencourt AMPure XP PCR Purification Beads
(Beckman Coulter, USA). Purified amplicons of each sample
were added with a sample-specific index sequence and then
used to construct a library. The library was quantified, pooled,
checked, and then sequenced using an Illumina Miseq Benchtop
Sequencer (Illumina, USA) for 2 × 250 base pair (bp) paired-
end reads.

Processing and Analysis of Sequencing
Data
The raw paired-end reads with Q20 values ≥97.1% and Q30
values ≥94.37% were cleaned using Trim Galore v0.4.5 (http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/),
FLASH2 v2.2.00 (Magoc and Salzberg, 2011), mothur v.1.39.3
(Schloss et al., 2009), and Usearch v10 (Edgar, 2013), including
quality checking, filtering, and assembly of data. First, Trim
Galore was applied to trim adapter and bases with quality
scores <20 at the end of the read and reads shorter than 100 bp
were removed. Second, FLASH2 was used to merge paired-end
reads, followed by the removal of low-quality sequences (Magoc
and Salzberg, 2011). Third, mothur was applied to identify
and remove primers from sequences and filter out sequences
with N-base or homopolymer >6 bp. Finally, sequences with
total base error rates larger than two or lengths shorter than
200 were removed using Usearch, resulting in clean sequences
for further processing (Edgar, 2013). UPARSE (Edgar, 2013)
implemented in Usearch v10 was performed for processing
chimera removal, singleton removal, Operational Taxonomic
Unit (OTU) clustering (97% similarity cut-off), and picking of
representative sequences.
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Representative sequences were then blasted against the
Silva132 database (Yilmaz et al., 2014) for taxonomic assignment.
OTUs assigned to spike-in sequences were identified, counted,
and removed for each sample, and the relative and quantitative
abundances of the remaining OTUs were then calculated. For
relative abundance analyses, an OTU table without singleton and
non-bacterial sequences (i.e., spike-in, archaea, and chloroplast)
was randomly rarefied to the same sequence number of 85442
(the minimum number of sequences in the samples) for each
sample. For analyses of quantitative abundances, a standard
curve equation based on the 9 added standard spike-ins for each
sample was first constructed following y = ax + b (1) , where
y is the log-transformed number of spike-in OTU sequences, x
represents log-transformed copies of the added spike-in, and the
parameters a and b are fitting coefficients.

The quantitative abundance of each OTU in a sample was
then determined as follows: ABotu =

Yotu
R∗V (2), where ABotu

is the quantitative abundance of OTUs in the unit of copies
L−1; Yotu represents OTU abundance calculated from equation
(1); R is the recovery ratio of DNA concentration (sequenced
genomic DNA/total genomic DNA extracted in each sample),
and V represents the volume of seawater filtered. Based on
relative abundance, richness (observed OTU number), Chao 1,
Shannon, and Faith’s phylogenetic diversity (PD) (Faith, 1992)
indices were calculated by applying command alpha_diversity.py
in QIIME v.1.9.0 (Caporaso et al., 2010).

Statistical Analysis
All statistical analyses and figures were done with R (version
3.6.1) (R Core Team, 2016) unless otherwise mentioned.
Spearman rank correlation tests were applied to pairs of variables,
including biogeochemical factors and alpha diversity indices of
bacteria, with P-values corrected using the false discovery rate
(fdr) method. To evaluate inner-community connections, the
function corr.test() (arguments: method = “spearman,” adjust =
“fdr”) in package ‘psych’ (Revelle, 2017) were used to calculate the
pairwise correlations for OTUs with relative abundance >0.1%
(relative to total sequences), followed by depicturing significant
correlations (adjusted p < 0.05 and r ≥ 0.6) and analysis
of network attributes through the software Gephi (Bastian
et al., 2009). Pairwise Spearman correlation coefficients between
relative and quantitative abundances were analyzed for OTUs
recovered in all samples with p-values adjusted in the package
“q-value” (Dabney et al., 2010). The procrustes analysis was
applied to test the agreement between relative and quantitative
abundances in presenting the distribution patterns of bacterial
communities using the “vegan” package (Oksanen et al., 2016).

