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A better understanding of co-evolution between pathogens and hosts holds promise
for better prevention and control strategies. This review will explore the interactions
between Burkholderia pseudomallei, an environmental and opportunistic pathogen, and
the human host immune system. B. pseudomallei causes “Melioidosis,” a rapidly fatal
tropical infectious disease predicted to affect 165,000 cases annually worldwide, of
which 89,000 are fatal. Genetic heterogeneities were reported in both B. pseudomallei
and human host population, some of which may, at least in part, contribute to inter-
individual differences in disease susceptibility. Here, we review (i) a multi-host—pathogen
characteristic of the interaction; (ii) selection pressures acting on B. pseudomallei and
human genomes with the former being driven by bacterial adaptation across ranges
of ecological niches while the latter are driven by human encounter of broad ranges
of pathogens; (iii) the mechanisms that generate genetic diversity in bacterial and host
population particularly in sequences encoding proteins functioning in host—pathogen
interaction; (iv) reported genetic and structural variations of proteins or molecules
observed in B. pseudomallei—human host interactions and their implications in infection
outcomes. Together, these predict bacterial and host evolutionary trajectory which
continues to generate genetic diversity in bacterium and operates host immune selection
at the molecular level.
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INTRODUCTION

Melioidosis is a serious and often fatal neglected tropical infectious disease caused by Burkholderia
pseudomallei, an intracellular bacterial pathogen and also ubiquitous in the environment (Holden
et al., 2004). Human hosts can acquire the bacterium after direct environmental exposure either
through dermal puncture, ingestion of contaminated food or water supplies, or inhalation of
contaminated soil or water aerosols. Following an acquisition, B. pseudomallei can replicate in host
non-phagocytic and phagocytic cells as well as spreading intracellularly (Willcocks et al., 2016).
The bacterium can either kill the human host rapidly (acute melioidosis) or hide within the host
body for a long period (chronic melioidosis). With rare exceptions (Abbink et al., 2001; Ralph et al.,
2004; Aziz et al., 2020), B. pseudomallei is not known to transmit from person to person; indicating
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that B. pseudomallei has not evolved virulence mechanisms
through consecutive passage in human hosts. Moreover,
B. pseudomallei within-host evolution observed in chronic
infections are often linked to attenuated virulence (Price et al.,
2013; Viberg et al., 2017; Pearson et al., 2020), which is possibly
mediated by host immune evasion. While environment exposure
can lead to melioidosis, most patients are elderly or have one
or more underlying health risks. The most common health
condition is diabetes mellitus which presents in up to half
of cases (Kronsteiner et al., 2019). Therefore, it is likely that
B. pseudomallei has acquired virulence genes for human infection
before being exposed to the human hosts, and that these virulence
factors are most effective when the host has underlying health
issues. It is possible that a successful human infection is mediated
by bacterial redundant virulence mechanisms that were acquired
and maintained in the environment. In this review, we will
leverage recent pieces of genomic studies to better understand
the evolution of virulence mechanisms in B. pseudomallei and
host defense system.

A MULTI-HOST—PATHOGEN
INTERACTION

Interactions between free-living amoebae and environmental
bacteria have been proposed to provide an evolutionary training
platform for intracellular pathogen such as Legionella pnemophila
(Park et al., 2020), Listeria monocytogenes (Schuppler, 2014), and
B. pseudomallei (Inglis et al., 2000, 2003; Noinarin et al., 2016).
Many free-living amoebae including the genera Acanthamoeba,
Dictyostelium, Naegleria, and Paravahlkampfia share natural
habitats with Burkholderia bacteria, including B. pseudomallei
(Inglis et al., 2000, 2003; Noinarin et al., 2016). Amoeba-
Burkholderia interactions can range from predator-prey to
mutualistic relationships. The fate of these interactions is
subjected to the species of amoebae host and Burkholderia
(genotypes), stages of host, as well as external factors that modify
the outcomes. The social amoebae Dictyostelium discoideum life
cycle ranges from unicellular amoebae to multicellular slugs
where ten of thousands of single-celled D. discoideum aggregate
to form a fruiting body. D. discoideum can directly ingest
B. pseudomallei and other Burkholderia bacteria as their food;
thereby requiring the bacterium to resist host cell phagocytosis,
persist inside a unicellular host, and migrate between host cells
through the amoeba cytoskeleton. These processes share many
similarities with mammalian host infection and likely prime
the bacterium for an intracellular lifestyle. The sentinel cells
in D. discoideum, which make up approximately 1% of slug
cells, can use antimicrobial defense systems similar to those
employed by phagocytes in the human innate immune system
(Zhang et al., 2016). The sentinel cells are capable of releasing
reactive oxygen species to lyse the soil bacterium. Moreover,
they can also release an extracellular trap—the reticulated nets
of DNA carrying antimicrobial granules—to kill the invading
bacteria. The extracellular trap is an ancient host-defense
mechanism common among phagocytic cells across vertebrates
and invertebrates, thereby providing a training ground for

B. pseudomallei infection in mammalian hosts. External factors
such as nutrient availability were shown to determine the fate
of D. discoideum—Burkholderia relationship. The association
is beneficial to both parties when the nutrient is scarce.
Under nutrient limited conditions, Burkholderia—associated
D. discoideum produced more spores (Brock et al., 2013; DiSalvo
et al., 2015) and had an increased uptake of secondary bacteria
that can be used as food (Khojandi et al., 2019) which led to
a better survival rate than D. discoideum without Burkholderia
association. Under this condition, Burkholderia could be detected
inside D. discoideum spores, which enable the bacterium to better
disseminate. The mechanism underlining the decision to kill or
cooperate is unclear.

The species of Burkholderia and genetic variations within the
species have been shown to impact the outcomes of amoeba
internalization (Haselkorn et al., 2019). It is possible that genetic
variations in B. pseudomallei could influence the outcomes of
human melioidosis. Heritability scores (Finucane et al., 2015;
Hou et al., 2019; Speed et al., 2020) can be used to quantify
the proportion of variations in the infection outcomes that can
be explained by genetic variations in pathogens and hosts. The
technique has been successfully applied to different pathogens
(Lees et al., 2017) and human infectious diseases. However, the
concept has not been widely adopted for B. pseudomallei – host
infection. For B. pseudomallei infection in human hosts with no
comorbidity, we estimated that 8% of host mortality could be
explained by B. pseudomallei genotypes (h2

= 0.081, SE = 0.050,
p= 0.018; see Supplementary Text for method). This new result
highlights a moderate proportion of infection outcomes being
explained by the bacterial genetics, and suggests that a substantial
proportion of the outcomes could be explained by host genetics.

