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Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium 
tuberculosis. According to the WHO, the disease is one of the top 10 causes of death of 
people worldwide. Mycobacterium tuberculosis is an intracellular pathogen with an 
unusually thick, waxy cell wall and a complex life cycle. These factors, combined with 
M. tuberculosis ability to enter prolonged periods of latency, make the bacterium very 
difficult to eradicate. The standard treatment of TB requires 6–20 months, depending on 
the drug susceptibility of the infecting strain. The need to take cocktails of antibiotics to 
treat tuberculosis effectively and the emergence of drug-resistant strains prompts the 
need to search for new antitubercular compounds. This review provides a perspective 
on how modern -omic technologies facilitate the drug discovery process for tuberculosis 
treatment. We discuss how methods of DNA and RNA sequencing, proteomics, and 
genetic manipulation of organisms increase our understanding of mechanisms of action 
of antibiotics and allow the evaluation of drugs. We explore the utility of mathematical 
modeling and modern computational analysis for the drug discovery process. Finally, 
we summarize how -omic technologies contribute to our understanding of the emergence 
of drug resistance.

Keywords: Mycobacterium, tuberculosis, proteomics, DNA sequencing, transcriptomics, mutagenesis, 
drug evaluation, drug identification pipeline

INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. The disease 
is one of the top  10 causes of death of people, according to the WHO. Each year, about 
10 million people fall ill with TB, and 1.5 million people die. WHO estimates that approximately 
a quarter of the world population is infected with M. tuberculosis, and 5–10% of people 
will develop active TB during their lifetime. Incidence rates are reported in all countries 
and age groups. The disease affects mostly men (57%). Women account for 32% of cases. 
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About 11% of cases are children under 15 years of age. People 
with weakened immune systems are at higher risk of developing 
the disease, with particular emphasis on people infected with 
HIV. They are about 19 times more prone to TB. Further 
factors influencing TB’s risk are malnutrition, diabetes, and 
smoking (World Health Organization, 2019).

Mycobacterium tuberculosis is an intracellular pathogen with 
an unusually thick, waxy cell wall and a complex life cycle. 
The bacteria are transmitted by aerosol droplets and most 
often infect the lungs. Generally, M. tuberculosis infects alveolar 
macrophages, but it can also infect other respiratory system 
cells. The disease may also be  extrapulmonary. Mycobacterium 
tuberculosis can infect cells of bones, genitourinary tract, skin, 
joints, and meninges (Lee, 2015). Mycobacteria invade 
macrophages and settle the infection by blocking the maturation 
of phagosomes. The infection of macrophages results in the 
host response, where various types of immune cells infiltrate 
the infection site. The influx of immune cells may result in 
the eradication of the bacteria. Incomplete eradication of bacteria 
progresses the disease to the latent stage. Mycobacterium 
tuberculosis becomes enclosed in compact and sometimes 
calcified cell aggregates. Mycobacterium tuberculosis slows down 
its metabolism due to the restriction of the influx of nutrients 
and oxygen. The disease becomes latent. Mycobacterium 
tuberculosis can persist in the infected individual’s lungs for 
decades. When the immunity of the person wanes, granulomas 
liquefy, and bacteria reactivate to the active phase of the disease. 
The complex life cycle, intracellular life niche, thick cell wall, 
and the ability to enter prolonged periods of latency make 
M. tuberculosis very difficult to eradicate.

Current Antitubercular Chemotherapy
The standard treatment of tuberculosis requires 6–20 months, 
depending on the drug susceptibility of the infecting strain. 
Antibiotics must be  taken in combination, as administering a 
single antibiotic quickly results in pathogen drug resistance. There 
are four first-line drugs against tuberculosis (isoniazid – INH, 
rifampicin – RMP, ethambutol – EMB, pyrazinamide – PZA) 
and nearly 20 s-line drugs, which can be  administered during the 
treatment of drug-resistant tuberculosis. The numbers of multidrug-
resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains 
of M. tuberculosis are a major problem for current antitubercular 
therapy. MDR-TB is resistant to two first-line drugs, RMP and 
IHN. XDR-TB is resistant to four core antitubercular drugs, 

followed by resistance to capreofluoroquinolones and one of the 
three injectable second-line drugs, e.g., amikacin, capreomycin 
(CM), or kanamycin (KAN). Nearly 484,000 cases of MDR cases 
of tuberculosis are estimated to exist worldwide. A total of 13,068 
cases of XDR-TB were reported by 81 countries, of which most 
of them were from the WHO European Region and the South-
East Asia Region. Detection of MDR-TB first requires confirmation 
of TB, followed by testing for drug resistance. In 2018, 51% of 
people with bacteriologically confirmed TB were tested for RMP 
resistance (up from 41% in 2017). Even though between 2017 
and 2018, there was progress in testing, detection, and treatment 
of MDR-TB, only 56% of MDR cases were successfully treated 
globally and only 39% of cases of XDR-TB. As of 2020, WHO 
recommends that MDR-TB patients are to be  treated with fully 
oral drug regimens. Injectable agents should only be used if other 
options are not possible. Two such agents, KAN and CM, are 
no longer recommended (World Health Organization, 2019). High 
numbers of TB patients, including patients infected with drug-
resistant M. tuberculosis justify the need to search new antitubercular 
compounds that could be introduced to antitubercular chemotherapy.

Prospective Antitubercular Chemotherapy
For a long time, the development of XDR-TB left patients without 
further options for treatment. The principal drugs for the treatment 
of tuberculosis were discovered between the 1940s and 1970s 
(streptomycin, para-aminosalicylic acid, INH, cycloserine – CS, 
KAN, RMP, and others; Murray et  al., 2015). The path of drug 
discovery is long and costly (Figure  1). The process starts with 
the early drug discovery stage. Here, researchers identify potential 
inhibitors in laboratory conditions and assess their principal biological 
impact. The next stage is preclinical studies. This time chemicals 
are tested not only on bacteria but also on cell lines or live animals. 
The knowledge gained in this phase is helpful in Phase III of the 
study, which considers the drug doses tested here in later human 
studies. Several experimental tools are used in the preclinical stage. 
One is the in vitro hollow-fiber system that provides data to 
improve animal experimentation. The great advantage is the 
integration of this data with data from many different animal 
models. Such models are the well-known BALB/c mice and the 
newer Kramnik mouse model, or the marmoset and rabbit models. 
The preclinical stage provides valuable information about the activity 
of the tested drug or sterilization of the pathogen. Unfortunately, 
it provides limited information on the pharmacokinetics and 
pharmacodynamics of the drug (Dooley et  al., 2019).

FIGURE 1 | The schematic overview of the drug discovery process.
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The main cause of failures in the clinical development of 
drugs is its insufficient effectiveness, which is associated with 
an accurate determination of pharmacokinetics (Muliaditan et al., 
2017). Before entering clinical trials, it is essential to gather 
much information about the exposure-response relationship and 
the relationship between pharmacokinetics and toxicity of the 
tested substance. Phase I  clinical trials provide information on 
pharmacokinetics and safety, an important element here is to 
establish drug interactions with food intake or whether the dose 
depends on the patient’s body weight. Phase II studies provide 
detailed inter-population information. In Phase III, drug efficacy 
is assessed by collecting post-drug exposure data, timed microbial 
response, and safety (Dooley et  al., 2019). After clinical trials, 
the development of a new drug requires approval by the Food 
and Drug Administration (FDA).