First, Principal Coordinates Analysis was performed
separately on relative and quantitative abundances of bacterial
communities to reduce their dimensionalities. Then, the
Procrustes analysis was used to stretch and rotate the points in
principal coordinates matrices using the function procrustes().
The statistical significance was measured with a Monte Carlo
test, with M2 indicating the goodness of fit. The Mantel test
was applied to reveal the potential effects of factors such as
environmental and geographic metrics on bacterial community
composition based on Bray-Curtis distance.

To evaluate the relative effects of environmental and spatial
variables in constructing the bacterial communities, a variation
partitioning analysis (VPA) was performed based on redundancy
analysis (RDA), as previously described (Borcard et al., 2011).
A sparse partial least squares (sPLS) approach implemented
in the R package “mixOmics” (Rohart et al., 2017) was
performed to simultaneously select variables from bacterial
subgroups (at phylum and order levels, respectively), and
variables (i.e., environmental and geographic factors) that could
identify certain bacterial subgroups having high correlations with
specific parameters.

RESULTS

Environmental Characteristics
Twenty surface seawater samples were collected and measured
for relevant environmental variables (Supplementary Table 1,
Supplementary Figure 1) across the subtropical NWPO
during the summer of 2018. Sea surface temperature averaged
29.11◦C (range: 28.55–29.68◦C) (Supplementary Figure 1A).
Sea surface salinity averaged 34.36 (range: 33.66–35.12)
(Supplementary Figure 1B). Concentrations of NOx (nitrate
+ nitrite) averaged 0.033 µmol/L (range: 0.014–0.104
µmol/L) (Supplementary Figure 1C). Dissolved reactive
phosphate (DRP) concentrations averaged 0.07 µmol/L
(range: 0.01–0.15 µmol/L) (Supplementary Figure 1D).
The geographical distribution of Si(OH)4 concentrations,
which averaged 1.08 µmol/L (range: 0.57–1.93 µmol/L)
(Supplementary Figure 1E) was opposite that of the DRP
concentrations. The Si(OH)4 concentrations increased from
west to east across the subtropical NWPO and decreased toward
the north (Supplementary Figures 1D,E, Figure 2A). The
concentrations of Chl a averaged 25.2 ng/L (range: 5.4–48.8
ng/L) (Supplementary Figure 1F). Bacterial abundances
varied from 1.15×105 cells/ml to 1.68 × 105 cells/ml
(Supplementary Figure 1G).

α-Diversity of Bacterial Communities
Rarefaction curves indicated that all amplicon samples were
almost saturated with respect to the number of sequences.
The implication of this was that the majority of bacterial
communities in the amplicon samples collected from subtropical
NWPO surface water were recovered at the current sequencing
depth (Supplementary Figure 2). All samples rarefied to 85,442
sequences yielded a total of 1,192 OTUs at a cutoff value
of 97% similarity. The samples contained 453–682 OTUs
per sample (Figure 2B). The distribution patterns across the
subtropical NWPO were consistent for richness based on the
Chao 1, phylogenetic diversity (PD), and Shannon diversity
indices. The Chao 1 ranged from 561 to 799 (average of
651), the PD index from 42 to 58 (average of 46), and
the Shannon from 4.5 to 5.8 (average of 4.8). The richness,
Chao 1, and phylogenetic indices peaked at station N01,
whereas the maximum of Shannon index was at station
N17 (Figures 2B–D).
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FIGURE 2 | Spearman correlation matrix and distribution patterns of bacterial α-diversity indices. The Spearman correlation matrix (A) showing the results of

Spearman rank correlation tests among α-diversity indices, environmental variables, geographic factors, and copy number of 16S rRNA gene. The p-values were

corrected using package “psych.” Only adjusted p < 0.05 are shown in the Spearman correlation matrix with color indicating the r value. Distribution patterns of

α-diversity indices including Chao1 and richness, PD, and Shannon are shown in (B–D), respectively. PD, phylogenetic diversity; CopyNum, copy number of 16S

rRNA gene; NOx, nitrite + nitrate; DRP, dissolved reactive phosphorus; BA, bacterial abundance.