Interactions between pathogens and Homo sapiens have
shaped the evolution of modern humans (Karlsson et al., 2014).
Currently, less is known about how melioidosis has shaped the
human populations, particularly in melioidosis endemic areas.
The host immunity could function as a general defense against
all invading pathogen mediated by the innate immune system,
or a pathogen-specific defense facilitated through an adaptive
immune response. For innate immune response, it is possible that
interactions between human hosts and other common pathogens
may have driven selection on host defense pathways that affect
resistance. These may include human interactions with parasites
or bacteria that cause malaria (Shimizu et al., 2000; Malaria
Genomic Epidemiology Network, 2008; Timmann et al., 2012;
Kariuki et al., 2020), tuberculosis (Mahasirimongkol et al., 2012;
Thye et al., 2012), or sepsis (Southeast Asia Infectious Disease
Clinical Research Network, 2017; Sweeney et al., 2018) in many
tropical and subtropical countries, and cholangiocarcinoma (Zou
et al., 2014) in Southeast Asia. Using h2, previous works estimate
that genetic variations in human host can explain between
32 and 52% of infectious disease susceptibilities, depending
on the population studied and the infectious agents (Cooke
and Hill, 2001; Jia et al., 2019). Candidate gene approaches
have determined host risk- and protective genetic markers for
melioidosis infection (West et al., 2012, 2013; Myers et al., 2014;
Chaichana et al., 2017; Dickey et al., 2019), many of which
were previously identified as gene targets for other common
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pathogen infections. To cover melioidosis-specific, as well as
broad-pathogen host factors, systemic and reproducible genome-
wide scans are yet to be conducted.

NATURAL SELECTION IN GENES
REQUIRED FOR HOST-PATHOGEN
INTERACTION

Given an increasing availability of B. pseudomallei and host
genomes, a genome-wide scan for signatures of selection, their
directions (purifying, balancing, and positive selection) and their
magnitudes could be very useful to investigate host-pathogen
protein-protein interactions. As both host and B. pseudomallei
migrate, detection of directional selection can be challenging
after a population bottleneck. A bottleneck leads to reduced
levels of genetic variation and a subsequent loss of a selection
signal. For a soil microbe like B. pseudomallei, bacterial
migration was shown to be infrequent, with major movements
tracked and dated (Pearson et al., 2009; Price et al., 2016;
Chewapreecha et al., 2017). The bacterial genome evolution is
correlated with a strong geographical signal, with the highest
diversity observed in Australia and reduced diversity following
dissemination out of the Australian origin (Chewapreecha
et al., 2017). Nevertheless, frequent recombination observed in
B. pseudomallei can introduce new genetic variations, thereby
enabling detection of selection signatures in other contemporary
populations outside Australia (Chewapreecha et al., 2019).
Natural selection on modern humans as a result of pathogen
encounter and migration has been reviewed elsewhere (Karlsson
et al., 2014; Sironi et al., 2015; Slodkowicz and Goldman, 2020).

For bacteria, evolutionary pressures on orthologous proteins
can be quantified using the ratio between substitution rates
at non-synonymous (dN) sites, which could have experienced
selection, and synonymous (dS) sites which are presumably
neutral. The dN/dS ratio is likely to be more than 1 if pressures
favor changes in the protein sequence (positive selection). It
is likely to be less than 1 if selections suppress changes in
the protein sequence (purifying selection). Several studies (Yu
et al., 2006; Losada et al., 2010; Nandi et al., 2010; Hayden
et al., 2012; Chewapreecha et al., 2019) and this review utilized
dN/dS to estimate selection pressures on coding sequences of
the pathogenic B. pseudomallei as well as non-pathogenic but
closely related species such as B. thailandensis. Although these
studies focused on bacterial populations isolated from different
melioidosis endemic regions, performed on different sample
size and genetic diversity, they largely highlighted three similar
patterns (Figure 1). The first common pattern is an elevated
level of positive selection in Burkholderia accessory genes (genes
that are variably present across different isolates) compared to
core genes (genes that are consistently present in all isolates).
This observation highlights the role of accessory genomes
in mediating B. pseudomallei adaptation, a feature reflected
by the open pangenome and large repertoire of accessory
genes observed in B. pseudomallei and B. thailandensis (Nandi
et al., 2015; Spring-Pearson et al., 2015; Chewapreecha et al.,
2017). The second common pattern is the set of genes under

FIGURE 1 | Selection pressure acting on B. pseudomallei population. The
histogram summarizes ranges of dN/dS calculated from predicted coding
sequences from a collection of diverse B. pseudomallei population from
northeast Thailand (Chewapreecha et al., 2019), and B. thailandensis
genomes from the public database. B. pseudomallei and B. thailandensis
have highly plastic genomes comprising of at least two chromosomes of
∼7–8Mb in size when combined. Using a pan-genome approach, all coding
sequences could be categorized as “core” (present in all genomes) or
“accessory” (variably present across studied genomes). Accessory genes
display an elevated level of dN/dS which is signatures of positive selection or
more relaxed purifying selection.

purifying selections in B. pseudomallei and B. thailandensis
involved in the bacterial replication, transcription and translation
machinery; highlighting the conservation of these genes in both
species. The third common pattern is that many genes under
positive selection in B. pseudomallei and B. thailandensis are
required for environmental survival and exchange of genetic
materials including secretion systems, response regulator, heat
shock proteins, and integration and/or restriction of horizontal
gene transfer. However, genes required for host cell invasions
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such as cell adhesion, fimbriae, intracellular multiplication and
macrophage killing are only positively selected in B. pseudomallei
but not B. thailandensis. These distinct signals for positive
selection in B. pseudomallei and B. thailandensis could mark a
different pathogenic potential of the two species.