In 2012, the United  States FDA approved the use of a 
novel antitubercular drug bedaquiline – BDQ. BDQ was 
discovered by the pharmaceutical company Johnson and Johnson, 
under the brand name is Sirturo (Deoghare, 2013). It is the 
first member of a new class of drugs called diarylquinolines. 
BDQ is a bactericidal drug. BDQ blocks proton pump of ATP 
synthase, encoded by gene atpE. ATP production is essential 
for cellular energy turnout (Koul et  al., 2008; Deoghare, 2013). 
BDQ is recommended strictly for the treatment of MDR-TB, 
and when options to treat this condition using existing drugs 
have been exhausted. BDQ should not be  used to treat latent 
TB infection. It should not be  used alone but as part of 
combination therapy and never added alone to a failing regimen. 
By the end of 2018, 90 countries reported having imported 
or using BDQ (World Health Organization, 2019).

In 2014, European Medicine Agency (EMA) conditionally 
approved a second novel antitubercular medicine, delamanid 
(DLM), as a part of combination therapy to treat adults with 
MDR-TB. The brand name of DLM is Deltyba. DLM exhibits 
a low minimum inhibitory concentration, distinguishing itself 
from other clinically approved drugs. This medicine is a pro-drug 
that requires metabolic activation for its action. It is activated 
by the deazaflavin F420-dependent nitroreductase. Resistance 
against DLM includes mutations in genes participating in pro-drug 
activation or associated with the cofactor Ddn biosynthetic pathway. 

DLM is known for specifically inhibiting the synthesis of two 
mycolic acids – keto mycolic acid and methoxy mycolic acid. 
They are the building components of the mycobacterial cell 
wall (absent in Gram-positive or Gram-negative bacteria). These 
components are also making it difficult for medicines to penetrate 
the cells. The use of DLM allows for more effective treatment 
through disrupting cell wall and shortening a treatment regimen 
(Tiberi et  al., 2018b; Bahuguna and Rawat, 2020). By the end 
of 2018, 57 countries reported having imported or started using 
DLM (World Health Organization, 2019).

Approval of new medicine in Phase III clinical trials is always 
a risk, but benefits are perceived as more significant. BDQ was 
the first member of a new class of medicines. The principal 
study showed that treatment with Situro was effective; the drug 
worked well and fast. BDQ and DLM are well-working antibiotics, 
but there is already resistance against BDQ. In particular, they 
are mutations in atpE, gene coding ATP synthase subunit c, 
the target of BDQ, or gene Rv0678, which plays a role in 
regulating the expression of the MmpS5-MmpL5 efflux pump 
(Nguyen et  al., 2018; Ghajavand et  al., 2019). New antibiotics 
are most effective in a few first years before resistance is developed 
and disseminated across the bacterial population. Therefore it 
is vital to search for new medicines. As of October 2020, a 
few antitubercular drugs are currently in phase III or II clinical 
trials (Table 1). In addition to new drugs, there are also repurposed 
drugs like clofazimine (CFM), levofloxacin (LFX), moxifloxacin 
(MFX), and linezolid (LZD), which are in phase II and phase 
III trials for TB too. Drugs are also tested for repurposing from 
the treatment of other diseases, auranofin that is an antirheumatic 
agent and nitazoxanide that is an antiprotozoal agent. The growing 
TB epidemic again developed an interest in CFM, which now 
is an important constituent of newer TB regimens. CFM is a 
pro-drug, but the exact mechanism of action is not yet known. 
MFX is investigated in regimens combining BDQ, pretomanid, 
and PZA, or rifapentine (Bahuguna and Rawat, 2020).

Host-Directed Therapy
Treatment of M. tuberculosis infection with currently available 
antibiotics has several negative features associated with drug toxicity, 

TABLE 1 | New drugs in phase III and II clinical trials (Vjecha et al., 2018; Bahuguna and Rawat, 2020).

Drug Chemical class Target Effect Clinical status

Bedaquiline Diarylquinoline ATP synthase Inhibits energy metabolism of 
the cell

Phase III*

Delamanid Nitroimidazole Exact target not yet known Inhibits mycolic acid synthesis 
(keto and methoxy mycolic 
acids) and cell respiration

Phase III*

Pretomanid Nitroimidazole Exact target not yet known Inhibition of cell wall synthesis 
and respiratory poisoning

Phase III

Delpazolid Oxazolidinone 50S subunit of the ribosome Inhibits protein synthesis Phase II
Sutezolid Oxazolidinone 50S subunit of the ribosome Inhibits protein synthesis Phase II
SQ109 Diamine MmpL3 Inhibits cell wall synthesis Phase II
Macozinone (PBTZ169) Benzothiazinone DprE1 Inhibits cell wall synthesis Phase II
Telacebec (Q203) Imidazopyridine Cytochrome bc1 complex Inhibits ATP synthesis Phase II

*Recently approved drugs.
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and the problem is the increasing presence of drug-resistant 
M. tuberculosis strains. Another approach to supporting the treatment 
and prevention of tuberculosis is host-directed therapy (HDT). 
This strategy aims to modify host response related to the 
development, activity, and pathogenicity of M. tuberculosis infection. 
The HDT agents may have immunomodulatory properties, enhance 
the host’s immune system or influence the host’s metabolic pathways, 
which should aid in fighting the pathogen and protect the lung 
tissue (Tiberi et  al., 2018a). One way is to activate autophagy, 
which would contribute to the increased intracellular killing of 
M. tuberculosis. In this case, the possibility of using rapamycin, 
metformin, statins, vitamin D, phenylbutyrate, carbamazepine, or 
valproic acid is investigated. Rapamycin inhibits the activity of 
mammalian target of rapamycin (mTOR), which is an inhibitor 
of autophagy. However, the use of this compound in therapy is 
limited due to the potential for side effects and its breakdown 
by the liver enzyme CYP3A4, which is activated by RMP, one 
of the first-line drugs in the treatment of tuberculosis. In addition, 
an increase in replication was observed in cells co-infected with 
HIV and H37Rv in response to rapamycin. Another potential 
compound is metformin, which can increase AMP-activated protein 
kinase and reactive oxygen species expression. These abilities 
contribute to activating autophagy and reducing inflammation. 
Statins lower lipid levels by inhibiting the enzyme β-hydroxy 
β-methylglutaryl-CoA, which is involved in lipid metabolism. 
Statins have a positive effect on the maturation of phagosomes 
and autophagy processes and reduce the accumulation of lipids 
inside cells, e.g., in macrophages, limiting the growth of the 
pathogen. Vitamin D and phenylbutyrate may increase the expression 
of LL-37, cathelicidin. Moreover, vitamin D regulates the expression 
of cytokines and immune mediators. Carbamazepine and valpronic 
acid are responsible for the activation of mTOR-independent 
autophagy (Dara et al., 2019; Torfs et al., 2019; Ahmed et al., 2020).

Host-directed therapy may also target the disintegration of 
the granuloma structure. Etanercept, an inhibitor of tumor 
necrosis factor α (TNF-α) involved in the formation and 
maintenance of granuloma, may help treat tuberculosis. Another 
possible drug is bevacizumab targeting vascular endothelial 
growth factor (VEGF). The drug influences the normalization 
of the vessels, which in turn causes a change in the morphology 
of the granuloma and the possibility of interaction with 
anti-tuberculosis drugs.

An important path of HDT is immunomodulation, increasing 
the anti-inflammatory response, which would help to reduce 
tissue damage. Ibuprofen, diclofenac, acetylsalicylic acid, and 
vitamin D are of interest (Torfs et  al., 2019; Ahmed et  al., 
2020). Nonsteroidal anti-inflammatory drugs such as ibuprofen 
or diclofenac can reduce the inflammatory response by inhibiting 
cyclooxygenases. Acetylsalicylic acid activates lipoxin A4, 
which inhibits neutrophil migration and TNF-α production 
(Torfs et  al., 2019; Ahmed et  al., 2020; Young et  al., 2020).