Structure and Distribution Patterns of
Bacterial Communities
Strong linear relationships (R2 > 0.988) were found between the
added copy numbers of spike-in standards and the abundances
of spike-in OTU sequences recovered from sequencing
for all samples (Supplementary Table 2). The quantitative
taxonomic abundances calculated from spike-in standards
averaged 7.09 × 108 copies L−1 (range: 1.86 × 108-1.14 ×

109 copies L−1) for bacterial communities (Figure 3B). At
the phylum level, both relative and quantitative sequence
abundances derived from all samples were dominated by
Proteobacteria (average about 65.4% and 4.6 × 108 copies
L−1, respectively), followed by Cyanobacteria (average about
22.0% and 1.9 × 108 copies L−1, respectively). These two phyla
accounted for more than 87% of the total relative abundance.
The α-proteobacteria and γ-proteobacteria dominated within
Proteobacteria, accounting for 48.7 and 15.3% of total sequences,
respectively (Supplementary Figure 3).

Bacteroidetes and Actinobacteria were ubiquitous
in the investigated region and present in high relative
abundance at some stations (e.g., stations N17 and N22,
Supplementary Figure 3A). At the order level, the SAR11
clade within the Proteobacteria dominated in both relative
(average of 32.4%) and quantitative (4.1 × 107−4.0 ×

108 copies L−1 with an average of 2.6 × 108 copies L−1)

sequence abundances at all stations and sequences assigned to
Synechococcales (Cyanobacteria) accounted for 21.9% of total
sequences (Figure 3).

The Spearman correlation coefficients between relative
and quantitative abundances were <0.8 in 46.2% of the cases,
and 7.3% of the Spearman correlation coefficients were not
significant (adjusted P > 0.05; Supplementary Figure 4).
Furthermore, the community connections revealed by
relative and quantitative abundances were markedly
different, and the latter showed more complex and tighter
connections (Figure 4, Table 1). Although equal numbers of
OTUs were included in the analyses, compared to relative
abundances, the quantitative abundances were associated
with: (i) twice as many connections, with much more
positive (1005 vs. 151) and fewer negative (29 vs. 143)
connections; (ii) a higher average degree of clustering and

clustering coefficient; and (iii) shorter average path length

and lower modularity (Table 1). Procrustes analysis showed
remarkable agreement between relative and quantitative
abundances in presenting the distribution patterns of bacterial

communities with M2
= 0.017 and p = 0.001. Moreover,

it was noteworthy that bacterial communities, based on
both relative and quantitative abundances presented distinct
geographical patterns with spatially adjacent stations clustered
together (Figure 5).
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FIGURE 3 | Bacterial community composition of relative abundance and rRNA gene abundance at the order levels (A,B), respectively. Only the most abundant orders

(12) are shown. The other orders are presented as “Others”.

FIGURE 4 | Network analysis of relationships among OTUs for relative

abundance (A) and quantitative abundance (B) of bacterial communities. The

OTUs with relative abundances >0.1% of total sequences were included to

calculate pairwise Spearman correlations using the function corr.test() in the

package “psych,” with p-values adjusted using the “fdr” method. Only

significant correlations (adjusted p < 0.05 and r ≥ 0.6) were used to construct

the network using the software Gephi. Red and blue lines represent significant

positive and negative correlations, respectively.

Potentially Important Factors Influencing
the Bacterial Communities
No significant relationship with measured environmental
and geographic variables was found for alpha diversity
indices or quantified rRNA gene abundances, except for
bacterial abundances and NOx concentrations, which were
positively correlated with Shannon and PD indices, respectively

TABLE 1 | Network characteristics of bacterial community based on relative and

quantitative abundances.

Attributes Relative Quantitative

Node 90 90

Average degree 6.5 23.0

Average clustering coefficient 0.49 0.63

Edge 294 1,034

Positive edge 151 1,005

Negative edge 143 29

Average path length 3.02 1.98

Modularity 11.45 0.26

Pairwise Spearman correlation coefficients for OTUs with relative abundance >0.1% of

total sequences were calculated using the function corr.test() in the package “psych.”

The p-values were adjusted using the “fdr” method. Only significant correlations (adjusted

p <0.05 and r ≥ 0.6) were used to analyze network attributes via the software Gephi.