Genes under positive selection could primarily offer
B. pseudomallei advantages to survive harsh environmental
conditions. Given its tropical and sub-tropical habitats,
B. pseudomallei experiences drought and heavy rainfall on a
seasonal basis. The bacterium can be found in deeper soil layers
during the dry season and moves to the soil surface during the
rainy season following water movement (Thomas et al., 1979;
Currie and Jacups, 2003; Manivanh et al., 2017), highlighting
a spatiotemporal transition. The bacterium is also subjected
to heat stress. An in vivo study showed that B. pseudomallei
had a slower growth rate and a shift in gene expression toward
heat-shock proteins and bacterial motility when exposed
to temperature stress (Paksanont et al., 2018). Intriguingly,
B. pseudomallei is capable of persisting in a nutrient-free
distilled water (Pumpuang et al., 2011). The bacterium was
subjected to distilled water since 1994 and this experiment is still
ongoing, thereby marking an unusual ability of B. pseudomallei
to survive in low nutrient media and high osmotic pressure.
Lipopolysaccharide, a known virulence factor, was proposed to
facilitate B. pseudomallei survival in water. Statistical analysis
suggested that there is a correlation between the presence of LPS
and rainfall, in particular, LPS serotype B (Shaw et al., 2019).
An experimental study further reported that a gene of inner
core LPS biosynthesis cluster (waaE: BPSL2510) is vital for a
long-term water incubation (Moore et al., 2008). Moreover, an
adhesin BPSL1661 was identified as a hub for co-evolutionary
signals in B. pseudomallei population (Chewapreecha et al.,
2020). The gene was functionally characterized as essential
during nutrient starvation (Chewapreecha et al., 2020), thereby
highlighting nutrient limitation as a major evolutionary
pressure experienced by this microorganism. The presence of
B. pseudomallei is strongly associated with the low-nutrient soil
(Limmathurotsakul et al., 2010b; Hantrakun et al., 2016). This led
to the hypothesis that B. pseudomallei might have a competitive
advantage over benign soil microbes in nutrient-depleted soil but
is outcompeted in a nutrient-rich environment. The occurrence
of B. pseudomallei in the nutrient-poor agricultural field has
linked to crop residue burning, a common practice in the tropics
where the burning practice could deplete the soil organic matter
(Bot and Benites, 2005). An ability to persist in the hostile
environmental conditions allows the bacterium to survive before
it could seek shelters in a more protecting reservoir inside the
single or multicellular hosts.

Genes that facilitate bacterial transition from the environment
to hosts are also under positive selection. A genome-wide
association study (GWAS) recently identified the bacterial
genetic factors that distinguish between B. pseudomallei isolated
from the environment and those causing disease in human
(Chewapreecha et al., 2019). Genetic variants associated with cell
entry and toxin were found to be more prevalent in disease- than
environmental isolates, while variants involved in malfunctional
cell adherence were found at higher frequency in environmental-

than disease isolates. Together, this highlights significant roles
of cell adhesion and cell entry in allowing the bacterium to
switch to an intracellular lifestyle, either in an amoeba or in
a human host where it causes melioidosis. The same study
also quantified the numbers of time the variants were gained
or lost from the population phylogenetic tree and highlighted
multiple gain-and-loss events for both disease- and environment-
associated variants. This genetic evidence suggests a process into
which B. pseudomallei can adapt to colonize multiple niches by
exploiting existing variations or exchanging disadvantageous for
advantageous alleles that promote its survival in a new niche,
including the human host.

MECHANISMS THAT GENERATE
GENETIC AND MOLECULAR
VARIATIONS

Genetic information in both B. pseudomallei and human host
can be passed on vertically, although mistakes during replication
process could result in small-scale genetic variations. In
B. pseudomallei, larger-scale genetic variations can be introduced
by recombination event or horizontal gene transfer (HGT).
The former process is akin to sexual reproduction and meiotic
crossing-overs in its human hosts. Due to contrasting short-
and long- generation time of B. pseudomallei (49 min in the
log phase; Ou et al., 2005) and host (22–33 years for modern
humans; Ewbank, 2016); the host cannot solely rely on new
genetic diversity generated when the new offspring is born.
A healthy human possesses a large and dynamic repertoire of B
cell- and T cell receptors that recognize the invading pathogen
and produce a repertoire of antibody that recognizes a variety of
antigenic structure. This molecular diversity is achieved without
a change in genetic content. The mechanisms that generate the
genetic and molecular diversity of the human immune system
have been reviewed elsewhere (Nikolich-Zugich et al., 2004;
Robinson, 2015; Dendrou et al., 2018; van den Broek et al., 2018;
Adams et al., 2020).

Small-scale genetic variations in B. pseudomallei can be
introduced by point mutation which substitutes one nucleotide
with another or microindel (an insertion or deletion) that impact
1–50 bp. B. pseudomallei substitution rate was reported to be
1.7–4.9 × 10−7 substitutions per site per year (Viberg et al.,
2017; Pearson et al., 2020), which is comparable to those detected
in other Burkholderia genera (Lieberman et al., 2014). The
rates of indels have not been quantified in B. pseudomallei.
However, indels can be detected from isolates obtained
from acute and chronic host infections (Hayden et al., 2012;
Limmathurotsakul et al., 2014a; Viberg et al., 2017) as well as
from the environment (Rachlin et al., 2020), thereby highlighting
the role of indels in B. pseudomallei evolution.

Medium-scale genetic variations can be brought in by
homologous recombination, with each event contribute to a
median recombining size of 5 kb (Nandi et al., 2015) (range
3 bp to 71 kb). A single recombination event can introduce
7.2 times greater nucleotide polymorphisms than a single
substitution event (average r/m = 7.2). However, the amounts
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of SNPs being introduced per recombination event is subjected
to the genetic distance between DNA donor and recipient.
Sources of imported DNA could be from the same species
donor, closely related species such as B. thailandensis and/or
other soil microbes. Different B. pseudomallei lineages have
been shown to recombine at different rates (Nandi et al.,
2015), a characteristic also observed in other recombinogenic
bacteria (Chewapreecha et al., 2014; Sanchez-Buso et al.,
2014; David et al., 2017). Interestingly, not all DNA donor-
recipient pairs are possible, suggesting a structure to the
genetic flux within B. pseudomallei population. A lineage-
specific restriction-modification system was shown to act as
a barrier that restricts gene flow (Nandi et al., 2015). These
modification control systems are based on DNA methylation
which allows the bacterium to discriminate between correctly
methylated “self ” DNA, and inappropriately methylated or
unmethylated “non-self ” DNA. Correctly methylated DNA
can be taken up and integrated into the bacterial genome,
whereas inappropriately methylated or unmethylated DNA will
be degraded. Interestingly, many recombination “hotspots” are
focused on bacterial virulence factors (Nandi et al., 2015),
highlighting the role of recombination in tuning the bacterial
ability to infect hosts.