Vaccination
Bacillus Calmette-Guérin (BCG) is a vaccine based on attenuated 
Mycobacterium bovis, and it has been available since 1921. 
The BCG vaccine is currently applied worldwide, mostly in 
high burden countries of Africa, Asia, and South America. 

In 2011, among the 180 countries with available data, 157 
countries recommended universal BCG vaccination (Zwerling 
et  al., 2011). BCG vaccine efficiency is limited, as reflected 
by the number of tuberculosis cases worldwide. Therefore there 
is an ongoing search for novel, more effective vaccines. Several 
types of novel vaccine candidates are currently in clinical trials. 
They are composed of recombinant proteins and adjuvants, 
they are viral vectored, and they are attenuated and whole-cell 
vaccines (Kaufmann, 2020). The call for new vaccines is supported 
by the World Health Organization. The principal 
recommendations are that the new vaccine should be affordable, 
safe, and more efficient than the current BCG vaccine in the 
prevention of infection, disease, or recurrence.

One of the most promising vaccine candidates is the M72 
subunit vaccine developed by GlaxoSmithKline. The vaccine 
successfully passed a phase IIb clinical trial. It was 54% 
effective (Van Der Meeren et  al., 2018). The study tested 
booster vaccination of HIV-positive adults with latent TB 
infection who had been vaccinated with BCG as infants. This 
vaccine contains two TB antigens, fused in one protein and 
combined with AS 01E as an adjuvant. The disadvantage of 
this adjuvant is its high cost of production and limited 
availability, which may be  an obstacle to the wide scale M72 
vaccination (Kaufmann, 2020).

Antitubercular Drug Development Market
It takes a lot of time and cost to bring a new drug to 
market. The average cost that pharmaceutical companies have 
to bear is about US$ 2.6 billion during 10 years of research 
and development. Clinical trials consume most of this funding, 
about US$ 1–2.5 billion. Clinical trials are also the longest 
stage during the drug discovery process – they can last up 
to 6–7 years. Funding for the prevention, diagnosis, and 
treatment of TB has doubled since 2006, but it is still 
insufficient. In 2019, 119 low- and middle-income countries 
funding reached US$ 6.8 billion, up from US$ 3.5 billion in 
2006. Most funds (about 87%) are available from domestic 
sources. Pharmaceutical companies mainly research new 
antibiotics. Most of them are small and medium-sized 
institutions (81%). Academia carries out 12% of new antibiotic 
research. Large pharma companies account for 3% of research. 
Non-profit institutions and public-private partnerships carry 
out the rest (Theuretzbacher et al., 2020). In 2019, international 
donor funding amounted to US$ 0,9 billion, which is far 
below than what was assumed by the Stop TB Partnership’s 
Global Plan. Most of the international donor funding comes 
from the Global Fund to Fight AIDS, Tuberculosis, and 
Malaria. According to data from Treatment Action Group, 
there was the funding of US$ 772 million for TB research 
and development in 2017, which is much less than the target 
of at least US$ 2 billion per year set at the UN high-level 
meeting on TB (World Health Organization, 2019). High costs 
born during the drug development process justify the 
introduction of new technological solutions, including -omic 
technologies, that can facilitate the introduction of new, 
effective, and safe drugs to the market.
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STRATEGIES TO FIND NEW DRUGS 
FOR TUBERCULOSIS TREATMENT AND 
THE DRUG DISCOVERY PROCESS

Designing a new drug and bringing it to market is a very 
time-consuming process that can take up many years (Hughes 
et  al., 2011). This process is also highly costly, with little 
prospect of reimbursement from developing countries where 
tuberculosis is most prevalent. There are several important 
points to consider when searching for new antitubercular drugs. 
There is a need to provide shorter, simpler, and affordable 
multi-drug regimens for drug-sensitive M. tuberculosis; shorter, 
more effective, less toxic, and less expensive regimes for drug-
resistant M. tuberculosis; and shorter, more straightforward, 
easily tolerable, and safe regimes for latent tuberculosis. 
Furthermore, new antitubercular drugs should not antagonize 
other medications, such as those used during HIV infection 
treatment. Finally, ideal drugs are those that have restricted 
the occurrence of drug-resistance.

There are two major paths to discover new antibiotics during 
the early stage of drug development (Figure  2). The first 
approach involves screening libraries of chemicals to find a 
“hit” – a molecule that kills a pathogen at the desired 
concentration. The advantage of this approach is that bacterial 
cell growth, compound penetration, and target sensitivity are 

resolved at the time of identification. Once an active chemical 
is identified, it is vital to establish several issues to evaluate 
the utility of the compound properly. The first issue is the 
identification of the drug target protein. Pinpointing the drug 
target leads to an explanation of the mode of action (MOA) 
of the novel drug (Table  2).

Further, it facilitates the optimization of the chemical structure 
of the drug. Finally, identifying the drug target protein provides 
essential information regarding possible causes of potential 
drug resistance. It is also pertinent to establish if the drug 
generates adverse effects, like an increase in the pathogen 
virulence. Finally, the amount of drug resistance variants and 
drug resistance sources should be determined (Table 3). Following 
the evaluation of the influence of the drug on the bacterium, 
the chemical toxicity is tested against eukaryotic cells. If the 
chemical is toxic at low doses for the pathogen but not toxic 
for eukaryotic cells, the compound may be  further tested for 
its effectiveness in intracellular infection models and animal 
models before reaching the clinical trial phase.

The second approach for finding new antibiotics begins with 
identifying a molecular target that is essential or otherwise 
important for the pathogen virulence. The proteins that make 
good targets for antibiotics are those for which mutations are 
often deleterious. Such an approach makes them less susceptible 
to the random development of resistance. Inhibitors of those 

FIGURE 2 | The schematic overview of the early drug discovery process. The process begins with the identification of either a drug target or the drug itself. Next, 
the determination of the mode of action (MOA) and consideration of drug resistance facilitates an indication of safe and practical potential new drugs.
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proteins can be  found in two ways: through in silico screening 
using bioinformatic analyses and tested in experimental 
conditions (Korycka-Machala et  al., 2017) or through in vitro 
screening inhibitor trough enzymatic/colorimetric assay (Syre 
et  al., 2003; Grzelak et  al., 2019). Potential molecular targets 
proposed in previous studies are, for example, proteins associated 
with DNA repair systems (for review, see Minias et  al., 2019), 
DNA replication (for review, see Płocinska et  al., 2017), multi-
drug efflux pumps (Viveiros et al., 2003; Balganesh et al., 2012), 
or proteins necessary for cell division (Plocinska et  al., 2012; 
Chatterjee et  al., 2018; Gorla et  al., 2018).

The ongoing digital revolution introduces novel solutions 
to old problems. New bioinformatic technologies and the 
availability of these advanced technologies for research allow 
for significant advances in the field of drug development. This 
review provides a perspective on how modern -omic technologies 

facilitate the drug discovery process for tuberculosis treatment. 
We  discuss how methods of DNA and RNA sequencing, 
proteomics, and genetic manipulation of organisms increase 
our understanding of mechanisms of action of antibiotics and 
allow the evaluation of drugs. We  explore the utility of 
mathematical modeling and modern computational analysis 
for the drug discovery process. Finally, we summarize how -omic 
technologies contribute to our understanding of the emergence 
of drug resistance.