(Figure 2A). The effects of environmental and geographic factors
on community composition were evaluated using Mantel tests
(Table 2), VPA (Supplementary Figure 5), and sPLS analyses
(Figure 6, Supplementary Figure 6).

The variations of whole bacterial communities based on the
Bray-Curtis distance were significantly correlated with salinity
(r = 0.396, P < 0.001 and r = 0.429, P < 0.001 for relative
and quantitative abundances, respectively), DRP concentrations
(r = 0.294, P = 0.002 and r = 0.322, P = 0.001 for relative and
quantitative abundances, respectively), Si(OH)4 concentrations
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FIGURE 5 | Procrustes analysis of relative abundance against quantitative

abundance in presenting bacterial distribution patterns obtained from Principal

Coordinates Analysis. Principal Coordinates Analysis based on Bray–Curtis

distance of bacterial communities. The M2 that was approximated to zero

indicated the remarkable agreement of comparison. The statistical significance

was measured by the Monte Carlo test.

TABLE 2 | Mantel tests for the correlations between environmental variables,

geographic factors, and bacterial composition based on Bray-Curtis distance for

relative and quantitative abundances.

Relative Quantitative

r p r p

Temperature 0.054 0.283 0.034 0.346

Salinity 0.396 <0.001 0.429 <0.001

NOx 0.066 0.273 0.106 0.235

DRP 0.294 0.002 0.322 0.001

Si(OH)4 0.353 0.025 0.330 0.025

Chl a 0.367 0.014 0.291 0.035

Bacteria −0.102 0.719 −0.063 0.649

Envdist 0.451 0.002 0.463 0.001

Geodist 0.738 <0.001 0.785 <0.001

Significance tests were set at 9,999 permutations and p-values (<0.05) are in bold. NOx ,

Nitrite + Nitrate; DRP, dissolved reactive phosphorus; BP, bacterial production; Bacteria,

bacterial abundance; Envdist, pairwise Euclidean distances of environmental factors;

Geodist, pairwise geographical distances based on Cartesian coordinates generated

from longitude and latitude. Environmental variables were scaled to zero mean and

unit variance.

(r = 0.353, P = 0.025 and r = 0.330, P = 0.025 for relative
and quantitative abundances, respectively), Chl a concentrations
(r = 0.367, P = 0.014 and r = 0.291, P = 0.035 for relative and
quantitative abundances, respectively), and geographic distances
(r = 0.738, P < 0.001 and r = 0.785, P < 0.001 for relative and

quantitative abundances, respectively) (Table 2). Furthermore,
the VPA showed that purely geographic factors might play
significant roles in shaping bacterial communities based on
both relative (30.2%) and quantitative (31.9%) abundances, but
purely measured environmental factors explained no significant
percentage of community variance. A large percentage of
community variance was unexplained based on relative (47.8%)
and quantitative (47.0%) abundances (Supplementary Figure 5).

We used sPLS to identify and visualize significant correlations
between subgroups of bacteria and each environmental
parameter and geographic factor, and in this way, we were
able to reveal many significant relationships (Figure 6,
Supplementary Figure 6). In terms of both relative and
quantitative abundances, groups such as Dadabacteria and
Gammaproteobacteria were correlated with longitude and
latitude, and bacteria recovered as phyla (Dadabacteria
and Firmicutes) were correlated with DRP concentrations
(Supplementary Figure 6). However, the relative or
quantitative abundance of no phylum was found to be
correlated with temperature, NOx, or Chl a concentrations
(Supplementary Figure 6). There were similar patterns at the
order level for both relative and quantitative abundances. For
example, the abundance of groups such as Alteromonadales,
Bacillales, Betaproteobacteriales, cellvibrionales, Pirellulales,
Pseudomonadales, and Verrucomicrobiales was correlated
with longitude and latitude, whereas the abundances of
lineages were uncorrelated with temperature and NOx

concentrations (Figure 6). Discrepancies of correlations
with geographic factors, nutrients, and Chl a were also
notably apparent for the relative and quantitative abundances
of bacterial subgroups. For example, geographic factors
correlated with the relative abundances of groups such
as Ianctomycetes, Margulisbacteria, and Verrucomicrobia,
but not for their quantitative abundances, whereas only
the quantitative abundances of the orders Chitinophagales,
Phycisphaerales, Planctomycetales, Puniceispirillales, and
Opitutales were correlated with geographic variables (Figure 6,
Supplementary Figure 6).