Large-scale genetic variations can be introduced by HGT
or large-scale insertion or deletion. HGT includes the uptake
of foreign DNA that can subsequently be integrated into the
chromosomes and resulted in the regions termed genomic
islands (GIs) (Koonpaew et al., 2000; Holden et al., 2004;
Duangsonk et al., 2006). The repetitive genetic composition of
B. pseudomallei genomes such as tandem repeats and transposons
is believed to aid the integration of horizontally acquired
elements into the chromosomes (Holden et al., 2004; U’Ren
et al., 2007). Despite several plasmid elements being identified
in B. pseudomallei genomes (Holden et al., 2004), four complete
plasmids has been characterized so far (NCBI, December 2020)
(Nandi et al., 2015). With long-read sequencing technology,
the plasmid could be more reliably assembled, thereby allowing
more genetic variations to be studied. At least 16 GIs had
been identified in the K96243 genome (Holden et al., 2004).
Several studies highlight distinct geographical distribution of
GIs or their combinations (Ou et al., 2005; Duangsonk et al.,
2006; Sim et al., 2008; Tuanyok et al., 2008), leading to a
hypothesis that each GI or combination of GIs may confer
different fitness under different environments (Sim et al., 2008).
GIs carry several virulence factors, many of which are known to
interact with hosts, including filamentous hemagglutinin adhesin
(fhaB3), and a member of two-partner secretion system (bpaAB)
(Sim et al., 2008).

GENETIC, STRUCTURAL OR
MOLECULAR VARIATIONS OBSERVED
IN HOST-PATHOGEN INTERACTION

Genetic, structural and molecular variations and their functional
impact to B. pseudomallei - host interaction have been the
center of melioidosis research over the past few decades.

We will summarize genetic and structural diversity in
bacterial genes known to mediate the infection (Figure 2
and Supplementary Table 1). The genes discussed here are
shown to be essential for infection by a genome-wide saturation
mutagenesis (Moule et al., 2015) and also expressed during
in vivo infection (Ooi et al., 2013). When host partners are
known; variations detected in host proteins, and the host
response are also described (Figure 3). It should be noted
that there are large overlaps in the host immune system and
the examples described here only represent a fraction of the
whole machinery.

Genetic Variations in B. pseudomallei
Flagella Systems and Host Toll-Like
Receptor 5 (TLR5)
Flagella systems of B. pseudomallei enable the motility of
the bacterium intracellularly as well as in the environment
(Figure 2; DeShazer et al., 1997; French et al., 2011). Flagella
filaments are constituted from thousands of flagellin protein
monomers, encoded by fliC gene, strung into protofilaments
before being braided to form a flagellum (Samatey et al., 2001).
Flagellin has been known for its extreme diversity with 113,285
unique nucleotide sequences across the prokaryote phyla (Hu
and Reeves, 2020). Flagellin inactivation in B. thailandensis
resulted in the reduction of bacterium intracellular motility
and cell-to-cell spread (French et al., 2011). Using PCR-
restriction fragment length polymorphism analysis, four
different alleles of flagellin protein (fliC: BPSL3319) were
identified from 100 Malaysian clinical isolates (Tay et al.,
2010), and more is expected if investigated with next-
generation sequencing. Proteins in the flagella systems were
reported to elicit host immune response, highlighting them
as melioidosis vaccine candidates (Brett et al., 1994; Chua
et al., 2003; Chuaygud et al., 2008; Gregory et al., 2015;
Koosakulnirand et al., 2018).

In addition to flagella, a fimbrial gene cluster which is
required for cell adherence also displays genetic variation
with distinct alleles being predominantly detected in
different geographical locations. A yersinia-like fimbrial
(YLF) gene cluster, believed to be horizontally acquired
was shown to be more prevalence in Southeast Asia
and thus was used as a marker for the introduction of
B. pseudomallei from this region (Tuanyok et al., 2007;
Sarovich et al., 2014; Chewapreecha et al., 2017). A putative
type I fimbrial protein BPSL1626 was shown to elicit
an immune response and have a potential as a vaccine
candidate against melioidosis (Capelli et al., 2018). Whereas,
B. thailandensis-like flagellum and chemotaxis (BTFC)
gene cluster is believed to be an ancestral sequence in
B. pseudomallei and is most common in Australia (Tuanyok
et al., 2007). The YLF and BTFC gene clusters are mutually
exclusive between the two endemic areas where the latter
may implicate in the spread between cell-to-cell by the
flagellar protein leading to the formation of multinucleated
giant cells (MNGCs) and eventually apoptosis/cell death
(French et al., 2011).
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FIGURE 2 | A summary of B. pseudomallei genes or operons that are expressed during infection and characterized genetic variations. All plotted genes or operons
are up-regulated during in vivo infections (Ooi et al., 2013), with a subset that reported genetic variations marked in red. The shape and location of each individual
gene indicate the gene function and cellular compartment, respectively. All annotated genes or operons and their functions are described. The bacterium displays a
repertoire of antigenic variations, including lipopolysaccharides (LPS), capsular polysaccharides (CPS) and surface proteins. B. pseudomallei LPS is immunologically
classified into a number of serotypes A, B, and B2; with each serotype reported to be heterogeneously distributed across distinct geographical locations. Another
highly diverse virulent protein is a fimbrial protein which displays a strong geographical distribution between Australia and Asia. Strains from Asia commonly possess
a Yersinia-like fimbrial (YLF) gene cluster that believed to be horizontally acquired. B. pseudomallei carries 4 different types of CPS: CPS I, CPS II, CPS III, and CPS
IV. A full gene description is provided in Supplementary Table 1.
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FIGURE 3 | A summary of human host immune components used in defending against B. pseudomallei. Genes or molecules that show genetic variations are
marked in red. Upon infection, the bacterial antigens are recognized by host receptors including Toll-like receptor (TLR) and HLA which also display large genetic
diversity. The latter is reported to be varied by ethnic groups (de Bakker et al., 2006; Gourraud et al., 2014). Following an entry into host, B. pseudomallei faces the
innate axis of the immune system. Macrophages and neutrophils are recruited to the site early upon the infection; these cells are reported to be essential to the early
bacterial containment and clearance (Breitbach et al., 2006; Easton et al., 2007), though excessive recruitment of neutrophils may have a negative outcome that
allows B. pseudomallei to propagate intracellularly (Ceballos-Olvera et al., 2011). These innate phagocytes possess pattern recognition receptors (PRRs), such as
surface receptors TLR2, TLR4, and TLR5, as well as, cytosolic receptors NOD2; these are reported to be vital for the fight against B. pseudomallei (West et al.,
2008; Myers et al., 2014; Weehuizen et al., 2015; Birnie et al., 2019). The signals transduced by these receptors result in mobilization of nuclear factor NF-κB which
trigger appropriate immune responses including the synthesis of pro-inflammatory cytokines and initiation of the downstream adaptive immune cascades (Pothlichet
and Quintana-Murci, 2013). It is through the antigen-presenting cells and their appropriate antigen-HLA class II complexes that enable the activation of CD4 + T
lymphocytes. The naïve CD4 + T cells sit at the central part of the adaptive axis. They can differentiate into Th1 cells which facilitate cell-mediated immune response
by CD8 + cytotoxic lymphocytes. A study has shown that strong CD4 + and CD8 + T cell response was elicited during acute melioidosis and the lower cellular
response was correlated to fatality (Jenjaroen et al., 2015). On the other hand, naïve CD4 + T cells can also mature to be Th2 cells which initiate class switching of B
cells and support humoral immune response.