IDENTIFICATION OF ANTIBACTERIAL 
COMPOUNDS

Screening Trough Libraries of Chemicals
Antibacterial compounds can be  identified in high-throughput 
screens (HTS), which involve searching through a library of 
chemicals against either bacterial cell culture or chosen bacterial 
proteins in in vitro assay. When there is an observable inhibition 
of growth or enzyme activity at the desired concentration, the 
compound is tested further. The key to every HTS endeavor 
is the compound collection. Libraries of compounds are designed 
and selected for drug-like properties and structural diversity, 
critical to identifying unique hits for screening targets (Lushington 
and Chaguturu, 2014). The main challenge in this approach 
is the quality of chemical libraries. When creating a library, 
it is important to pay attention to its composition by excluding 
compounds that may interfere with screening results. Libraries 
should not contain unstable, highly reactive, or insoluble 
compounds. Assessment of the identity of the relationship and 
validation of purity is also essential. It is important to develop 
the standard of libraries by engaging library creators in their 
development, and also scientists dealing with screening research 
and commercial library managers. There is a forum (Nature 
Chemical Biology) that brings together this community, where 
issues in this field are presented and standards are discussed 
(Screening we  can believe in, 2009). Millions of compounds 
are now commercially available, which allows for the development 
of research for both academics and the pharmaceutical industry.

Adjusting Culture Conditions
Bacterial culture can be  carried out in various environmental 
conditions. Researchers often try to adapt and resemble culture 
conditions to those inside the human cells during pathogen 
infection. Screening of compounds can be  done with reporter 
assays using different types of culture. Grant et al. (2013) screened 
a library of compounds against both actively replicating and 
non-replicating bacilli. They constructed fluorescent reporter assays 
for replicating and non-replicating conditions. Screen of compounds 
with both assays allowed to characterize the compounds as having 
effect on only replicating activity, only non-replicating activity, 
or both replicating and non-replicating activity.

Using Surrogate Models
Working with M. tuberculosis brings many difficulties. For example, 
it is a slow-growing strain, requiring a BSL-3 (biosafety level) 

TABLE 2 | Approaches to establishing MOA of new drugs.

Aim Methods Example studies

Identification of general 
cell disorders and 
disrupted pathways and 
linking them to the 
disrupted metabolic 
pathway

RNA-Seq O’Rourke et al., 2020
Analysis of metabolites 
by LC-MS

Halouska et al., 2012

Analysis of lipid content 
by LC-MS

Pal et al., 2018

Identification and 
confirmation of the drug 
target

WGS to identify 
mutations in the drug 
target

Andries et al., 2005

Generation of knock-out 
strains

Bryk et al., 2008

Generation of 
complemented mutants 
with increased gene 
expression

Kumar et al., 2015

Generation of 
complemented mutants 
with decreased gene 
expression

Esposito et al., 2017

CRISPR system gene 
expression depletion

McNeil and Cook, 2019

TABLE 3 | Identification of sources of drug resistance.

Aim Methods Example studies

Identification of the 
modification of the drug 
target

WGS of the resistant 
strains

Takiff et al., 1994

GWAS Farhat et al., 2019
In silico docking Nachappa et al., 2020

Identification of the 
modification of the 
disrupted metabolite 
pathway

RNA-Seq Reviewed in Briffotaux 
et al. (2019)

TraSH Viswanathan et al., 2017
PIP networks Raman and Chandra, 

2008
GWAS and ML Yang et al., 2018; Deelder 

et al., 2019
Induction of the efflux 
pumps

Using reporter system 
expressing fluorescent 
protein

Jain et al., 2016

RNA-Seq Reviewed in Briffotaux 
et al. (2019)
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laboratory. Such aspects limit the possibilities of seeking  
new drug targets. A solution is the use of surrogate 
strain – Mycobacterium (Mycolicibacterium) smegmatis. It grows 
faster than M. tuberculosis, and working with it is more safe. 
Mycobacterium smegmatis shows good compliance with 
antitubercular drugs if it is grown in a low nutrient culture 
medium (Lelovic et al., 2020). The study by Altaf et al. (2010) 
involving screening of chemical libraries, showed that around 
50% of inhibitors active against M. smegmatis are also active 
against M. tuberculosis. Another surrogate bacterium, slow-
growing M. bovis BCG, got much better results with the 
majority of correlating hits. The less common surrogate models 
used in the antitubercular drug development process are 
Mycobacterium aurum (Gupta and Bhakta, 2012) and 
Mycobacterium marinum (Boot et  al., 2018).

IDENTIFICATION OF THE DRUG 
TARGET AND DETERMINATION OF ITS 
MODE OF ACTION

As the mechanism of action of individual antibiotics was 
discovered, it was understood that each of these drugs had a 
specific target. In addition to inhibiting their primary target, 
many drugs affect cell metabolism by generating toxic 
intermediates and triggering a cascade of molecular events, 
resulting in significant cell changes. Therefore, it is vital to 
consider the overall cellular metabolism when the cell is under 
the influence of the antibiotic (Kana et  al., 2014).

Whole-Genome Sequencing
One of the principal paths to identify the drug target is to 
look for drug resistance mutations, as they often occur in the 
target. This can be  done by whole-genome sequencing (WGS) 
of the resistant strain. Once the mutation is identified, it should 
be  confirmed by the generation of drug resistant mutant after 
the introduction of the mutation into a drug-susceptible strain. 
This approach was used for target identification of BDQ. The 
authors generated drug-resistant variants of M. smegmatis and 
M. tuberculosis and sequenced their genomes. They found that 
the mutations in atpE gene are responsible for resistance to 
the compound. The M. smegmatis wild-type (WT) strain was 
transformed with a construct expressing the ATP synthetase 
subunit of the M. smegmatis mutant. The complementation 
with the mutant allele caused drug resistance (Andries et  al., 
2005). Recently, using a similar strategy, we  identified a drug 
target for 1H-benzoimidazole derivatives. WGS identified 
mutations in the mmpl3 gene encoding the integral membrane 
protein. Strains with trans-complementation of the wild-type 
mutated target gene were prepared. The resulting 
1H-benzoimidazole resistance confirmed the role of the gene 
in the resistant phenotype (Korycka-Machała et  al., 2019).

Genetic Modification of Mycobacteria
The information regarding the genomic DNA sequence provides 
a base for genetic manipulations. Several genetic modification 

approaches are currently available, including the construction 
of knock-out mutants, complemented mutants, and the use 
of reporter systems and interference systems, including the 
CRISPR/dCas system. Gene replacement by homologous 
recombination allows obtaining unmarked genetic mutants 
carrying large deletions within the genes of interest. These 
mutants can be  complemented with genes of interest under 
native or inducible promoter (Parish and Stoker, 2000). One 
can also silence the gene using CRISPR/dCas (Choudhary 
et al., 2015). Obtaining a mutant with regulated target depletion 
allows performing several experiments. The use of such strain 
allows assessing the impact of the depletion of the studied 
gene in various conditions (anaerobic, acid pH, and antibiotics). 
Previously, CRISPR/dCas mutants were used to analyze the 
MmpL3 as a therapeutic target. GoldenGate cloning was used 
to develop the CRISPR/dCas plJT965 plasmid. As a result, 
a 6-fold decrease in expression of the mmpL3 gene was 
obtained. The mutation led to a 5-fold increase in strain 
sensitivity to Mmpl3 inhibitor (McNeil and Cook, 2019).