DISCUSSION

Bacterial Community Composition Across
the Subtropical NWPO
Although HTQS does not preclude a PCR-bias effect, which
would impact absolute microbial abundances, it could, to some
extent, enhance the significance of HTS-based microbiome
studies (Tourlousse et al., 2017; Wang et al., 2018; Yang et al.,
2018; Jiang et al., 2019; Mou et al., 2020). In our study, the strong
linear relationships observed between the added copy numbers
of spike-in standards and the abundances of spike-in OTU
sequences (Supplementary Table 2) suggested that HTQS might
be a robust method for quantifying the sequence abundances.
Our observations of total bacterial 16S rRNA abundances were
within the range of bacterial 16S rRNA abundances (1.78 ×

108−5.4× 109 copies L−1) reported in the surface seawater of the
western North Atlantic, based on the HTQSmethod (Wang et al.,
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FIGURE 6 | Heatmaps showing significant correlations between specific orders (A,B) of bacteria and environmental variables (e.g., temperature, salinity, nutrients,

and Chl a) and geographic factors for relative and quantitative abundances using a sparse partial least squares approach. The orders present in all samples were

used. Significant correlations (|r| > 0.5) are labeled with asterisks. NOx, nitrite + nitrate; DRP, dissolved reactive phosphorus.

2018) and consistent with bacterial 16S rRNA gene abundances
based on real-time PCR in the surface seawater of the South
Pacific Gyre (5.96 × 108−2.55 × 109 copies L−1) (Yin et al.,
2013). Quantitative abundances of the SAR11 16S rRNA gene in
our samples were also in accordance with previous observations.
For example, a mean quantitative abundance of 2.6 × 108 copies
L−1 has been reported for SAR11 in surface seawater of the
western North Atlantic based on the HTQS method (Wang et al.,
2018), and SAR11 gene abundances estimated by quantitative
PCR (qPCR) have been reported to fall in the range 0.3× 108−6.3
× 108 copies L−1 at Station ALOHA (Eiler et al., 2009).

Our results were also consistent with the SAR11 cell
abundances of 2 × 108 cells L−1 estimated from FISH in the
Sargasso Sea (Morris et al., 2002), if there is one gene copy
number per SAR11 cell (Giovannoni et al., 2005). It should
be noted, however, that there was no correlation between
bacterial abundance enumerated with flow cytometry and 16S
rRNA gene abundance based on the HTQS method (Figure 2A).
Because there are significant methodological differences between
HTQS and flow cytometry, it was reasonable to anticipate that
they do not provide estimates of the same characteristics of
bacterial communities.

At the basin scale, the bacterial communities were
dominated at the phylum level by Proteobacteria, followed
by Cyanobacteria (Supplementary Figure 3). Furthermore, the
SAR11 (Proteobacteria) and Synechococcales (Cyanobacteria)

lineages were the predominant groups at the order level in our
study (Figure 3).

With some exceptions, our results were generally consistent
with the results of previous studies in oligotrophic surface
seawater at both the global and local scales (Yin et al., 2013;
Sunagawa et al., 2015; Lindh, 2017; Shulse et al., 2017; Li et al.,
2018). Based on metagenomic data, for example, Sunagawa et al.
(2015) found that typical members of the Proteobacteria (i.e.,
SAR11 and SAR86 clades) and Cyanobacteria were the dominant
bacteria in samples collected across all oceanic provinces during
the Tara Oceans expedition. Moreover, Proteobacteria and
Cyanobacteria have generally been shown to be the predominant
phyla in surface seawater based on either 16S rRNA gene clone
libraries from the center to the edge of the South Pacific Gyre
(Yin et al., 2013) or HTS results of the 16S rRNA gene (V3 region)
in the NWPO (Li et al., 2018). However, Lindh (2017) found that
Cyanobacteria dominated bacterial communities along a transect
from Honolulu to Station ALOHA based on HTS of the V3–V4
region of the bacterial 16S rRNA gene, and Li et al. (2018) found
that Bacteroidetes was the second most abundant phylum at
several stations in the northwestern Pacific. These discrepancies
could be partially attributed to the different methodologies used,
such as PCR primers. Previous studies, for example, have revealed
that different primer sets can result in biased diversity metrics
for bacterial communities (Cai et al., 2013). The fact that the
primers used by Lindh (2017) and by us were the same, but
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that there were differences in the community compositions based
on those primers indicates that factors other than primer sets
contributed to the observed differences. Li et al. (2018) have
shown that either Cyanobacteria or Proteobacteria can be the
dominant bacterial phylum in the surface water of the NWPO.
We, therefore, hypothesize that differences of the environmental
factors associated with currents, water masses (Tseng et al., 2016),
and/or physical processes such as eddies and upwelling might
play a more important role than methodological differences
(i.e., different primers) in explaining the differences of bacterial
community composition in the different studies.