It has been established that flagellin is a ligand of TLR5
(Figure 3). The recognition stimulates pro-inflammatory
responses including the rise in intracellular calcium ion and
upregulation of pro-inflammatory cytokine TNF-α and IL-6
(Hayashi et al., 2001; Chen et al., 2007). TLR5 stop codon
polymorphism, TLR51174C>T or rs5744168 was strongly
associated with protection against fatality as well as organ
failure in a case-control cohort study. When challenged with
B. pseudomallei, TLR51174C could mediate the activation of
NF-κB, while TLR51174T could not; additionally, TLR51174T
saw reduced flagellin-induced cytokines levels (West et al.,
2013). Another independent investigation on the same
population also found the association between the truncated
TLR51174C>T variant and survival from acute melioidosis,

as well as, a lower rate of bacteraemia (Chaichana et al.,
2017). Furthermore, both studies also found TLR51174C>T
variant with a lower level of anti-inflammatory IL-10, which
the authors suggested the possibility in which the mortality
risk may be modulated by TLR5-driven IL-10 release.
Interestingly, a recent study has suggested that the effect
of this hypofunctional TLR5 variant may not be restricted
to flagellin-driven pathway (Dickey et al., 2019). Another
polymorphic variant is TLR51846T>C which was also associated
with protection against death and blunted flagellin-driven
cytokine response; however, the authors also reported high
linkage disequilibrium of the variant with TLR51174C>T
(Chantratita et al., 2014), which might reduce the confidence of
causal relationship.
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Structural Variations in B. pseudomallei
LPS and Genetic Variation in Host
Toll-Like Receptor 2 and 4 (TLR2 and
TLR4)
B. pseudomallei possesses an extensive network of
polysaccharides on its outer membrane, namely capsular
polysaccharide (CPS) and lipopolysaccharide (LPS) (Figure 2,
for a full review on CPS and LPS in Burkholderia spp.; Cloutier
et al., 2018). Both are known to play a vital role in virulence
of melioidosis and have been used as subunits for vaccine
development (Brett and Woods, 1996; Nelson et al., 2004;
Wikraiphat et al., 2009; Scott et al., 2014b). Based on a cellular
compartment, B. pseudomallei LPS can be divided into (Knirel
et al., 1992): lipid A—an endotoxic component embedded in
the phospholipid bilayer of the outer membrane; inner and
outer core oligopolysaccharide; and O-antigen (Novem et al.,
2009). Multiple in vitro studies showed LPS challenge could
mount innate and adaptive immune responses, and Nitric
Oxide (NO) production, with different LPS serotypes (A, B,
and B2) reported to mount different magnitude of responses
(Norris et al., 2017). Some genetic data of LPS biosynthesis
operons were available. However, many of these were generated
from short-read sequencing platforms, which are not ideal
to investigate LPS due to the repetitive nature of the LPS
locus. Long-read technologies, on the other hand, could
overcome this assembly issue, giving complete contigs of the
bacterium genome.

To date, 4 serotypes of LPS were previously characterized.
Type A LPS is a majority serotype found in both endemic areas,
namely Southeast Asia and Australia (Anuntagool et al., 2000,
2006; Tuanyok et al., 2012). Whereas, serotype B is less common
in the endemic areas (Australia and Southeast Asia) and is
prevalent in both clinical and environmental origins (Tuanyok
et al., 2012). However, a recent analysis of clinical B. pseudomallei
isolates revealed that Serotype B was highly predominant in India
(Shaw et al., 2019). LPS serotype B2 is a variant of LPS serotype B
and more commonly found in Australia and Papua New Guinea
(Tuanyok et al., 2012). In contrast, LPS R or Rough serotype lacks
O-antigen moiety of the LPS structure. It was identified using
SDS-PAGE and silver staining techniques with no O-antigen
ladder pattern. Type R is relatively rare and found only from
the Australian clinical and environmental strains (Anuntagool
et al., 2006). Interestingly, it is frequently prevalent in the patients
with a relapse history of melioidosis, however, there is no direct
association between them (Limmathurotsakul et al., 2014b).

A comparative genomic analysis revealed that there are
distinct variations in the core compositions of the O-antigen
LPS biosynthesis gene clusters between A, B, and B2 serotypes.
However, there are several genes conserved among them. In
addition, type A LPS gene operon is also observed in both
B. thailandensis and B. mallei, closely related Burkholderia species
(Tuanyok et al., 2012). Interestingly, genomic analysis of clinical
isolates from Madagascar revealed that there is a 13.5 kb deletion
observed in the LPS biosynthesis gene cluster of serotype B,
conserving only some genes in the cluster that are essential for
the biosynthesis of LPS B2 (Sarovich et al., 2016). The lack of

some core genes in the LPS biosynthesis cluster could lead to the
reduction of its serological properties. This is supported as some
evidence suggested that the strains with LPS type B2 become
sensitive to 30% normal human serum whereas the strains with
LPS type B remain resistant (Tuanyok et al., 2012).