Complementation of mutants with possible drug-target genes 
allows control of gene expression, which can be  used for the 
evaluation of chemical compounds against specific targets. An 
example of this approach is evaluating the available library of 
GlaxoSmith Kline compounds as CTP inhibitors of PyrG 
synthetase. This essential enzyme is involved in several 
biochemical pathways affecting several aspects of Mycobacterium 
physiology. Compounds were tested against M. tuberculosis 
conditional knockdown strain using a Pip-ON inducible system. 
A mutant carrying the pyrG gene under promoter induced by 
pristinamycin I  was designed. The dependence of the action 
of two compounds from the analyzed library on the PyrG 
level confirmed that the enzyme is an intracellular target 
(Esposito et  al., 2017). Similarly, the antitubercular activity of 
known compounds was confirmed by constructing conditional 
mutants of the tetracycline-induced panC gene, identifying the 
inhibitory activity of flavonoid derivatives (Abrahams et al., 2012).

To further study the drug target, it is also useful to 
overexpress the gene of interest. For the analysis of antifolates, 
an M. tuberculosis strain carrying the plasmid pMRN1 
containing a wild copy of the dfrA gene under the control 
of the strong promoter was constructed. A 4-fold increase 
in the MIC 90 strain overexpressing the gene encoding 
dihydrofolate reductase was observed for 17 compounds, which 
indicates the targeted nature of these compounds (Kumar 
et  al., 2015). Similarly, M. smegmatis strain overexpressing 
MtNadD was prepared using the non-interfering plasmid 
pVV16 and the deletion mutant. The strains were tested in 
the presence of benzimidazolium (N2) derivatives. The 
overexpressed strain consistently showed a larger MIC compared 
to the mutant strain (Osterman et  al., 2019).

Transcriptomics
When identifying an antibiotic’s mode of action, one can 
look for changes in the metabolism, growth, and morphology 
of bacteria. These observations allow the assessment of 
bacterial target inhibition through comparison with known 
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mechanisms (Silver, 2012). So an alternative route to identify 
potential drug targets is through transcriptomic data obtained 
either through microarrays or RNA-Seq (Fields et  al., 2017). 
O’Rourke et  al. (2020) investigated transcriptomic profiles 
of 37 antibiotics within six different mechanisms of action, 
which allowed blind predictions of the antibiotic class based 
on transcriptomic response with an accuracy of <80%. A 
similar model was developed for M. marinum (Boot et  al., 
2018). Betts et  al. (2003) examined M. tuberculosis gene 
expression after treatment with INH, triclosan, and 
thiolactomycin. Based on gene expression changes, a 
transcription profile model was proposed that enabled the 
determination of differences between M. tuberculosis treated 
with each of the three drugs. This model can be  used to 
determine the MOA of uncharacterized mycolic acid 
biosynthesis inhibitors (Briffotaux et al., 2019). Differentially 
expressed genes were also evaluated in a whole blood model 
under the influence of RMP, INH, PZA, and EMB (Kwan 
et  al., 2020). Currently, there are over a hundred reports 
of differential expression of mycobacterial genes. The results 
from these reports were recently combined into model 
INDIGO-MTB. The goal of the model was to identify 
antibiotic combinations that are most promising for TB drug 
development. The authors identified the transcription factor 
Rv1353c as a regulator of multiple drug interaction outcomes. 
They concluded that this factor could be targeted for rationally 
enhancing drug synergy (Ma et  al., 2019).

Metabolomics
Metabolomics is a useful approach for finding new targets for 
antituberculosis drugs and understanding compounds’ mode 
of action (Tuyiringire et  al., 2018). By analyzing the network 
of metabolites and the interactions between them, it is possible 
to obtain knowledge about the cell processes (Goff et al., 2020). 
de Carvalho et al. (2010) supplemented M. tuberculosis cultures 
with 13C-labeled carbon substrates and then analyzed the 
metabolites by LC-MS, proving that Mycobacteria can catabolize 
multiple carbon sources simultaneously. In the following study, 
Prosser and Carvahlo used LC-MS to interrogate the antibiotic 
action mechanism of d-cycloserine (Prosser and de Carvalho, 
2013). Halouska et  al. (2012) described metabolomics changes 
in model M. smegmatis under the influence of 12 known drugs 
and three chemical leads. Nuclear magnetic resonance (NMR) 
analysis of the M. smegmatis metabolome clustered drug-induced 
patterns, correlating them with in vivo drug activity. Zampieri 
et al. (2018) analyzed the metabolomic response of M. smegmatis 
to 62 reference compounds. They used that information to 
predict the MOA of a library of 212 new anti-mycobacterial 
compounds from the pharmaceutical company GlaxoSmithKline.

A separate part of metabolomics is lipidomics, which studies 
the interactions between currently known lipid species and 
other lipids, proteins, and metabolites in the cell (Wu et  al., 
2014). It is based on the use of mass spectrometry (MS), a 
technique by which the mass-to-charge ratio and the number 
of ions are measured, gas chromatography (GC-MS), and liquid 
chromatography (LC-MS; Griffiths and Wang, 2009). Analysis 
of cell lipid content changes in response to changing 

environmental conditions may lead to the identification of key 
pathways in lipid biosynthesis. Pal et al. (2018) used lipidomics 
to show that INH treatment of M. tuberculosis can alter the 
composition of glycerolipids and glycerophospholipids.

CHOOSING THE DRUG TARGET AND 
FINDING ITS INHIBITORS

Because of a significant understanding of the processes taking 
place in bacterial cells, the number of potential molecular 
targets for inhibition is very long. Proteins taking action in 
DNA metabolism and cell wall synthesis are of particular 
interest. Other attractive targets for new drugs are proteins 
from the RND family (resistance, nodulation, and cell division), 
especially Mmpl3, for which analogs of EMB displayed inhibiting 
activity (Campaniço et  al., 2018).

Genetic Modification of Mycobacteria
The alternative approach used to identify new drugs is first 
identifying the target and then looking for its inhibitors. It is 
usually done by creating knock-out mutants, complemented 
mutants, and/or CRISPR/dCas mutants with specific gene 
changes. An important aspect to bear in mind is those target 
proteins identified as essential may be  significant for bacterial 
survival only under laboratory conditions and not in the 
infection process (Zuniga et  al., 2015). Similarly, part of the 
mutants obtained in laboratory conditions, during growth in 
laboratory media, is not viable during animal infection. To 
test the essentiality of individual genes, the researchers infect 
animals with knock-out mutants. In an exemplary study, guinea 
pigs were inhaled with a knock-out mutant of dlaT, which 
product is involved in the restriction of nitric oxide-derived 
reactive nitrogen intermediates. The authors confirmed a vital 
role of dlaT in establishing infection and searched for dlaT 
inhibitors trough screening a library of chemicals (Bryk et  al., 
2008). A desirable targeting strategy for drugs is to find a 
target that will shorten treatment duration and reduce the 
incidence of tuberculosis relapses. Hu et  al. analyzed the 
M. tuberculosis HspX protein, which they previously linked to 
inhibiting this organism’s growth. The BALB/c mice were infected 
with hspX deleted mutant and the WT strain. The animals 
were treated with popular antibiotics. Treatment of mice infected 
with the hspX mutant resulted in faster clearance of bacteria 
from internal organs (Hu et  al., 2015).