Potentially Important Factors That
Influence Bacterial Communities
We identified environmental variables (i.e., salinity, nutrient,
and Chl a concentrations) and geographic factors as
potential determinants of bacterial communities (Table 2,
Supplementary Figure 5). Moreover, these potential
determinants were correlated to varying degrees with different
bacterial lineages (Figure 6, Supplementary Figure 6). More
specifically, Chl a concentrations were found to be potentially
important factors that shaped whole bacterial communities
(Table 2), but they were uncorrelated with specific lineages at
the phylum level (Supplementary Figure 5). Similarly, Li et al.
(2018) found that bacterial community structure is positively
correlated only with temperature, whereas, at the phylum level,
Proteobacteria, and Cyanobacteria are weakly correlated with
both temperature and nutrients, and Chloroflexi are negatively
correlated with ammonium concentrations in the surface water
of the NWPO.

Partial least squares regression analyses revealed that latitude,
longitude, and temperature are associated with specific groups
of prokaryotic taxa in the western North Atlantic (Wang et al.,
2018). In addition, Lindh et al. (2018) have shown that the
effects of environmental and spatial factors vary in terms of
their ability to explain whole bacterioplankton assemblages and
subgroups thereof in the Clarion-Clippperton zone of the Pacific
Ocean and along global ocean transects (i.e., the TARA and
Malaspina expeditions). The implication is that the mechanisms
that shape bacterioplankton communities differ between whole
communities and subgroups. To comprehensively understand
the biogeography of marine bacteria and the mechanisms that
structure marine bacterial communities, the distinction between
different taxonomic levels should be taken into consideration in
future studies.

Our results revealed that spatial factors might play more
important roles than environmental variables in regulating
bacterial communities (Table 2, Supplementary Figure 5).
Mantel tests revealed that spatial factors were more significantly
correlated with bacterial communities than environmental
variables (Table 2), and VPA showed that purely spatial factors
could explain a large percentage of the variance of bacterial
community composition, whereas the environmental metrics
that we measured explained no significant percentage of the
variance (Supplementary Figure 5). By contrast, Lindh et al.
(2018) found that purely environmental conditions accounted

for a significant percentage of the variance of epipelagic (5,
80, and 125m) bacterioplankton composition in the Clarion-
Clipperton Zone of the Eastern North Pacific. Based on rRNA
gene data from the Tara oceans, the same study observed that
environmental conditions might play a more important role than
spatial differences in structuring epipelagic (0–200m) bacterial
assemblages. Water temperature was recognized to be the most
important driver of the selection of surface prokaryotes sampled
during the Malaspina and TARA Oceans expeditions (Logares
et al., 2020). One possible explanation for these disparate results
is that environmental heterogeneity was much higher in previous
studies than in this study. For example, water temperatures
ranged from 28.55 to 29.68◦C in this study, but it fluctuated
between 12.79 and 27.63◦C in the epipelagic waters of the
Clarion-Clipperton Zone during the study of Lindh et al. (2018)
and from 15.7 to 29.3◦C across the “Meta-119Malaspina dataset”
during the study of Logares et al. (2020).