On the other hand, a single nucleotide insertion of the wbiI
gene is observed in the LPS biosynthesis gene cluster of a rough
serotype in a patient with more than 16-year chronic lung
infection associated with melioidosis. This frame-shift mutation
of wbiI gene (an essential gene for the O-antigen synthesis)
disrupts the epimerase/dehydratase function of this gene and
results in the loss of O-antigen moiety, possibly switching the
serotype of B. pseudomallei isolates from type A to type R (Price
et al., 2013; Pearson et al., 2020). Pearson and colleagues also
revealed the nucleotide insertion of D512_15771 (wbiH) and
D512_06755 gene are observed in B. pseudomallei MSHR6686
of the same patient. The mutation in both genes may confer
to the reduction in LPS modification and production, assisting
in the escape from the host immune response. In addition, a
partial deletion of D512_20407, wbiA homolog is also identified
in MSHR6686 (Price et al., 2013; Pearson et al., 2020). However,
genomic analysis of the rough serotype that is naturally found
in the environment or initial infection has not been done to
determine the genetic makeup of this serotype.

Not only genetic heterogeneity exists among the serotypes
of LPS, further structural diversity is also observed at the
O-antigen of LPS serotypes (Stone et al., 2012; Norris et al.,
2017). The O-antigen is one of the LPS components with a
structure of unbranched disaccharide repeat units. Remarkably,
the structural modifications of these sugar chains were observed
where substitutions of 2-O-methylated and 4-O-acetylated at
talose residues were observed only in about 33% of the LPS
serotype A. Whereas the rest bear 2-acetyl substituents at the
same residues (Perry et al., 1995). More recently, a structural
analysis of O-antigen in the serotype A reported that the
modification of the talose residue is more complex than what
was previously reported (Heiss et al., 2013). Although multiple
gene inactivation studies revealed that wbiA and oacA genes are
essential for these modifications at the talose residues (Brett et al.,
2003, 2011), it is possible that structural diversities of the LPS
O-antigen are further modified at post-transcriptional and post-
translational levels, for instance, a length variation of O-antigen
chain observed in Escherichia coli O9a which is tightly controlled
by the biosynthetic enzymes dynamic (King et al., 2014).

The LPS is common across Gram-negative bacteria and also a
well-established pathogen-associated molecular pattern (PAMP)
that can trigger the pro-inflammatory innate immune response,
such as translocation of NF-κB and TNF-α cytokine release, via
its interaction with TLR4, CD-14 and adaptor protein MD-2
(Park and Lee, 2013). Although evidence has been inconclusive,
LPS sensing was shown to be through TLR4 in murine models,
and TLR4 as well as TLR2 (Wiersinga et al., 2007; West
et al., 2008) in human models (Figure 3; Weehuizen et al.,
2015). Polymorphisms of TLR4 were reported in humans with
TLR41196C>T allelic variant associated with protection against
melioidosis when compared to non-hospitalized controls (West
et al., 2012). In addition, TLR4 rs10828066 SNP variant was
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significantly associated to be protective against melioidosis in
both adjusted non-hospitalized and hospitalized control groups,
whereas TLR4 rs960312 was associated with bacteraemic or lung
melioidosis (West et al., 2012).

Genetic Variations in B. pseudomallei
CPS and Host B Cell Repertoire
CPS is one of the key virulence determinants in B. pseudomallei
(Figure 2). To date, four different types of CPS (CPS I-IV) have
been described (Holden et al., 2004). CPS-I biosynthesis cluster
is a large 34.5 kb operon harboring on the chromosome one of
B. pseudomallei (wcbT to manC). A study in an animal model
reported that the CPS-I cluster is required for the full virulence
of B. pseudomallei (Sarkar-Tyson et al., 2007). CPS-I exhibits an
immunogenic role and the absence of this gene cluster resulted
in the attenuation of B. pseudomallei in a mouse model (Atkins
et al., 2002; Reckseidler-Zenteno et al., 2005; Parthasarathy et al.,
2006). A passive protection was observed when murine intranasal
infection models were immunized with anti-CPS monoclonal
antibodies (AuCoin et al., 2012), with the later study reported that
conjugated CPS could provide the highest degree of protection
(Scott et al., 2014a).

The structural basis of CPS-I is highly conserved (Perry
et al., 1995). Remarkably, CPS-I is believed to be horizontally
transferred between species as the GC content of this CPS-I
cluster is about 58% (Reckseidler et al., 2001). In addition, it
is possible that the horizontal acquisition of this gene cluster
was a key event in the pathogenic evolution of B. pseudomallei
compared to B. thailandensis where the cluster is absent (Yu et al.,
2006). Nevertheless, several genes involved in the biosynthesis of
CPS-I of B. pseudomallei were reported in B. thailandensis with
a relatively low sequence identity (75%). In addition, a novel
variant of B. thailandensis strains (BTCV) is found to carry a
B. pseudomallei like CPS-I (95% sequence identity) gene cluster
with an identical organization. Although the origin of the CPS-
I gene cluster in B. pseudomallei has yet been identified, several
genes involved in the sugar biosynthesis appear to be orthologs to
the genes identified in the Yersinia species (Y. pseudotuberculosis
H892/87) and some in other gram-negative bacteria (Cuccui
et al., 2012). It is possible that the CPSI gene cluster is
not entirely acquired from one bacterial species but several
organisms. Population studies also detected genetic variations
in CPS-I (Challacombe et al., 2014; Chewapreecha et al., 2017).
Whether this genetic variation has implications on virulence is
a subject of further investigation. Another CPS-I variant could
be found in B. pseudomallei isolated from a 16-year chronic
melioidosis patient. A single nucleotide insertion is observed
within wcbR, an important component involved in the fatty acid
synthesis of CPS-I, causing a frameshift mutation in the earlier
samples isolated from this patient (Price et al., 2013; Pearson
et al., 2020). A CPS-I deletion region, which includes wcbR
gene, has shown in the reduction of CPS production in hamster
model but not absence entirely (Gutierrez and Warawa, 2016).
Price et al. (2013), suggested that this degree of CPS-I-dependent
virulence decreases and may consequently be a critical step in the
progression for melioidosis to become a chronic-carriage disease.

Unlike CPS-I, CPS-II and CPS-III have been associated with
B. pseudomallei persistence in the environment (Reckseidler-
Zenteno et al., 2009, 2010), while CPS-IV is less well-
characterized. Up to date, no reports suggest the genetic
variations of CPS-II, -III, and -IV biosynthesis clusters in
B. pseudomallei. The diversity and function of these capsules
in the pathogenesis, immunomodulation and environmental
adaptation of B. pseudomallei warrant further studies.