Transposon Mutagenesis
A high-throughput method of obtaining mutants is transposon 
site hybridization (TraSH) developed by Sassetti et  al. (2003) 
and DeJesus et al. (2017). The knowledge about gene function 
comes from inserting transposons at AT sites randomly 
distributed across the genome into the gene and disrupting 
its functions. Transposon mutagenesis allowed for a search 
of novel molecular targets such as virulence factors, enzymes 
of crucial metabolic pathways, and other essential proteins 
(Alksne and Dunman, 2008). Transposon mutants can be used 
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to simultaneously analyze a large number of mutants for 
survival in animal models. Transposon mutants were tested 
in mice, guinea pigs, and macaques (Sassetti and Rubin, 2003; 
Hernandez-Abanto et  al., 2007; Dutta et  al., 2010). In a study 
by Carey et  al. (2018) transposon mutagenesis was used to 
investigate genetic requirements for the in vitro growth of 
clinical strains of M. tuberculosis and the reference 
M. tuberculosis strain H37Rv. The authors identified different 
requirements for genes in a panel of clinical strains. One of 
them turned out to be  katG, encoding the first-line 
activator of INH.

Originally TraSH was performed using microarrays. Currently, 
a frequent variant of TraSH is the sequencing of the transposon 
insertion (Tn-seq). The method is sensitive, and it does not 
rely on a pre-existing array. It is important to note that 
transposon mutagenesis is a high-throughput method, and as 
such, it is affected by a certain level of inaccuracy. The analysis 
of constructed mutants should confirm results obtained for 
individual genes.

Lipidomics
In the studies conducted by Raghunandanan et  al. (2019) the 
authors analyzed the changes in the lipid content of M. tuberculosis 
undergoing hypoxia and subsequent re-oxygenation. It turned 
out that the dormant bacteria’s lipid content was drastically 
low and increased during oxygenation. Despite the drastic 
reduction in lipid synthesis pathways during hypoxia, some 
of them were still acting. These pathways are potential targets 
for antituberculosis drugs.

Bioinformatic Predictions of Drug Targets
Potential drug targets can be  identified in protein-protein 
interaction networks (PIP) studies. Two staples of this 
method are the identification of the unique non-homologous 
proteins through the Kyoto Encyclopedia of Gene and 
Genome (KEGG) database or UniProt and identification 
of essential genes through the Database of Essential Genes 
(DEG; Amir et  al., 2014; Melak and Gakkhar, 2014, 2015). 
Search of Amir et al. (2014) for unique proteins of M. tuberculosis 
in metabolic pathways with the KEGG database brought 
up five pathways consisting of 55 proteins. Selected proteins 
were analyzed with DEG and UniProt to choose the best 
candidates for new molecular targets. In another study with 
a similar approach done by Melak and Gakkhar, out of 
1,091 essential genes, 572 were absent in the human genome. 
The interactome analysis with the STRING database allowed 
to limiting the number of possible targets. The authors 
then chose 131 proteins within the close neighborhood of 
the center of gravity of the proteome network, seeing that 
they function as important communicators between different 
metabolic pathways. Most of them were associated with 
cell wall metabolism. To validate this method, researchers 
compared their results to known and potential drug targets. 
Forty-three proteins were already known targets, and some 
were already reported as candidates (Melak and Gakkhar, 2015). 
One of the obstacles in this research type is that many 

M. tuberculosis proteins do not have a known function or 
a 3D structure available. Protein structure is important to 
conclude the function. However, there are attempts to use 
proteins with unknown functions (hypothetical proteins) 
as molecular targets through homology modeling (Uddin 
et  al., 2019). To solve this issue, researchers use their 3D 
models (Kushwaha and Shakya, 2010) or use The Protein 
Data Bank (PDB; Melak and Gakkhar, 2015).

Bioinformatic Predictions of Target 
Inhibitors
The number of chemicals that are required for screening in 
order to find an appropriate inhibitor can be  overwhelming. 
Therefore HTS is often facilitated by virtual screening (VS; 
Figure 3). VS utilizes computational methods to screen through 
ligands libraries to find new hits (Kar and Roy, 2013). Molecular 
docking and pharmacophore modeling are the most commonly 
used tools (Macalino et  al., 2020), being the basis for the 
distinction of VS approaches into the structure- and ligand-
based path. When information about the arrangement of the 
target atoms is available (e.g., thanks to the presence of the 
respective crystal structures), it is usually used for docking. 
Otherwise, the target structure needs to be  modeled using 
homology or de novo (restricted to small proteins) modeling 
(Schmidt et  al., 2014). Docking enables rough estimation of 
compound affinity to the target and making compound 
comparisons based on the quality of fitting to the binding 
pocket. Ligand-based VS also uses a quantitative structure-
activity relationship (QSAR) analysis for predicting the activity 
and physicochemical properties of new potential drugs 
(Nowosielski et al., 2013; Adeniji et al., 2018). Similarity search 
approaches look for compounds with similar structures to 
already known ligands, according to the assumption that 
compounds with similar chemical structures should induce 
similar biological effects (Martin et  al., 2002).

Virtual screening is an useful tool to identify new inhibitors 
for the key cellular components. For example, VS identified 
potential inhibitors of MraY, which is necessary for 
peptidoglycan synthesis (Mallavarapu et  al., 2019). Other 
important cellular components are proteins containing the 
most frequently occurring drug-resistance mutations like InhA, 
FabD, and AhpC, which are INH targets. Through the use 
of VS, researchers can identify new potential drug candidates 
and limit the number of compounds that need testing in 
experimental conditions (Jagadeb et  al., 2019).

Alternatively, molecular docking aids in finding more effective 
antitubercular drugs, which structure is based on already existing 
compounds with proven abilities to inhibit or completely stop 
M. tuberculosis growth. An example of such a study regarding 
the antitubercular drugs is the search for new inhibitors of 
arabinosyltransferase C enzyme (EmbC). EmbC participates in 
the formation of the cell wall, and it is probably the target 
of EMB. Researchers performed molecular docking of five new 
derivatives of the EMB. Based on bioinformatic results, the 
authors indicated two of them that should bind to the EmbC 
with higher affinity (Das et  al., 2020).
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Intensive growth of computational power on the one 
hand, and the increasing amount of data both in the ligand- 
and structure-based field, has made simple statistical methods 
to be  replaced with more complex models to analyze such 
data, with machine learning (ML) being on the top of the 
used methodologies (Figure  3). The main task of ML is 
to analyze existing data, and on their basis, construct a 
predictive model, which is then used for the evaluation of 
new examples (Mitchell, 2014).

Machine learning tools can be categorized into unsupervised 
(clustering methods) and supervised (regression, classifier 
analysis) learning. Both of these types are used in the search 
for new drugs, depending on the wanted outcome. ML is 
useful in all steps of the new drug discovery pipeline, especially 
in tasks where vast amounts of data need to be  analyzed. It 
helps in the identification of new potential ligands in the VS 
procedure, generation sets of new potentially active compounds 
[deep learning, (DL)], optimization of compound physicochemical 
and ADMET properties, and detection of compound interactions 
with off-targets (Carpenter et  al., 2018; Chen et  al., 2018). 
ML is also useful in pre- and clinical development for cell 
response classification after drug intake (Vamathevan et  al., 
2019), as well as after the introduction of the drug to the 
market, e.g., for analyzing and monitoring the drug efficiency 
and possible side effects (Dimitri and Lió, 2017; Gao et al., 2017).