Our results also revealed that environmental variables such as
salinity, DRP, and Si(OH)4 concentrations were correlated with
spatial factors (Figure 2A), and that correlation could explain
their shared effect on the variations of bacterial community
structure (Supplementary Figure 4). It should be noted that
there was a large percentage of community variance that was
unexplained by the spatial and environmental variables in
our study (Supplementary Figure 5). We speculate that this
unexplained community variance might have been due to
unmeasured but important environmental factors (e.g., wind
speeds and water current velocities), ecological processes (e.g.,
dispersal and ecological drift), and/or biological variables, such
as taxon-specific mortality by grazers, viral infection, and
biotic interactions.

Comparing the Quantitative and Relative
Abundances of Members of the Bacterial
Communities
We evaluated community structure, distribution patterns,
and the potentially important determinants of bacterial
community composition in terms of both relative and
quantitative abundances. The distribution patterns of the
relative and quantitative abundances of whole communities of
bacteria were similar (Figure 5) and were affected in similar
ways by potential determinants of community structure
(Table 2, Supplementary Figure 5). At the subgroup level,
the distributions and potential determinants of relative
and quantitative abundance differed (Table 1, Figures 4, 6,
Supplementary Figures 4, 6). The attributes of networks
constructed from relative and quantitative abundances were
quite different (Figure 4, Table 1). Because positive connections
might tend to destabilize bacterial communities, or vice versa
(de Vries et al., 2018), our results may indicate that bacterial
networks appear to be less stable when they are assessed
in terms of quantitative abundance vs. relative abundance.
Furthermore, the Spearman correlation coefficients between
relative and quantitative abundances were <0.8 in 46.2% of
cases, and 7.3% were not significant correlations (adjusted P >

0.05; Supplementary Figure 4). Hence there were significant
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differences between relative and quantitative abundances at the
subgroup level.

By combining the HTS approach with single-cell enumeration
technology, Props et al. (2017) showed that there is no
inevitable correlation between enrichment (increase in relative
abundance) and outgrowth (increase in absolute abundance)
of taxa. This result highlights the need to consider both
relative and absolute abundances to present a comprehensive
interpretation of ecological scenarios. The consideration of
the potentially important factors that might shape bacterial
community composition in this study was based on relative
and quantitative abundances that revealed similar patterns
for whole communities, but the patterns were dissimilar for
specific subgroups (Table 2, Figure 6, Supplementary Figures 4,
6). Previous studies have shown significantly different trends in
the abundances of major groups within microbial communities,
based on relative abundances generated using HTS andmeasured
abundances estimated by direct or indirect measurements with
adenosine triphosphate, flow cytometry, quantitative real-time
PCR (qPCR), concentrations of phospholipid fatty acids or
microbial carbon biomass (Zhang et al., 2017), and internal
standard strains (Yang et al., 2018). In addition, Vandeputte
et al. (2017) revealed that quantitative microbiome profiling plays
a very important role in the analysis of relationships between
species that occur together and the characterization of changes
of pathogenic microorganisms through parallelization of HTS
and flow cytometric enumeration technology. Collectively, the
trends of the relative and quantitative abundances of marine
bacteria might be significantly different at subgroup levels. A
consideration of the quantitative and relative abundances of
members of the bacterial community might therefore be pivotal
in revealing important aspects of marine microbial ecology.

CONCLUSIONS

Although bacteria play a pivotal role in shaping ecosystems
and contributing to the cycling of elements and flow of energy
in the oceans, few studies have addressed the basin-scale
distribution of marine bacteria based on the quantification
of bacterial abundance. This study revealed that total 16S
rRNA gene copies ranged from 1.86 × 108 to 1.14 × 109

copies L−1 in the subtropical NWPO. The spatial distributions
of the bacterial communities were distinct, and geographic
factors appeared to play important roles in structuring bacterial
communities. Our analyses indicated that consideration of
both the relative and quantitative abundances of bacteria

in a community might help to reveal important aspects of
marine microbial ecology. However, because our conclusions are
based on analysis of only surface seawater sampled from the
subtropical NWPO, further investigations are needed to extend
this approach to subsurface waters (e.g., the deep chlorophyll
maximum layer, twilight zone, and deep ocean), and/or to regions
with gradients of environmental conditions (e.g., salinity and
nutrient concentrations). Such studies would greatly enhance our
knowledge of how ocean ecosystems work and how they may
respond to climate change.
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