We next considered host partners that interact with
B. pseudomallei CPS. The CPS has been shown to elicit strong
host immune response (Reckseidler et al., 2001; Atkins et al.,
2002). CPSs from various B. pseudomallei strains were recognized
by the same group of monoclonal antibodies which suggests a
limited number of epitopes of this molecule (Zou et al., 2008).
The molecule’s monomers can cross-link to B cell receptors
and, at an appropriate density, induce a downstream humoral
response that is distinct from T cell-dependent pathway (Clarke
et al., 2013; Akkaya et al., 2020). Antigen recognition through
B-cell receptors is formed through random somatic changes of
germline DNA. This results in a repertoire of distinct sequences
that enable antigen recognition across wide ranges of pathogens.
The B-cell receptors dynamic in melioidosis has not been studied.

Genetic Variations in B. pseudomallei
Adhesins and Autotransporters
Filamentous Hemagglutinin Adhesin (FHA) of B. pseudomallei
is highly diverse (Figure 2). Early investigation of genomic
islands (GIs) from five B. pseudomallei strains identified three
different fhaB gene clusters on different GIs of the bacteria. The
bacterium could carry multiple fhaB gene clusters, many of with
carrying either a combination of cluster I (GI5a/GI5a.1/GI5a.2)
and cluster III (GI16/GI16.1), or cluster III alone (Tuanyok et al.,
2008). More genetic variations of the FHA loci were reported
from the Australian isolates (Chewapreecha et al., 2017). The
fhaB3 gene (BPSS2053) has been characterized as an important
virulence factor of B. pseudomallei; enabling bacterial binding
to the host epithelial cells (Sim et al., 2008), and an anti-
macrophage factor (Dowling et al., 2010). It was found in all
isolates from Thailand but found in only 83% of Australian
strains where the absence of this gene in Australia population
correlated with the skin abscess formation and lower mortality
rate (Sarovich et al., 2014).

Autotransporter (AT) proteins are one of the largest family
of the secretion systems in Gram-negative bacteria, allowing
the transportation across the bacterial membrane as well as
involving the virulence and immunogenicity of the pathogens
(for review Lazar Adler et al., 2011). In B. pseudomallei K96243,
a sequence analysis revealed to have at least 11 ATs located
in the genome, including putative Trimeric Autotransporter
Adhesins (TAAs), bimA (Stevens J.M. et al., 2005) and boaB, two-
partner secretion system (TPS), bpaA, bpaB, and bpaD (Campos
et al., 2013). Inactivation in some of these genes attenuated
and reduced the intracellular survival of B. pseudomallei in
the macrophage-like cells (Lazar Adler et al., 2015). ATs are
variably present in the genomes. The gene boaB (BPSL1705),
which aids bacterial binding to host respiratory cells (Balder
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et al., 2010), was found to be absent in several strains in Africa,
Brazil (Sarovich et al., 2016). When ATs are present, genetic
variants can also be observed. Australian-specific and African-
specific variants have been reported in bpaA, bpaB, and bpaD
(BPSS1434, BPSL2063, and BPSS0088, respectively) (Brown et al.,
2004; Tuanyok et al., 2008).

Several experiments demonstrated the role of BimA in
actin polymerization and motility (Stevens M.P. et al., 2005;
French et al., 2011), promoting a movement of cell-to-cell
spread and within the host cells (Lazar Adler et al., 2011).
Furthermore, BimA is antigenic (Suwannasaen et al., 2011) and
seroactive (Felgner et al., 2009). Two variants of bimA (BPSS1492)
were identified: B. pseudomallei bimA (bimABP), and bimA-like
B. mallei (bimABM). The latter is an ortholog of bimA from
Burkholderia mallei (95% sequence identity) and displays the
same domain organization: a single actin monomer binding
motif (WH2), a proline-rich domain and a transmembrane
anchor domain (Sitthidet et al., 2008). Whereas the bimABP
consists of two predicted WH2 domains, a proline-rich domain,
a membrane anchor domain and an additional predicted casein
kinase II (Stevens M.P. et al., 2005). Of note, the variation
was also observed between the predicted proline-rich domain
of the bimABM and B. mallei bimA where the former has fewer
motifs (Sitthidet et al., 2008). Distinct geographical distribution
of bimABP and bimABM have been reported (Sitthidet et al.,
2008; Sarovich et al., 2014; Shaw et al., 2019). Benanti et al.
(2015) illustrated that both BimAs are functionally similar and
associated with the nucleation and elongation of actin filaments
with more plaque formation observed in bimABP variant
compared to bimABM. A subunit vaccine investigation reported
a significant increased survival rate of BALB/c mice immunized
with BimABM recombinant, when the mice were challenged with
both B. mallei and B. pseudomallei (Whitlock et al., 2010).

Genetic Variations in B. pseudomallei
Secretion Systems
Several secretion systems and secreted proteins in B. pseudomallei
are vital to combat the host immune defense and environmental
stresses. B. pseudomallei has at least three type III secretion
systems (T3SSs) (for review, Vander Broek and Stevens, 2017)and
six type VI secretion systems (T6SSs).

Among T3SSs, T3SS-3 is better characterized and believed to
be an integral part of the full B. pseudomallei virulence in mice
and hamster models, as well as associated with the intracellular
survival and dissemination. K-mer based sequence analysis has
recently demonstrated that variations in the T3SS-3 gene cluster
were detected across the global population of B. pseudomallei
(Chewapreecha et al., 2017). This included bsaU(BPSS1539),
bsaR (BPSS1542), bsaP (BPSS1544), and bsaN (BPSS1546)
(Chewapreecha et al., 2017) which are believed to be involved
in intracellular escape (Pilatz et al., 2006), predicted chaperone
protein (Panina et al., 2005), T3SS-3 secretion regulator
(Broek et al., 2015), and T3SS-3 regulator (Chen et al., 2014),
respectively. In addition, a partial deletion of genes in the
T3SS is also observed in a patient with persisted infection of
melioidosis as a result of within-host adaptations (Pearson et al.,

2020). For T6SSs, T6SS-5 is better characterized (for review,
Lennings et al., 2019)and functionally confirmed to mediate the
translocation of effector proteins via contact-dependent manner
(Silverman et al., 2012) and MNGC formation (Burtnick et al.,
2011; Chen et al., 2011). In addition, an experimental study
suggested that T6SS-5 may involve in the intracellular survival
of B. pseudomallei in macrophages where the expression level
of T6SS-5 is dependent on virAG and bprC regulatory gene
(Chen et al., 2011). Genetic variations are also observed in several
genes clustered T6SS-5 with distinct geographical distribution
(Chewapreecha et al., 2017). Remarkably, a large deletion region
on chromosome 2 of an environmental B. pseudomallei A4 and
an isogenic strain of K96243 has been demonstrated of which
they failed to form a plaque in epithelium cells. Of those, the
deleted genes are including genes involved in T3SS-3 and T6SS-
5 systems. Interestingly, Saiprom et al. (2020) also identified an
absence of multiple T3SS-1 genes of previously described Thai
environmental strain RF80.