In an exemplary ML-based study to search for new anti-
mycobacterial compounds, Prakash and colleagues built a 
database of compounds with known antitubercular effect, divided 

into three activity classes. Then, the compounds were clustered 
according to their chemical structure and four clusters acting 
on different targets were selected for further analysis. Cluster 
numbered 10 consisted of compounds, e.g., aminohydrazones, 
iso-nicotinoyl hydrazones, and iso-nicotinohydrazides that 
inhibit KatG and 2-trans-enoyl-acyl carrier protein reductase 
(InhA). Cluster 57 included pyrrole derivatives and azole 
antifungals, which interact with CYP51 isozymes. The next 
cluster contained oxazolidinones, which bind DNA gyrase, 
and 2-benzylthiopydidine-4-carbithioamide derivatives, which 
targets are not known. The last cluster contained 
pyridobenzoxaine derivatives of LFX and nitroquinolones. 
Hologram QSAR (HQSAR) allowed the search for fragments 
of molecules contributing to particular compound activity 
and to detect moieties that discriminated against active and 
inactive compounds. Individual active motifs found via this 
procedure were fused, and new bioactive motifs were proposed. 
Furthermore, they verified the effectiveness of new motifs 
by comparing them to compounds in the previously constructed 
dataset. One of the created motifs was found in already 
existing drugs: RMP, rifabutin, cirpofloxacin (COX), and 
ofloxacin (OX; Prakash and Ghosh, 2006).

Another similar approach used in drug design is searching 
for molecular patterns in other known drugs. In one of the 
early studies, researchers built their computational model by 
combining four linear equations and then apply it to screen 
the compounds found in Merck and Sigma-Aldrich catalogs. 
They selected 18 new compounds for microbial tests, which 

A

B

FIGURE 3 | In silico evaluation of compound activity with the use of (A) machine learning (ML) algorithms representing ligand-based approach, and (B) docking 
(element of the structure-based path).
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have not worked in their favor despite careful preparation of 
the model. ML models at that time were far from ideal. However, 
the study was able to pick four compounds that already have 
been experimentally checked for inhibiting M. tuberculosis 
growth, e.g., LZD, paromomycin, reserpine, and trifluoperazine 
from 5,000 compounds in the database, as well as compounds 
with new structures not found in currently used drugs treating 
TB (García-García et  al., 2005). Some researchers are leaning 
toward Bayesian models since they are better suited for global 
QSAR analysis, can manage more data, and the results are 
easier to interpret and reproduce. The good performance of 
this model was proven by a study in which out of 44 
antituberculars only six (13,6%) were assigned to the wrong 
group based on chemical structure (Prathipati et  al., 2008). 
In a similar study, Ekins and colleagues found through Bayesian 
modeling drugs that have not been yet experimentally verified 
against M. tuberculosis but scored high, e.g., sertaconazole, 
clofarabine, tioconazole, amodiaquine, quinaldine blue, 
atorvastatin, montelukast, daunorubicin, 4'-methoxychalcone, 
inosine, hieracin, iridin, harmane, and irigenol (Ekins and 
Freundlich, 2011).

Some researchers guided by the principles of 
polypharmacology are moving away from the “one target-one 
hit” model and looking into drugs that can potentially inhibit 
multiple targets (Zhang et  al., 2016). The reasoning of this 
approach lies in the fact that treatment for TB already consists 
of multiple antimicrobials administered for a very long time 
(over 6 months for drug-susceptible M. tuberculosis; Tiberi et al., 
2018a). Therefore drugs inhibiting multiple targets would 
significantly simplify treatment. There is also the possibility 
that adequate multi-target compounds will be  more effective 
against drug-resistant TB and will not lead to the emergence 
of resistance as fast as one-target drugs do. Following this 
reasoning, Speck-Planche et  al. (2012) created a model for 
mt-QSAR (multiple target QSAR). The difference between this 
method and QSAR was in the training dataset, which was 
constructed based on compounds active against all six proteins 
GyrA, GyrB, InhA, Ag85C, PS, and PD. Through combined 
VS, QSAR, and structure-based pharmacophore models, 
researchers found initial hits against InhA, GlmU, and DapB. 
Next, they added other known drug targets to create possible 
multi-target drugs (Janardhan et  al., 2017). In another study 
focusing on phytochemicals through VS, researchers found four 
compounds amentoflavone, carpaine, 13-bromo-tiliacorinine 
and 2-nortiliacorinine, that bind with high affinity to many 
M. tuberculosis proteins, like Ask, DdIA, PanC, TrpB, AroF, 
NadE, AtpE, RibH, RpIE, and RpsE (Kumar et  al., 2019). All 
results described above need yet to be  confirmed by 
in vitro studies.

Since ML is used as a tool for finding new compounds 
through the mining of chemical databases, a number of databases 
gathering information on compound structure and bioactivity 
have been constructed. An example of such a database is a 
Collaborative Drug Discovery (CDD, Burlingame, CA), which 
now consists of more than 200,000 molecules (Hohman et  al., 
2009; Ekins et  al., 2010). Since its construction, CDD was 
used in many important TB projects like the EU-funded New 

Medicines 4 Tuberculosis (NM4TB) initiative (Ekins et al., 2011). 
Other popular databases of bioactive molecules are ChEMBL 
(which now contains almost 2 million distinct compounds, 
with over 16 million biological activities annotated) and PDSP 
with ~10,000 compound affinities toward different targets 
gathered (Besnard et  al., 2012; Gaulton et  al., 2012).

CONSIDERATION OF DRUG 
RESISTANCE

The principal molecular basis for mycobacterial diversity 
and drug resistance are single-nucleotide polymorphisms 
(SNPs). SNPs occur in the genome as a result of replication 
errors or erroneous DNA repair. M. tuberculosis lacks 
horizontal gene transfer trough mobile genetic elements such 
as plasmids or transposons. The comparison of the genomes 
of various M. tuberculosis strains revealed their similarity 
at over 99% (Namouchi et  al., 2012).

Many mutations encoding drug resistance are located in 
the direct drug targets of the proteins, e.g., rpoB (RMP; Telenti 
et  al., 1993), embCAB operon (EMB; Mikusová et  al., 1995; 
Telenti et  al., 1997), rrs (KAN; Georghiou et  al., 2012), gyrA, 
gyrB (fluoroquinolones, FQ; Takiff et  al., 1994). However, drug 
resistance mutations are also associated with other loci. For 
example, in the case of INH, mutations occur in a seemingly 
unrelated ahpC gene encoding alkyl hydroperoxidase It turns 
out that AhpC takes over the role of KatG, which is a catalase-
peroxidase responsible for the transformation of INH from 
pro-drug to effective drug, in protecting the genome from 
oxygen-induced damage. The overexpression of AhpC 
significantly slows down the production of KatG. Thus, less 
INH is activated, and cells can survive (Sherman et  al., 1999).

Mutations occurring in drug targets can negatively affect 
proteins metabolic activity, resulting in a deficit of cell fitness. 
Bacterial cells compensate through compensatory mutations. 
Mutants carrying compensatory mutations are characterized by 
lower fitness costs associated with drug resistance. The best-
known example of drug-resistant mutations causing fitness cost 
is RpoB (RMP resistance; Gagneux et  al., 2006). Compensatory 
mutations were found in RpoB and other proteins of RNA 
polymerase complex, RpoA, and RpoC (Gagneux et  al., 2006; 
Comas et  al., 2012; de Vos et  al., 2013).

DNA Sequencing
The principal identification of drug resistance sources is based 
on the cultivation of bacteria with antibiotics until drug-resistant 
variants appear (Takiff et  al., 1994; Telenti et  al., 1997). The 
genome sequences of drug-resistant clones are sequenced and 
screened for mutations (Telenti et  al., 1997). This approach 
was used to identify drug-resistant mutations for major 
antitubercular drugs like EMB (Telenti et  al., 1997) and FQ 
(Takiff et  al., 1994). Notably, the amount of drug-resistant 
variants that can be  detected in such studies is limited. As a 
high-throughput method, TraSH can be  used to identify genes 
that do not sustain insertion among the pool of mutants 
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(Sassetti et  al., 2003; van Opijnen et  al., 2009). Researchers 
tested the sensitivity of 69 morphotype mutants of M. smegmatis 
to one of the commonly used antibiotics – ampicillin to identify 
cell envelope genes associated with B-lactam resistance. After 
receiving four sensitive mutants, the transposon insertion sites 
were mapped (Viswanathan et  al., 2017).