Genetic Variations in Human Leukocyte
Antigen (HLA)
For the rest of the bacterial factors that do not get recognized
by any specific innate pattern recognition receptors, these
antigens will be processed and presented on HLA of antigen-
presenting cells such as dendritic cells before getting recognized
by appropriate T cell receptors (TCR) of the adaptive immune
axis; this HLA-peptide-TCR interaction kicks start the adaptive
immune response. There are three different classes of HLA: class
I interacts with TCRs on CD8 + T cells while class II binds to
TCRs on CD4 + T cells, and the less well-established class III
which is not involved in antigen processing and presentation
(Dendrou et al., 2018). Acute melioidosis patients with diabetes
mellitus were reported to have lower HLA-DR expression on
plasmacytoid dendritic cells than the non-diabetic diseased group
(Kronsteiner et al., 2019). In addition, in non-diabetic patients,
fatal cases presented with significantly lower expression of HLA-
DR on monocytes and plasmacytoid dendritic cells, compared to
the survived cases (Kronsteiner et al., 2019). Similar observation
was found in murine infection models where B. pseudomallei-
infected BALB/c and C57BL/6 mice showed reduced expression
of MHC class II on plasmacytoid dendritic cells, however, this was
not statistically significant (Williams et al., 2015).

Genetic variations in HLA have been linked to the melioidosis
outcomes. A work conducted in an endemic area of Thailand
has compared HLA allele frequencies in melioidosis cases and
healthy controls. The authors reported a significant increase
of DRB1∗1602 frequency in melioidosis patients, compared to
healthy controls. Moreover, an increase in HLA-DRB1∗1602 and
a decrease in HLA-DQA1∗03 allele frequencies were associated
with septicaemic cases of melioidosis (Dharakul et al., 1998).
Another study conducted on the same Thai population screened
a panel of various HLA class I genotype frequencies in survived
and fatal cases of melioidosis. The authors found that HLA-B∗46
and HLA-C∗01 were associated with increased mortality; they
were also reported to be in linkage disequilibrium (Dunachie
et al., 2017). Interestingly, HLA has been linked with diabetes
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mellitus, the prominent comorbidity of melioidosis with 12-
fold increased risk of developing the disease (Limmathurotsakul
et al., 2010a). Several recent publications using GWAS have
identified variations of HLA and their corresponding protective
or predisposing association with type 2 diabetes (Williams et al.,
2011; Scott et al., 2017; Zhao et al., 2017). These prompt further
characterization of HLA variants and their relationship with
melioidosis progression when modulated by patient diabetic
status. However, genetic studies on HLA and melioidosis have
suffered from small sample size and availability of reliable
HLA typing platform. This is largely impeded by the under-
representation of genomic data from the population from
melioidosis endemic areas. The availability of data is crucial as
this improves imputations and discovery of new causal variants
and disease association.

DISCUSSION

The advancement in omic technologies has improved our
understanding of co-evolution between B. pseudomallei and
different hosts, thereby guiding better control policy, treatment
option and vaccine design. Proteins or molecules that participate
in host—B. pseudomallei interaction are extremely variable.
Their variations have been seen at the genomic, epigenetic,
transcriptomic and proteomic levels. Although genome data
for human population from melioidois endemic areas is still
scarce, genome data for B.pseudomallei has been accumulating
(Holden et al., 2004; Hayden et al., 2012; Price et al.,
2013, 2016; Sahl et al., 2013, 2016; Daligault et al., 2014;
Bugrysheva et al., 2015; Chen et al., 2015; Hsueh et al.,
2015; Johnson et al., 2015a,b; McRobb et al., 2015; Nandi
et al., 2015; Sidjabat et al., 2015; Song et al., 2015; Spring-
Pearson et al., 2015; Viberg et al., 2015; Chapple et al., 2016;
Aziz et al., 2017; Chewapreecha et al., 2017, 2019; Podnecky
et al., 2017; Viberg et al., 2017; Webb et al., 2019). When
combined with spatial and temporal information, this allows
further exploration of allelic variants and a shift in allele
frequency over space and time. Moreover, a genome-wide
saturation mutagenesis can aid prediction of essential genes
required under certain conditions (Moule et al., 2015). This
can be coupled with transcriptome information to understand
variations in the expression patterns (Chieng et al., 2012;
Ooi et al., 2013; Price et al., 2018) during the course
of infection, and across different host types. A dual host-
pathogen transcriptome study has not been conducted for
melioidosis but is promising to provide valuable insight into
the interaction as well as variations that lead to different
infection outcomes.

In this article, we mainly explored variations of
B. pseudomallei genes implicated in human host infections
at the genetic level. Many of these genes display a strong
geographical signal which could either be a result of a

founder effect following a migration out of Australia, or
an acquisition of new alleles required for local adaptation
after an introduction to new geographical location. For
each virulence gene, we also noted co-existence of multiple
alleles in B. pseudomallei population isolated from the same
geographical region. The genetic polymorphism could be
maintained by balancing selection where each co-existing
allele must be favored under different condition. In the
context of virulent genes, these could involve competitions
with different soil organisms. Signals for positive selection
could be detected in genes that promote bacterial survival
under hostile environment, and genes required for cell entry
and adaptation to an intracellular lifestyle. The latter can
be grouped as virulence genes although they may primarily
be used in amoeba hosts rather than mammalian hosts.
For multi-host—pathogen interaction, it is thus essential
to consider virulence in a broad host and environmental
context. The picture is far from complete at the moment, but
more incoming omic data is promising to shed light on this
complex relationship.
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