Transcriptomics and Genetic Modification 
of Bacteria
Changes in gene expression profiles studied through RNA-seq 
allow understanding of antibiotics’ effect on M. tuberculosis 
physiology regarding tolerance mechanisms and drug 
resistance (Jain et  al., 2016; Briffotaux et  al., 2019). For 
example, increased the expression of the efpA gene encoding 
the efflux pump from the MFS family (major facilitator 
superfamily) and the iniA gene encoding one of the putative 
components of the efflux pump, after treatment with INH, 
may indicate that microorganisms are acquiring resistance 
(Briffotaux et  al., 2019). Exposition of M. tuberculosis to 
antibiotics results in the overexpression of genes encoding 
DNA repair proteins (Gorna et  al., 2010), e.g., dinX after 
RMP treatment (Boshoff et al., 2004), ssb after CM treatment 
(Fu and Shinnick, 2007), ada, alkA after treatment LFX 
(Boshoff et  al., 2004) or xthA after treatment with OX 
(Boshoff et  al., 2004) and many others.

The induction of efflux pumps can be visualized with reporter 
systems. Jain et  al. (2016) investigated the gene expression 
profile in the presence of a subinhibitory concentration of 
INH. The addition of INH to M. tuberculosis during the 
logarithmic growth phase caused a CFU decrease of 2–3 logs. 
Mycobacterial cells that survived the treatment were characterized 
by an increased expression of specific genes, which indicate 
the formation of persister cells. These gene promoters were 
fused to a gene encoding the red fluorescent protein to create 
a reporter system for persisters.

Bioinformatic Predictions
Genome-wide association studies (GWAS) identify drug 
resistance sources after the drugs are already on the market. 
GWAS utilize genomic DNA sequencing data and statistics 
to study the association between gene variants across the 
population and the phenotypic traits, for example, variants 
of genes giving rise to drug-resistant strains (Power et  al., 
2017). Importantly, GWAS studies allow the identification 
of rare drug resistance variants or low-level drug resistance 
variants. GWAS of Farhat et  al. (2013) study showed that 
potentially noncoding regions of the genome, like promoters 
of genes, contribute to drug resistance. The same team has 
confirmed noncoding regions associated with drug resistance 
for INH, EMB, and PZA. However, their effect on drug 
MIC was smaller than the effect of coding region mutations 
(Farhat et al., 2019). In subsequent studies, Coll et al. (2018) 
used GWAS to identify drug-resistance associated mutations 
in 6465 clinical strains. Most of the mutations and loci 
they found were well-known, but some of them were new, 

including loci in foliC, ubiA, thyX-hsdS.1, thyA, alr, ald, 
and dfrA-thyA. They also found mutations in ethA and 
thyX promoters that may contribute to resistance emergence. 
GWAS is also used for studying characteristics of populations 
of M. tuberculosis. Oppong et  al. (2019) through GWAS 
analysis, examined whether phylogenetic lineage background 
impacts drug resistance and found that particular drug 
resistance specific loci occur only in selected lineages.

The development of -omic technologies and computational 
power allowed the development of biological network models. 
These models are based on systemic biology, which combines 
knowledge about organisms on all organizational levels. The 
models take into account all the complex interactions and 
mechanisms occurring in the cells. There are different types 
of such networks, e.g., transcription factors-binding, PIP 
networks, metabolic interaction networks, genetic interaction 
networks, and others (Zhu et  al., 2007; Chandra et  al., 2011; 
Chung et  al., 2013).

In silico analyses like PIP are applicable in predicting drug 
resistance patterns through building networks based on the 
STRING database and defining proteins that are drug targets 
and possible components of resistance emergence. Through 
this research, the concept of “co-target” was created. Co-target 
is a protein used simultaneously as a primary bacterial growth 
inhibitor to stop the emergence of resistance by affecting 
proteins in the resistance emergence pathway. These co-targets 
can be  proteins associated with SOS response (RecA, RuvA, 
and LexA), involved in HGT (SecA1 and SecA2) or metabolism 
of drugs inside the cell like cytochromes and degrading 
enzymes (Cyp135, Erm37), but also proteins involved in the 
transportation of drugs out of the cell through efflux pumps 
(PstB; Raman and Chandra, 2008). Besides, PIP networks 
allow for learning more about the effects of antibiotics on 
the cells by finding what pathways are set in motion when 
antibiotics kill bacteria (Kohanski et  al., 2010).

Identification of rare drug resistance mutations can also 
be  made through ML. Based on 1983  M. tuberculosis isolates, 
Yang et  al. (2018) developed ML models for four first-line 
drugs – INH, RMP, EMB, PZA, and several second-line drugs 
that analyze WGS data. The models increased the sensitivity 
of the detection of drug resistance when compared with previous 
studies. For EMB and RMP, the sensitivity increased to 97% 
(p  <  0.01), and for COX and multi-drug resistant TB, it 
increased to 96%. The INH had the lowest results, with only 
a 2–4% increase. In another study, Deelder et al. (2019) utilized 
WGS data to compare GWAS and their ML model. Both 
methods reached similar results, but GWAS was slightly more 
accurate for CM, CS, and KAN.

In the best scenario, mutations associated with drug-
resistance are confirmed through obtaining genetic mutants 
and observing the resulting drug-resistant phenotype. Another 
approach to confirm that a mutation is linked to drug 
resistance is through in silico docking. In silico docking is 
a useful tool for predicting the roles of mutations causing 
drug resistance. It can be  done by analyzing interactions 
between the selected drug and protein, the wild-type, and 
the mutated variant (Nachappa et  al., 2020).
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ENTERING THE PRECLINICAL STAGE

Researchers thoroughly check compounds with the potential to 
become drugs during the early discovery stage. Regardless of their 
usefulness from a biological point of view, novel compounds should 
have form facilitating administration. They have to go through 
tests of solubility, stability, and reactivity (Strovel et al., 2004; Hughes 
et  al., 2011). If they fail to obtain satisfactory parameters, they 
are discarded. If they reach a satisfactory biological safety level 
and are practical, they proceed to the preclinical drug discovery 
stage. Preclinical studies are a checkpoint before human 
administration, and thus they are vital and carried with much caution.

Most of the compounds going through a hit to lead, and lead 
optimization, do not enter the preclinical stage. If we  count all of 
the structures considered in chemical databases for screening, 
millions of compounds do not make it to the preclinical stage. 
Therefore the preclinical stage is often less costly than the early 
discovery stage. Up to our knowledge, there are no recent estimates 
on how many compounds go from the preclinical stage to the 
clinical phase. A common statement found in the articles is that 
out of 5,000 compounds entering the preclinical stage, five make 
it to the clinical stage, and then one makes it to the market 
(Kraljevic et al., 2004). Taken how many compounds undergo tests, 
the models for early drug discovery need to efficiently investigate 
broad biological consequences in a short time and at a low-cost.

CONCLUSION

The growing demand for discovering new antibiotics stimulates 
the constant development of research methods that broaden 
the knowledge about biological processes occurring in bacterial 
cells undergoing chemotherapy. Understanding these processes 
enables more effective identification of antitubercular compounds. 
Thanks to the -omics technologies, these compounds can now 
be  safer and less prone to the generation of drug resistance. 
When combined, the -omics technologies allow us to gain a 
more holistic view of drug utility.
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